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1. Introduction and preliminaries

We will investigate the formal initial value problem (C)

∂

∂t
u(t, x) = (∆−mI)u(t, x) + f(u(t, x)) + σ(u(t, x))Ẇ (t, x), t > 0, x ∈ �

d ,

u(0, x) = ϑ(x), x ∈ �
d ,

where m � 1 is a real number. By Ẇ we denote a Gaussian noise which is in general
supposed to be white in time and correlated in space. It is given as follows. Let

(Ω,F,�) be a complete probability space which is fixed in this paper. Let (wn)n∈�
denote a sequence of independent standard one-dimensional Wiener processes which

are supposed to be independent of the initial datum ϑ. Let (hn)n∈� be an ortho-
normal basis in �2 (�d ) and choose a sequence (an)n∈� of nonnegative real numbers.
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Define

Bt :=
∑
n∈�

√
an · wn(t) · hn, t � 0

and require additionally
a :=

∑
n∈�

an · ‖hn‖2∞ <∞.

Note that there exists an orthonormal basis (hn)n∈� in �2 (�d) such that

sup
n∈�

‖hn‖∞ <∞,

where ‖.‖∞ denotes the �∞ -norm (cf.Manthey and Mittmann, 1996; Manthey and
Zausinger, 1996; Ovsepian and Pelczynski, 1975). Therefore, the above mentioned
condition can be always fulfilled by choosing (an)n∈� with

∑
n∈�

an <∞ if the basis is
already taken. Then B = (Bt)t�0 is a so-called Q-Wiener process on �2 (�d ). Since

under this choice the covariance operator Q of B is nuclear we are in the “nuclear
case”. In contrast to that one could deal also with the “cylindrical case” where

an = 1, n ∈ �. Then B represents a cylindrical Wiener process which no longer
exists in �2 (�d ). (In this situation the basis (hn)n∈� can be taken arbitrarily. For
details see Da Prato and Zabczyk, 1992.) In both cases we have

Bt(h) =
∑
n∈�

√
an · wn(t) · (hn, h).

Except for the uniqueness assertion below we will deal in this paper only with the

(generalized) nuclear case described above.
We will use the standard (i.e. right continuous and complete) filtration generated

by (B(hn))n∈� and ϑ and denote it by � = (Ft)t�0. Defining

W (t, x) := Bt(1(−∞,x]),

(t, x) ∈ �+ × �
d , we get a centered Gaussian random field possessing a space-time

continuous version which is chosen from now on. Taking

Ẇ =
∂d+1

∂t∂x1 . . . ∂xd
W

in the generalized sense we arrive at the driving noise in (C).
Let ϕ : Ω× [0,∞)× �

d → � be progressively measurable and such that

�

∫ t

0

[∫
�d

|ϕ(s, x)| dx
]2
ds <∞
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in the nuclear case and

�

∫ t

0

∫
�d

|ϕ(s, x)|2 dxds <∞

in the cylindrical case. For these classes of mappings the stochastic integral

∫ t

0

∫
�d

ϕ(s, x) dW (s, x) :=
∑
n∈�

∫ t

0

[ ∫
�d

ϕ(s, x)hn(x) dx

]
dBs(hn), t ∈ [0,∞),

is well-defined.
We will always assume that the mappings f, σ : � → � are continuous. Later on

we will impose more restrictive conditions.
Introduce the mapping g : (t, x)→ (4�t)−d/2 · exp(−|x|2/4t) for t > 0, x ∈ �

d and

denote e−mt · g(t, x) by G(t, x). Consider

u(t, x) =
∫
�d

G(t, x− y)ϑ(y) dy +
∫ t

0

∫
�d

G(t− s, x− y)f(u(s, y)) dy ds(I)

+
∫ t

0

∫
�d

G(t− s, x− y)σ(u(s, y)) dW (s, y)

=: Θ(t, x) + Φ(t, x, u) + S(t, x, u), t > 0, x ∈ �
d .

