ON SOME SIMPLE SUFFICIENT CONDITIONS FOR UNIVALENCE

Nikola Tuneski, Skopje

(Received June 8, 1999)

Abstract. In this paper some simple conditions on $f^{\prime}(z)$ and $f^{\prime \prime}(z)$ which lead to some subclasses of univalent functions will be considered.

Keywords: univalent, starlike, sharp result
MSC 2000: 30C45

1. Introduction and preliminaries

Let A denote the class of analytic functions $f(z)$ in the unit disc $U=\{z:|z|<1\}$ and normalized so that $f(0)=f^{\prime}(0)-1=0$.

A function $f(z) \in A$ is said to be starlike of order α, i.e., to belong to $S^{*}(\alpha)$, $0 \leqslant \alpha<1$, if and only if

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha
$$

for all $z \in U$. Then $S^{*}=S^{*}(0)$ is the class of starlike functions in the unit disc U. Further, $\widetilde{S}^{*}(\alpha), 0<\alpha \leqslant 1$, is the class of strongly starlike functions of order α defined by

$$
\widetilde{S}^{*}(\alpha)=\left\{f(z) \in A:\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\alpha \pi}{2}, z \in U\right\} .
$$

Also $K(\alpha), 0 \leqslant \alpha<1$, is the class of convex functions of order α which consists of functions $f(z) \in A$ such that

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha
$$

for all $z \in U$, and $K=K(0)$ is the class of convex functions on the unit disc U.

In addition to these classes we will deal also with the following ones:

$$
\begin{aligned}
R(\alpha) & =\left\{f(z) \in A: \operatorname{Re}\left\{f^{\prime}(z)\right\}>\alpha, z \in U\right\}, 0 \leqslant \alpha<1 \\
R_{\alpha} & =\left\{f(z) \in A:\left|\arg f^{\prime}(z)\right|<\frac{\alpha \pi}{2}, z \in U\right\}, 0<\alpha \leqslant 1 .
\end{aligned}
$$

All of the above mentioned classes are subclasses of univalent functions in U and moreover $K \subset S^{*}$ (see [1]). Further, S^{*} does not contain R_{1} and R_{1} does not contain $S^{*}([2])$.

Let $f(z)$ and $g(z)$ be analytic in the unit disc U. Then we say that $f(z)$ is subordinate to $g(z)$, and we write $f(z) \prec g(z)$, if there exists a function $\omega(z)$ analytic in U such that $\omega(0)=0,|\omega(z)|<1$ and $f(z)=g(\omega(z))$ for all $z \in U$. If $g(z)$ is univalent in $U, f(0)=g(0)$ and $f(U) \subseteq g(U)$ then $f(z) \prec g(z)$.

The problem of finding $\lambda>0$ such that the condition $\left|f^{\prime \prime}(z)\right| \leqslant \lambda, z \in U$, implies $f(z) \in S^{*}$ was first considered by Mocanu in his paper [3] for $\lambda=2 / 3$. Later, Ponnusamy and Singh found a better constant $\lambda=2 / \sqrt{5}$, and recently Obradović in [4] closed this problem with the constant $\lambda=1$ by proving that this result is sharp. In this paper, using similar techniques as Obradovic did in [4] we will study λ such that the condition $\left|f^{\prime \prime}(z)\right| \leqslant \lambda, z \in U$, implies that $f(z)$ belongs to one of the classes defined above.

We will also generalize the result that Mocanu gave in [5]: $\left|f^{\prime}(z)-1\right|<2 / \sqrt{5}$, $z \in U$, implies $f(z) \in S^{*}$.

For all of this we will need the following two lemmas.

Lemma 1 ([6]). Let $G(z)$ be convex and univalent in $U, G(0)=1$. Let $F(z)$ be analytic in $U, F(0)=1$ and let $F(z) \prec G(z)$ in U. Then for all $n \in \mathbb{N}_{0}$,

$$
(n+1) z^{-n-1} \int_{0}^{z} t^{n} F(t) \mathrm{d} t \prec(n+1) z^{-n-1} \int_{0}^{z} t^{n} G(t) \mathrm{d} t .
$$

Lemma 2 ([7]). Let $F(z)$ and $G(z)$ be analytic functions in the unit disc U and $F(0)=G(0)$. If $H(z)=z G^{\prime}(z)$ is a starlike function in U and $z F^{\prime}(z) \prec z G^{\prime}(z)$ then

$$
F(z) \prec G(z)=G(0)+\int_{0}^{z} \frac{H(t)}{t} \mathrm{~d} t .
$$

2. Conditions on $f^{\prime \prime}(z)$

Theorem 1. If $f(z) \in A$ and $\left|f^{\prime \prime}(z)\right| \leqslant k, z \in U, 0<k \leqslant 1$, then

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec 1+\frac{k}{2-k} z \tag{1}
\end{equation*}
$$

Proof. Noting that the condition of the theorem is equivalent to $z f^{\prime \prime}(z) \prec k z$, from lemma 1, choosing $F(z)=z f^{\prime \prime}(z)+1, G(z)=k z+1$ and $n=0$, we get

$$
f^{\prime}(z)-\frac{f(z)}{z} \prec \frac{k z}{2}
$$

which is equivalent to

$$
\begin{equation*}
z\left(\frac{f(z)}{z}\right)^{\prime} \prec z\left(1+\frac{k z}{2}\right)^{\prime} \tag{2}
\end{equation*}
$$

and to

$$
\begin{equation*}
\frac{f(z)}{z}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \prec \frac{k}{2} z \tag{3}
\end{equation*}
$$

for $z \in U$. Now, from (2) and lemma 2, taking $F(z)=f(z) / z$ and $G(z)=1+k z / 2$ we obtain $f(z) / z \prec 1+k z / 2$, which implies $1-k / 2<|f(z) / z|<1+k / 2, z \in U$.
From this relation and from (3) we can conclude that

$$
\left(1-\frac{k}{2}\right)\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<\left|\frac{f(z)}{z}\right|\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<\frac{k}{2}, \quad z \in U
$$

i.e.,

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<\frac{k}{2-k}
$$

$z \in U$, and (1) follows.
Corollary 1. If $f(z) \in A$ and $\left|f^{\prime \prime}(z)\right| \leqslant 2(1-\alpha) /(2-\alpha)=k, z \in U, 0 \leqslant \alpha<1$, then $f(z) \in S^{*}(\alpha)$. The result is sharp.

Proof. It is obvious that the conditions of Theorem 1 are satisfied, and so from (1) we obtain that $\operatorname{Re}\left\{z f^{\prime}(z) / f(z)\right\}>1-k /(2-k)=\alpha, z \in U$, i.e., $f(z) \in S^{*}(\alpha)$. Further, the function $f(z)=z+(k+\varepsilon) z^{2} / 2,0<k \leqslant 1,0<\varepsilon<1$, proves that the result is sharp, i.e., that k defined in the corollary is the biggest for a given α because $\left|f^{\prime \prime}(z)\right|=k+\varepsilon>k$ and

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{2(1+(k+\varepsilon) z)}{2+(k+\varepsilon) z}
$$

is smaller than α when z is real and close to -1 . Hence $f(z) \notin S^{*}(\alpha)$.

Remark 1. For $\alpha=0(k=1)$ in Corollary 1 we get Theorem 1 from [4].
Corollary 1.1. Let $f(z) \in A$. Then
(i) $\left|f^{\prime \prime}(z)\right| \leqslant 4 / 5$ implies $f(z) \in S^{*}(1 / 3)$;
(ii) $\left|f^{\prime \prime}(z)\right| \leqslant 2 / 3$ implies $f(z) \in S^{*}(1 / 2)$; and
(iii) $\left|f^{\prime \prime}(z)\right| \leqslant 1 / 2$ implies $f(z) \in S^{*}(2 / 3)$.