Let � belong to the set P of mappings � : �d → [1,∞) possessing the representation
�(x) = 1 + |x|n for some n � 1 and let us introduce the Banach space

� � = � �(�d) :=
{
ϕ ∈ � (�d ) : sup

x∈�d

|ϕ(x)|
�(x)

<∞
}

with the norm |ϕ|� := sup
x∈�d

�−1(x)|ϕ(x)|. Finally, set

�
T
� = �

T
� (�

d ) :=
{
u ∈ � ([0, T ] × �

d ,�) : sup
t∈[0,T ]

|u(t, . )|� <∞}
.

Two mappings ψ, ζ : Ω×�
d → � are called equivalent if ψ(x) = ζ(x) holds � a.s. for

every x ∈ �
d . Let ε : �d → [1,∞) be a continuous function. Note that for κ � 1 the

set � ε,κ of classes of equivalent measurable mappings ψ : Ω× �
d → � with

‖ψ‖ε,κ := sup
x∈�d

(� |ψ(x)|κ )1/κ

ε(x)
<∞

is a Banach space with a norm ‖.‖ε,κ. Obviously, ψ ∈ � ε,κ implies ψ ∈ � ε,α provided
κ > α. Finally, denote the set [0, T ]× �

d by � T and [0,∞)× �
d by � .
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Definition 1.1. A pathwise continuous random field u : Ω× � → � is called a

solution to (C) on [0,∞) if the following holds.
(i) u(0, x) = ϑ(x) � a.s. for any x ∈ �

d .

(ii) For any x ∈ �
d the process u(., x) is �-adapted.

(iii) There exists an � ∈ P such that the paths of u(t, . ) belong to � � for any t � 0.
(iv) There exist ν � 1, � ∈ P such that u(t, . ) belong to � �,ν for any t � 0.
(v) u solves (I) � a.s. for any (t, x) ∈ � .

In the cylindrical case existence of a solution was already investigated in Da Prato
and Zabczyk (1992), Iwata (1987), Manthey (1988, 1996), Manthey and Mittmann

(1997), Manthey and Zausinger (1996), Marcus (1979) and Shiga (1994). Except
Manthey (1996), Manthey and Zausinger (1996) and Shiga (1994) the methods used

in these papers are heavily dependent on the fact that σ is either a constant mapping
or bounded. We need no such restrictions here. Moreover, we will prove a uniqueness
theorem which seems to be completely new. It covers the physically interesting situ-

ation when f is an odd polynomial with a negative leading coefficient. Furthermore,
this statement is also true in the cylindrical case. The pathwise spatial growth of

solutions to the Cauchy problem was first investigated in Manthey (1996) for the
cylindrical case. We will formulate the corresponding assertions for the nuclear case

here. As far as we know, stability investigations for the solution of problems we are
interested in are done only for Lipschitz continuous coefficients. We will show that

in the case of the existence and uniqueness theorem mentioned above the solution is
exponentially ultimately bounded in mean square. Under a natural additional con-

dition the “equilibrium solution” (u = 0) is even asymptotically exponentially stable
in mean square. Both assertions are true in a certain Hilbert space of weighted func-

tions. In particular, this result shows that the only invariant measure in this case is
δ0.

The paper is organized in a simple way. After this introduction of the problem
and some preliminaries the next section contains the formulation of the main results.
Section 3 is devoted to some auxiliary results while in the final section the main

results are proved.

2. Main results

2.1. Existence of a solution and growth in space. The initial datum ϑ is

supposed to satisfy the following conditions:

(ϑ1) There exist � ∈ P and p � 2 such that ϑ ∈ � �,p .

(ϑ2) For some � ∈ P and each ω ∈ Ω, ϑ belongs to � � .
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To prove existence of a solution we will consider the problem under the following

conditions on f :
(f1) The mapping f : � → � is continuous.
(f2) There exists a nonnegative constant cf such that

f(u) � −cf (1− u), u � 0,

and
f(u) � cf (1 + u), u � 0.

(f3) There exist constants ν ∈ {1, 2, . . .} and cν > 0 such that

|f(u)| � cν · (1 + |u|ν)

for every u ∈ �.
Property (f2) is sometimes called the “one-sided linear growth condition”, while (f3)

is naturally a “polynomial growth condition”.
A mapping Λ: � → � is called globally Lipschitz continuous if there is a constant

L > 0 such that

(L) |Λ(u)− Λ(v)| � L · |u− v|

for any u, v ∈ �. Obviously, (L) yields

|Λ(u)| � C(1 + |u|)

for some C > 0 and any u ∈ �. To simplify the notation we will always assume

C = L which is clearly not a restriction.
Throughout this paper σ is supposed to have the following property.