Corollary 2. If $f(z) \in A$ and $\left|f^{\prime \prime}(z)\right| \leqslant 2 \sin (\alpha \pi / 2) /(1+\sin (\alpha \pi / 2))=k, z \in U$, $0<\alpha \leqslant 1$, then $f(z) \in \widetilde{S}^{*}(\alpha)$.

Proof. Because the conditions from Theorem 1 are fulfilled, from the subordination (1) we get that $\left|\arg \left\{z f^{\prime}(z) / f(z)\right\}\right|<\arcsin (k /(2-k))=\alpha \pi / 2, z \in U$, i.e., $f(z) \in \widetilde{S}^{*}(\alpha)$.

Remark 2. The question about the sharpness of the result from Corollary 2 is open. It can be subject to further investigation if for given $\alpha, 0<\alpha<1, k=$ $2 \sin (\alpha \pi / 2) /(1+\sin (\alpha \pi / 2))$ is the biggest number for which $\left|f^{\prime \prime}(z)\right| \leqslant k, z \in U$, implies $f(z) \in \widetilde{S}^{*}(\alpha)$ (in [4] Obradović showed that for $\alpha=1, k=1$ is the biggest number with this property). The function $f(z)=z+(k+\varepsilon) z^{2} / 2,0<k<1, \varepsilon>0$, for which $\left|f^{\prime \prime}(z)\right|=k+\varepsilon>k$ cannot be used for proving sharpness because for each $k, 0<k<1$, there exists an $\varepsilon>0$ small enought such that $f(z) \in \widetilde{S}^{*}(\alpha)$. This follows from the fact that for $z=r \mathrm{e}^{\mathrm{i} \theta}$

$$
\arg \frac{z f^{\prime}(z)}{f(z)}=\arctan \frac{r(k+\varepsilon) \sin \theta}{2+3 r(k+\varepsilon) \cos \theta+r^{2}(k+\varepsilon)^{2}}
$$

and

$$
\sup _{z \in U}\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|=\arcsin \frac{k+\varepsilon}{2-(k+\varepsilon)^{2}},
$$

which is smaller than $\arcsin (k /(2-k))=\alpha \pi / 2$ for $\varepsilon>0$ small enought.
Corollary 2.1. Let $f(z) \in A$. Then
(i) $\left|f^{\prime \prime}(z)\right| \leqslant 2 / 3$ implies $f(z) \in \widetilde{S}^{*}(1 / 3)$;
(ii) $\left|f^{\prime \prime}(z)\right| \leqslant 2(\sqrt{2}-1)=0,8284 \ldots$ implies $f(z) \in \widetilde{S}^{*}(1 / 2)$; and
(iii) $\left|f^{\prime \prime}(z)\right| \leqslant 2(2 \sqrt{3}-3)=0,9282 \ldots$ implies $f(z) \in \widetilde{S}^{*}(2 / 3)$.

Using the next theorem we will obtain some results on the classes $K(\alpha), R(\alpha)$ and R_{α}.

Theorem 2. If $f(z) \in A$ and $\left|f^{\prime \prime}(z)\right| \leqslant k, z \in U, 0<k \leqslant 1$, then

$$
\begin{equation*}
f^{\prime}(z) \prec 1+k z . \tag{4}
\end{equation*}
$$

Proof. The condition $\left|f^{\prime \prime}(z)\right| \leqslant k, z \in U$, is equivalent to

$$
\begin{equation*}
z f^{\prime \prime}(z) \prec k z \tag{5}
\end{equation*}
$$

$z \in U$, and again, using Lemma 2 for $F(z)=f^{\prime}(z)$ and $G(z)=1+k z$, we get that the subordination (4) is true.

Corollary 3. If $f(z) \in A$ and $\left|f^{\prime \prime}(z)\right| \leqslant(1-\alpha) /(2-\alpha)=k, z \in U, 0 \leqslant \alpha<1$, then $f(z) \in K(\alpha)$. The result is sharp.