(σ1) The mapping σ : � → � is globally Lipschitz continuous.

������. One could allow the mappings f and σ to depend additionally on
(t, x) ∈ [0, T ] × �

d for an arbitrary T > 0. In this case the constants in (f2), (f3)

and (σ1) must be independent of (t, x). This generalization leads only to a more
complicated notation. Therefore, we omit it.

The main tool for estimating the spatial growth of the desired solution is the

following assertion.

Theorem 2.1.1. Let F,Σ: Ω × � T → � be progressively measurable functions

with the property that there exist p > 2, k � 0 such that

� [|F (t, x)|2p + |Σ(t, x)|2p] � c0(p, T ) · (1 + |x|k)
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for any (t, x) ∈ � T , where c0(p, T ) is a certain constant. Then V : Ω × � T → �

defined for t ∈ (0, T ] by

V (t, x) :=
∫ t

0

∫
�d

G(t− s, x− y)F (s, y) dy ds+
∫ t

0

∫
�d

G(t− s, x− y)Σ(s, y) dW (s, y)

and for t = 0 by V (0, x) = 0, x ∈ �
d , possesses a pathwise locally Hölder continuous

version that is again denoted by V. This version satisfies

|V (t, x)| � Ξ(a, k,m, p, c0(p, T ), T ) ·
[
1 + |x| 14+ 2+k

2p
]

for (t, x) ∈ � T , where Ξ is a random variable with �({0 < Ξ <∞}) = 1.
A quite large class of nonlinearities (“reaction functions”) f is covered by the

following existence result.

Theorem 2.1.2. Let f and σ satisfy (f1)–(f3) and (σ1), respectively. Suppose
that ϑ has properties (ϑ1) with p > ν and (ϑ2). Then for each T > 0 there exists
at least one solution u to (C) on [0, T ] such that ϑ ∈ � � , �(x) = 1 + |x|k, implies
u ∈ �

T
�∗ , where

�∗(x) = 1 + |x| 14+ 1p+k, x ∈ �
d .

Moreover, sup
t∈[0,T ]

‖u(t, . )‖�,p <∞ if ϑ ∈ � �,p .

This shows that under the just formulated conditions there exists at least one solu-
tion to (C) on [0,T] not growing faster than the solution under Lipschitz conditions

on f (compare Theorem 3.2.1 below). Furthermore, as in the Lipschitz case this
solution cannot leave the Banach space � �,p if it starts in it. Under an additional

condition u also stays in � � .

Theorem 2.1.3. In addition to the conditions of Theorem 2.1.2 let σ be bounded
and p � 3 ∨ ν. Then all paths of the solution obtained in Theorem 2.1.2 belong to
�

T
� .

2.2. Uniqueness. Let T > 0 be arbitrary but fixed and let us introduce the

following condition.
(f4) There exists constants ν � 1 and K > 0 such that

|f(u)− f(v)| � K · |u− v| · (1 + |u|ν−1 + |v|ν−1)

for any u, v ∈ �.
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�������.

(i) Obviously, (f4) implies that f is locally Lipschitz continuous.
Notice that the usual procedure of proving uniqueness does not work here. First,

we will not assume a linear growth condition on f and second, ϑ may be unbounded

on �
d . S(t, . ) is already unbounded in x ∈ �

d even if σ is a constant mapping.
Hence local Lipschitz continuity alone is useless here.

(ii) Condition (f4) implies the polynomial growth condition (f3).
(iii) Condition (f4) is satisfied by

f(u) =
ν∑

k=0

aku
k

provided aν < 0 and ν is odd.

We shall prove the following uniqueness assertion.