Proof. Because the conditions from Theorem 2 are fulfilled we get that (4) and (5) are true, and from (5) with $p(z)=1+z f^{\prime \prime}(z) / f^{\prime}(z)$ we conclude

$$
\begin{equation*}
(p(z)-1) f^{\prime}(z) \prec k z \tag{6}
\end{equation*}
$$

for $z \in U$. Now, let us suppose that there exists $z_{0} \in U$ such that $p\left(z_{0}\right)=\alpha+\mathrm{i} x$. So from (4) and (6) it follows that

$$
\begin{equation*}
1-k<\left|f^{\prime}\left(z_{0}\right)\right|<1+k \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left(p\left(z_{0}\right)-1\right) f^{\prime}\left(z_{0}\right)\right|<k \tag{8}
\end{equation*}
$$

Further, using (7) we obtain

$$
\begin{aligned}
\left|\left(p\left(z_{0}\right)-1\right) f^{\prime}\left(z_{0}\right)\right|^{2} & =|\alpha-1+\mathrm{i} x|^{2}\left|f^{\prime}\left(z_{0}\right)\right|^{2} \\
& >\left[(\alpha-1)^{2}+x^{2}\right](1-k)^{2} \\
& =(\alpha-1)^{2}(1-k)^{2}+x^{2}(1-k)^{2} \\
& \geqslant(\alpha-1)^{2}(1-k)^{2}=k^{2}
\end{aligned}
$$

for $\alpha=(1-2 k) /(1-k)(\Leftrightarrow k=(1-\alpha) /(2-\alpha))$, which contradicts to (8). Therefore we have proved that under the conditions of Corollary $3 \operatorname{Re}\left\{1+z f^{\prime}(z) / f(z)\right\}>\alpha$ is true for any $z \in U$, i.e., $f(z) \in K(\alpha)$.
The proof that the result is sharp is again done by the function $f(z)=z+(k+\varepsilon) z^{2} / 2$, $0<k \leqslant 1 / 2$ and $\varepsilon>0$, for which $\left|f^{\prime \prime}(z)\right|=k+\varepsilon>k$ and

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}=\frac{1+2 z(k+\varepsilon)}{1+z(k+\varepsilon)}
$$

is smaller than α when z is real and close to -1, i.e., $f(z) \notin K(\alpha)$.

Remark 3. For $\alpha=0$, i.e., $k=1 / 2$, Corollary 3 is equivalent to Theorem 3 from [4].

Corollary 3.1. Let $f(z) \in A$. Then
(i) $\left|f^{\prime \prime}(z)\right| \leqslant 2 / 5$ implies $f(z) \in K(1 / 3)$;
(ii) $\left|f^{\prime \prime}(z)\right| \leqslant 1 / 3$ implies $f(z) \in K(1 / 2)$; and
(iii) $\left|f^{\prime \prime}(z)\right| \leqslant 1 / 4$ implies $f(z) \in K(2 / 3)$.

Corollary 4. If $f(z) \in A$ and $\left|f^{\prime \prime}(z)\right| \leqslant 1-\alpha=k, z \in U, 0 \leqslant \alpha<1$, then $f(z) \in R(\alpha)$. The result is sharp.

Proof. Subordination (4) is true because the conditions from Theorem 2 are fulfilled and hence we conclude that $\operatorname{Re}\left\{f^{\prime}(z)\right\}>1-k=\alpha$ for $z \in U, f(z) \in R(\alpha)$. Once again, using the function $f(z)=z+(k+\varepsilon) z^{2} / 2,0<k \leqslant 1$ and $\varepsilon>0$, for which $\left|f^{\prime \prime}(z)\right|=k+\varepsilon>k$ and $f^{\prime}(z)=1+(k+\varepsilon) z$ is smaller than α when z is real and close to -1 , we prove that the result of the corollary is sharp.

Corollary 4.1. Let $f(z) \in A$. Then
(i) $\left|f^{\prime \prime}(z)\right| \leqslant 2 / 3$ implies $f(z) \in R(1 / 3)$;
(ii) $\left|f^{\prime \prime}(z)\right| \leqslant 1 / 2$ implies $f(z) \in R(1 / 2)$;
(iii) $\left|f^{\prime \prime}(z)\right| \leqslant 1 / 3$ implies $f(z) \in R(2 / 3)$.

Corollary 5. If $f(z) \in A$ and $\left|f^{\prime \prime}(z)\right| \leqslant \sin (\alpha \pi / 2)=k, z \in U, 0<\alpha \leqslant 1$, then $f(z) \in R_{\alpha}$. The result is sharp.

Proof. From the subordination (4), which is true because the conditions of Theorem 2 are fulfilled, we obtain that $\left|\arg f^{\prime}(z)\right|<\arcsin k=\alpha \pi / 2, z \in U$, i.e., $f(z) \in R_{\alpha}$. And in this case the proof that the result is sharp is done by considering the function $f(z)=z+(k+\varepsilon) z^{2} / 2,0<k \leqslant 1$ and $\varepsilon>0$, for which $\left|f^{\prime \prime}(z)\right|=k+\varepsilon>k$ and $\sup _{z \in U}\left|\arg f^{\prime}(z)\right|=\arcsin (k+\varepsilon)>\arcsin k=\alpha \pi / 2$ for $\varepsilon>0$ small enought.

Corollary 5.1. Let $f(z) \in A$. Then
(i) $\left|f^{\prime \prime}(z)\right| \leqslant 1 / 2$ implies $f(z) \in R_{1 / 3}$;
(ii) $\left|f^{\prime \prime}(z)\right| \leqslant \sqrt{2} / 2=0,7071 \ldots$ implies $f(z) \in R_{1 / 2}$; and
(iii) $\left|f^{\prime \prime}(z)\right| \leqslant \sqrt{3} / 2=0,8660 \ldots$ implies $f(z) \in R_{2 / 3}$.

3. Condition on $f^{\prime}(z)$

Theorem 3. Let $f(z) \in A$. If $\left|f^{\prime}(z)-1\right|<\lambda$ for some $0<\lambda \leqslant 1$ and for all $z \in U$, then $f(z) \in \widetilde{S}^{*}(\alpha)$, where

$$
\alpha=\frac{2}{\pi} \arcsin \left(\lambda \sqrt{1-\frac{\lambda^{2}}{4}}+\frac{\lambda}{2} \sqrt{1-\lambda^{2}}\right)
$$

and $|f(z)|<1+\lambda / 2$ for $z \in U$.
Proof. From the condition $f^{\prime}(z) \prec 1+\lambda z$ it follows that

$$
\begin{equation*}
\left|\arg f^{\prime}(z)\right|<\arcsin \lambda, \quad z \in U . \tag{9}
\end{equation*}
$$

From the same condition, using lemma 1 for $F(z)=f^{\prime}(z), G(z)=1+\lambda z$ and $n=0$ we get that

$$
\begin{equation*}
\frac{f(z)}{z} \prec 1+\frac{\lambda}{2} z . \tag{10}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\left|\arg \frac{f(z)}{z}\right|<\arcsin \frac{\lambda}{2} \tag{11}
\end{equation*}
$$

for $z \in U$. Now from (9) and (11) we can conclude that

$$
\begin{aligned}
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right| & =\left|\arg \frac{z}{f(z)}+\arg f^{\prime}(z)\right| \leqslant\left|\arg \frac{z}{f(z)}\right|+\left|\arg f^{\prime}(z)\right| \\
& <\arcsin \frac{\lambda}{2}+\arcsin \lambda=\arcsin \left(\lambda \sqrt{1-\frac{\lambda^{2}}{4}}+\frac{\lambda}{2} \sqrt{1-\lambda^{2}}\right)
\end{aligned}
$$

i.e., $f(z) \in \widetilde{S}^{*}(\alpha)$ for

$$
\begin{equation*}
\alpha=\frac{2}{\pi} \arcsin \left(\lambda \sqrt{1-\frac{\lambda^{2}}{4}}+\frac{\lambda}{2} \sqrt{1-\lambda^{2}}\right) . \tag{12}
\end{equation*}
$$