Theorem 2.2.1. Let u = (u(t, x))(t,x)∈�T
and v = (v(t, x))(t,x)∈�T

be two so-

lutions of (C) on [0,T] with paths belonging to � T
� and corresponding to the same

initial condition. If conditions (f4) and (σ1) are satisfied, then

�({ sup
(t,x)∈�

|u(t, x)− v(t, x)| = 0}) = 1

holds.

Note that the existence theorem in Section 2.1 gives us a solution u in each fixed
time interval [0, T ]. At worst these solutions differ for different T . Theorem 2.2.2

guarantees the existence of only one solution for t ∈ [0,∞). Namely, we have

Theorem 2.2.2. Let f and σ satisfy (f2), (f4) and (σ1), respectively. Suppose
that ϑ has the properties (ϑ1) with p > ν and (ϑ2). Then there exists a pathwise

unique solution u to (C) on [0,∞) such that ϑ ∈ � � , �(x) = 1 + |x|k, implies
u(t, . ) ∈ � �∗ , t � 0, where

�∗(x) = 1 + |x| 14+ 1p+k, x ∈ �
d .

Moreover, sup
t∈[0,T ]

‖u(t, . )‖�,p <∞ provided ϑ ∈ � �,p . If, additionally, σ is bounded

and p in (ϑ1) satisfies p � 3 ∨ ν, then �∗ = � holds.

2.3. Comparison of solutions. Let us consider (C) with two different reactions
f (1) and f (2), two different initial data ϑ(1) and ϑ(2) and the same noise intensity σ
and denote the corresponding solutions by u(i), i = 1, 2.
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Definition 2.3.1. We say that the comparison principle holds for (C) if the
following conclusion is true. There exist solutions u(i), i = 1, 2, of (C) and the
inequalities

ϑ(1)(x) � ϑ(2)(x)

� a.s. for every x ∈ �
d and

f (1)(u) � f (2)(u),

u ∈ �, imply

u(1)(t, x) � u(2)(t, x)

� a.s. for any (t, x) ∈ � .

Combining the pathwise space-time continuity (see Theorem 3.2.1 below) and the

comparison theorem of [9] in the Lipschitz case one easily checks the validity of the
following assertion.

Theorem 2.3.2. Let f (1), f (2) and σ satisfy (L) and suppose that ϑ(i), i = 1, 2,
have properties (ϑ1) and (ϑ2). Then the comparison principle holds for (C).

This theorem, the construction of the solution obtained by Theorem 2.1.2 and the

uniqueness of that solution lead to the following conclusion.

Theorem 2.3.3. Let f (1), f (2) satisfy (f2) and (f4) and let σ have the property
(σ1). Moreover, suppose that ϑ(i), i = 1, 2, have properties (ϑ1) with p > ν and

(ϑ2). Then the comparison principle holds for (C).

2.4. Asymptotical exponential mean square stability of the equilibrium
solution. Let λ : �d → � be given by

λ(x) := (1 + |x|2)1/2

and introduce a finite measure µ by

µ( dx) := λ−�(x) dx

with � > d. The set of all Borel measurable mappings ψ : �d → � such that

|ψ|κ�,κ :=
∫
�d

|ψ(x)|κλ−�(x) dx =
∫
�d

|ψ(x)|κµ( dx) <∞

will be denoted in the sequel by �
κ
� (�

d ). We shall show next that the solution
constructed in Theorem 2.2.2 belongs to some �p

�(�
d ). Let ϑ belong to � � and � �,p ,

22



where �(x) = 1 + |x|k. Notice that Theorems 2.1.2 and 2.2.2 guarantee u ∈ �
T
�̄
,

where �̄(x) = 1 + |x|k+1, and

sup
t∈[0,T ]

sup
x∈�d

� |u(t, x)|p
�p(x)

� c(p, T ) <∞.

Using

1 + |x|q � (1 + |x|2)q/2 � 2(q/2)−1 · (1 + |x|q),
q � 2, x ∈ �

d , we get

|u(t, . )|p(k+1)p+d+1,p =
∫
�d

|u(t, x)|p · λ−(k+1)p−d−1(x) dx

�
∫
�d

|u(t, x)|p · (1 + |x|(k+1)p+d+1)−1 dx

� 2(k+1)p+d ·
∫
�d

|u(t, x)|p · (1 + |x|)−(k+1)p−d−1 dx

� 2(k+1)p+d ·
∫
�d

|u(t, x)|p
(1 + |x|k+1)p · (1 + |x|)−(d+1) dx

� c(k, p, d) · sup
t∈[0,T ]

|u(t, . )|p
�̄
·
∫
�d

(1 + |x|)−(d+1) dx <∞.