Further, from (10) it is easy to infer that for $z \in U$

$$
|f(z)|<\left|\frac{f(z)}{z}\right|<1+\frac{\lambda}{2}
$$

We can rewrite Theorem 3 in the following way.

Theorem 3'. Let $f(z) \in A, 0<\alpha \leqslant 1$ and let

$$
\begin{equation*}
\left|f^{\prime}(z)-1\right|<2 a \sqrt{\frac{5-4 \sqrt{1-a^{2}}}{16 a^{2}+9}}=\lambda \tag{13}
\end{equation*}
$$

where $a=\sin (\alpha \pi / 2)$. Then $f(z) \in \widetilde{S}^{*}(\alpha)$ and $|f(z)|<1+\lambda / 2$ for $z \in U$.
Proof. If we put λ from (13) to the right side of (12) we obtain α.
Corollary 6. Let $f(z) \in A$ and $\left|f^{\prime}(z)-1\right|<\lambda$. Then
(i) if $\lambda=2 \sqrt{5} / 5=0,8944 \ldots$, then $f(z) \in \widetilde{S}^{*}(1)=S^{*}$ and $|f(z)|<1+\sqrt{5} / 5=$ $1,4472 \ldots$, for $z \in U$;
(ii) if $\lambda=\sqrt{21} / 7=0,6546 \ldots$, then $f(z) \in \widetilde{S}^{*}(2 / 3)$ and $|f(z)|<1+\sqrt{21} / 14=$ $1,3273 \ldots$, for $z \in U$;
(iii) if $\lambda=\sqrt{(10-4 \sqrt{2}) / 17}=0,5054 \ldots$, then $f(z) \in \widetilde{S}^{*}(1 / 2)$ and $|f(z)|<1+$ $\lambda / 2=1,2527 \ldots$, for $z \in U ;$
(iv) if $\lambda=\sqrt{(5-2 \sqrt{3}) / 13}=0,3437 \ldots$, then $f(z) \in \widetilde{S}^{*}(1 / 3)$ and $|f(z)|<1+\lambda / 2=$ $1,1718 \ldots$, for $z \in U$;

Remark 4. The result from Corollary 6 (i) is the same as the result from Theorem 2 from [5], but it is obtained by a different method.
[1] Goodman, A. W.: Univalent Functions, Vol. I and II. Tampa, Florida, 1983.
[2] Krzyz, J.: A counter example concerning univalent functions. Folia Societaties Scientarium Lubliniensis Mat. Fiz. Chem. 2 (1962), 57-58.
[3] Mocanu, P. T.: Two simple conditions for starlikeness. Mathematica (Cluj) 34 (1992), 175-181.
[4] Obradović, M.: Simple sufficient conditions for starlikeness. Matematicki Vesnik. 49 (1997), 241-244.
[5] Mocanu, P. T.: Some starlikeness conditions for analytic functions. Rev. Roumaine Math. Pures. Appl. 33 (1988), 117-124.
[6] Halenbeck, D. J.: Ruscheweuh, S.: Subordination by convex functions. Proc. Amer. Math. Soc. 52 (1975), 191-195.
[7] Miller, S. S., Mocanu P. T.: Subordination-preserving integral operators. Trans. Amer. Math. Soc. 283 (1984), 605-615.

Author's address: Nikola Tuneski, Faculty of Mechanical Engineering Karpos II b.b., 91000 Skopje, R. Macedonia, e-mail: nikolat@ereb.mf.ukim.edu.mk.