Hence u(t, . ) ∈ �
p
�(�

d) for any t � 0, where � = (k + 1)p + d + 1. Obviously, the
same conclusion goes through if we additionally take the expectation. Moreover, u

constructed in Theorem 2.2.2 has the property u(t, . ) ∈ � �,2 , t � 0. Therefore, we
may put p = 2 and have u(t, . ) ∈ �

2
� (�

d ) with � = 2k + d+ 3. In the sequel we fix

this �. To simplify the notation we will use |ψ|� for |ψ|�,2.
For the stability assertion we need a further condition on σ, namely,

(σ2) σ(0) = 0.

Definition 2.4.1. A solution u of (C) with an initial condition ϑ ∈ � �,2 is called
exponentially ultimately bounded in �

2
�(�

d) in mean square if there exist positive

constants α, β and M such that

� |u(t, . )|2� � α · � |ϑ|2�e−βt +M

holds.

Definition 2.4.2. A solution u of (C) with an initial condition ϑ ∈ � �,2 is called
asymptotically exponentially stable in �2�(�

d ) in mean square if there exist positive

constants α and β such that

� |u(t, . )|2� � α · � |ϑ|2�e−βt

holds.
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To formulate the main result of this section we introduce the abbreviation

ψj(�) := 2�−1 ·
[
1 +
Γ(�+d

2 )

Γ(d2 )
·
( �

je

) �
2
]
,

j = 1
2 , 1. Moreover, we need a condition that is stronger than (f2), namely:

(f2)∗ there exists a nonnegative constant cf such that

f(u) � cfu, u � 0,

and

f(u) � cfu, u � 0.
Obviously, this condition implies f(0) = 0.

Theorem 2.4.3. Let u be a solution to (C) on [0,∞) such that u(t, . ) ∈ �
T
� and

sup
t∈[0,T ]

‖u(t, . )‖�,p � c(p, T ) <∞

for T > 0 and some p � 1. Suppose that f and σ satisfy (f4) and (σ1), (σ2),
respectively. Moreover, let

m > 4c2fψ 1
2
(�) + c2σaψ1(�).

Then the following holds:

(i) If f satisfies (f2) then u is exponentially ultimately bounded in �2� (�
d ).

(ii) If f satisfies (f2)∗ then u is asymptotically exponentially mean square stable in
�
2
� (�

d ).

������. The proof below will show that the condition (f4) in Theorem 2.4.3
can be replaced by a condition which is weaker but lengthy and not easy to verify.

Namely, it is enough to require that the comparison principle for (C) holds for f
and several modifications of f as the positive and negative part respectively linear
transformations of f .

����	
�. Let us consider the so-called cubic nonlinearity f(u) = −u3 + γu.
We already know that this mapping satisfies (f4). If we take cf = γ then f fulfils

also (f2)∗. To simplify the result let σ(u) = u. Thus cσ = 1. If d = 3 and k = 1
the values |u(t, x)| of the corresponding solution are bounded by a constant times
1 + |x|7/4. Moreover, if m is strictly larger than 26ψ1/2(8)γ2 + 24aψ1(8) we observe
the asymptotic mean square stability of u in �28 (�

3 ).

������. To simplify notation in the proofs below constants of different values

will be denoted by the same symbol if their value is not essential.
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3. Auxiliary results

3.1. Estimates. We shall frequently use a series of estimates that we will now
present.

Lemma 3.1.1 (cf.Manthey and Stiewe (1992)). Let (qn)n∈� be a sequence of
measurable functions qn : �+ → �+ such that

qn(t) � a+ b ·
∫ t

0
(t− s)−δ · qn−1(s) ds,

n ∈ �, δ ∈ [0, 1), b > 0, a � 0, t ∈ [0, T ]. Then

qn(t) � a ·
n−1∑
k=o

akt
k(1−δ) + ant

n(1−δ) · sup
t∈[0,T ]

q0(t)

holds, where
∞∑

k=0
anT

(1−δ)n <∞.

Our main tool for estimating the pathwise growth of random fields is

Lemma 3.1.2 (cf.Manthey and Mittmann (1996)). Let Z = (Z(r))r∈�k be a

random field with the property that there exist constants γ > 1, κ � 0, α > k and

c > 0 such that

� |Z(r) − Z(s)|γ � c · nκ · |r − s|α

for any r, s ∈ [−n, n]k, n ∈ �. Then the following holds:

(i) There exists a pathwise locally Hölder continuous version Y of Z.
(ii) For any δ > 1 this version has the property

|Y (r)| � Ξδ · (1 + |r|α+δ+κ
γ )

for any r ∈ �
k , where Ξδ is a random variable with �({0 < Ξδ <∞}) = 1.

Space-time continuity of the desired solution and an estimate of the spatial growth

will be consequences of the previous lemma and the following simple estimates for
G and Gk ∗ �.

Lemma 3.1.3. For any 0 � s � t � T , x, y ∈ �
d and µ ∈ (0, 12 ) we have

∫ t

0

[ ∫
�d

|G(t− r, x− z)− 1[0,s)(r)G(s − r, y − z)| dz
]2
dr

� c(µ, T )(|t− s|2µ + |x− y|4µ).
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Idea of the 	����. This estimate is a consequence of the mean value theorem

and the following inequality that can be directly checked:

For any T > 0, t ∈ [0, T ], �, n ∈ � with 2�+ n � 2 one has

|D�
tD

n
xG(t, x)| � c1(T )t−

d+n
2 −� · exp(−c2(T ) · |x|2/t).

Lemma 3.1.4. Let �(x) = 1 + |x|k, x ∈ �
d . There exists a constant c(k) such

that

0 �
∫
�d

G(r, x− y)�p(y) dy � c(p, k)�p(x)

holds for any r > 0, x ∈ �
d , k ∈ {1, 2, . . .}.

����. Obviously, we have

0 �
∫
�d

G(r, x − y)�p(y) dy

� c(p) ·
[∫

�d

G(r, y) dy +
∫
�d

G(r, x − y)|y|pk dy

]

� c(p, k)

[
1 + |x|pk + e−mr ·

∫
�d

g(r, z)|z|pk dz

]
.

Note that ∫
�d

g(r, z)|z|� dz = 2
�/2 · Γ(�+d

2 )

Γ(d2 )
· r�/2,

d, � ∈ {1, 2, . . .}, r > 0. Consequently, we arrive at

� c(d, p, k)
[
1 + |x|pk + e−mr · rpk/2

]
.

Note that the mapping r → e−mrrdpk/2, r ∈ �+ , is bounded. Hence we can continue
by

� c(d, p, k)(1 + |x|pk) � c(d, p, k)�p(x),

proving the assertion. �

Lemma 3.1.5. The estimate

∫
�d

g(r, z)λ�(z) dz � 2(�/2)−1 ·
[
1 +
2�/2 · Γ(�+d

2 )

Γ(d2 )
· r�/2

]

holds for r > 0, � ∈ {1, 2, . . .}.
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����. Because of � > d � 1 we have∫
�d

g(r, z)λ�(z) dz � 2(�/2)−1 ·
∫
�d

g(r, z)(1 + |z|�) dz

= 2(�/2)−1 ·
[
1 +
2�/2 · Γ(�+d

2 )

Γ(d2 )
· r�/2

]
.

�

Corollary 3.1.6. We have

∫
�d

e−jrg(r, z)λ�(z) dz � 2(�/2)−1 ·
[
1 +
Γ(�+d

2 )

Γ(d2 )
·
( �

je

)�/2
]
=: ψj(�)

for j, r > 0, � ∈ {1, 2, . . .}.
����. One easily checks that r → 2�/2 · e−jrr�/2 has a maximum of size

e−�/2(�/j)�/2. Putting this and Lemma 3.1.5 together one immediately obtains the
claim. �

Lemma 3.1.7. The inequality

λ�(y) � 2�/2 · λ�(x− y)λ�(x)

holds for x, y ∈ �
d , � � 1.

����. We have

λ�(y) � (1 + 2 · |x|2 + 2 · |y − x|2)�/2

� 2�/2 · (1 + |x|2 + |y − x|2 + |x|2|y − x|2)�/2

= 2�/2 · λ�(x− y)λ�(x).

�

3.2. The case of Lipschitz continuous and linearly bounded coefficients.
We need existence and uniqueness of a solution to (C) in the case when both f

and σ satisfy (L) for the forthcoming construction. Though the proof is more or less
standard we will demonstrate it very briefly because we need some of its particular

conclusions.

Theorem 3.2.1. Suppose that ϑ fulfils (ϑ1) and (ϑ2) and f and σ satisfy (L).
Then the following holds:
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(i) (C) possesses a unique solution u with u(t, . ) ∈ � �,p , t � 0, where � and p are
given by (ϑ1).

(ii) ϑ ∈ � � with �(x) = 1+ |x|k, x ∈ �
d , implies u ∈ �

T
�∗ ⊃ �

T
� for any T > 0, where

�∗(x) = 1 + |x| 14+ 1p+k.

����. 1◦ To point out the power of the various conditions required in the
theorem let us assume first that ϑ satisfies (ϑ1) and both f and σ are globally

Lipschitz continuous. This already implies the existence of a random field u having
all properties of Definition 1.1 except (iii): We will assume here for simplicity that

both coefficients have the same Lipschitz constant L. Let n ∈ � and put

un+1(t, x) : = Θ(t, x) + ϕ(t, x, un) + S(t, x, un), (t, x) ∈ �

and u0 = Θ. Let p � 1, �(x) = 1 + |x|k and let us note that

� |un+1 (t, x)|p � 3p−1 · [� |Θ(t, x)|p + � |ϕ(t, x, un )|p + � |S(t, x, un)|p
]
.

Hölder’s inequality and Lemma 3.1.4 lead to

� |Θ(t, x)|p � c(m, p, k) · ‖ϑ‖p
�,p · �p(x),

proving sup
t�0

‖Θ(t, . )‖�,p < ∞ if ϑ ∈ � �,p . Suppose now sup
t�0

‖un(t, . )‖�,p < ∞. A
simple estimate similar to the previous one leads to

� |Φ(t, x, un)|p � (2L)p ·
[
1 +

∫ t

0

∫
�d

G(t− s, x− y)�p(y) · ‖un(s, . )‖p
�,p dy ds

]
� c(L, p,m) · (1 ∨ sup

t�0
‖un(t, . )‖p

�,p) · �p(x),

proving sup
t�0

‖Φ(t, ., un)‖�,p < ∞. Finally, the Burkholder-Gundy inequality and (L)
lead similarly to

sup
t�0

‖S(t, ., un)‖�,p � c(a, �, p, L,m) <∞.

Hence we have also sup
t�0

‖un+1(t, . )‖�,p < ∞. Let j ∈ � be arbitrary but fixed. The

previous considerations imply

ψ0(t) := ‖uj(t, . )− u0(t, . )‖p
�,p � c(a, �, p, L,m)
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for any t � 0. Note that

ψn(t) := ‖un+j(t, . )− un(t, . )‖p
�,p � c(a, �, p, L,m) ·

∫ t

0
ψn−1(s) ds,

n ∈ �, t � 0, and sup
t�0

ψn(t) < ∞, n ∈ �. This inequality implies that (un(t, . ))n∈�

is a Cauchy sequence in � �,p , t � 0, see Manthey, 1996, for details. It is routine to
show that the corresponding limit u solves (I). Conditions (i), (ii), (iv) and (v) of
Definition 1.1 follow by construction. Thus it remains to show (iii).

2◦ The above mentioned conclusions yield

sup
t�0

‖u(t, . )‖�,p <∞.

Hence
�
[|Φ(t, x, u)|2p + |S(t, x, u)|2p]

� c(a, �, L,m, p)�2p(x).

If now �(x) = 1 + |x|k, then Theorem 2.1.1 immediately implies the claim.
3◦ The uniqueness obviously follows from Theorem 2.2.1. This completes the proof

of Theorem 3.2.1. �

4. Proofs

4.1. Proof of theorem 2.1.1. Let (t, x), (s, y) ∈ � T , t � s, be arbitrary but
fixed. Introduce the abbreviations

H(r, z) := |G(t− r, x− z)− 1[0,s)(r)G(s − r, y − z)|

and

H+(r, z) := G(t− r, x− z) + 1[0,s)(r)G(s − r, y − z).

(i) First we shall estimate the stochastic integral and then in an analogous way
the remaining part containing F . The Burkholder-Gundy inequality yields

�

[ ∫ t

0

∫
�d

(G(t− r, x− z)− 1[0,s)(r)G(s − r, y − z))Σ(r, z) dW (r, z)

]2p

� c(p)ap · �
∣∣∣∣
∫ t

0

[∫
�d

|G(t− r, x− z)− 1[0,s)(r)G(s − r, y − z)||Σ(r, z)| dz
]2
dr

∣∣∣∣
p

.

Due to the Cauchy-Schwarz inequality we further have

� c(a, p)

∣∣∣∣
∫ t

0

[∫
�d

H(r, z) dz

]2
dr

∣∣∣∣
p/2

· �
∣∣∣∣
∫ t

0

[ ∫
�d

H+(r, z)Σ
2(r, z) dz

]2
dr

∣∣∣∣
p/2

.
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To avoid additional variables let us put µ = 1
4 in Lemma 3.1.3 and obtain

� c(T, p)(|t− s| 12 + |x− y|)p/2

for the first integral term above. Furthermore, we have

�

∣∣∣∣
∫ t

0

[∫
�d

H+(r, z)Σ2(r, z) dz

]2
dr

∣∣∣∣
p/2

� c(p) ·
[
�

∣∣∣∣
∫ s

0

[∫
�d

H+(r, z)Σ2(r, z) dz

]2
dr

∣∣∣∣
p/2

+ �

∣∣∣∣
∫ t

s

[ ∫
�d

H+(r, z)Σ2(r, z) dz

]2
dr

∣∣∣∣
p/2]

=: I1(t, s, x, y) + I2(t, s, x, y) =: I(t, s, x, y)

and

I1(t, s, x, y) � �

∣∣∣∣
∫ s

0
e−m(s−r)×

×
[ ∫

�d

e−
m
2 (s−r)(e−m(t−s)g(t− r, x− z) + g(s− r, y − z))Σ2(r, z) dz

]2
dr

∣∣∣∣
p/2

.

Using twice Hölder’s inequality we get

� �

∫ s

0
e−

mp
2 (s−r)

[ ∫
�d

(e−m(t−s)g(t− r, x− z) + g(s− r, y − z))Σ2(r, z) dz

]p

dr

�
∫ s

0
e−

mp
2 (s−r)

∫
�d

(e−m(t−s)g(t− r, x− z) + g(s− r, y − z)) · �Σ2p (r, z) dz dr.

Now we can apply the condition of the theorem to obtain

� c0(p, T ) ·
∫ s

0
e−

mp
2 (s−r)

∫
�d

(e−m(t−s)g(t− r, x− z) + g(s− r, y − z)) · �k∗(z) dz dr,

where �∗(z) := 1 + |z|. Noting that

exp(−m(t−s)) exp(−mp
4 (s−r)) � exp(−m(t−s)) exp(−m

4 (s−r)) � exp(−m
4 (t−r))

we can continue the estimate with

� c0(p, T ) ·
∫ s

0
e

mp
4 (s−r)

∫
�d

(e−
m
4 (t−r)g(t− r, x− z)

+ e−
m
4 (s−r)g(s− r, y − z)) · �k∗(z) dz dr.
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By Lemma 3.1.4 this is less than

� c0(p, T )c(k)(�k∗(x) + �
k
∗(y)) � c(p, k, c0(p, T ))(1 + |x|k + |y|k).

For the remaining term we obtain analogously

I2(t, s, x, y) � c(k) ·
∫ t

s

e−
m
2 (t−r) · �

[∫
�d

g(t− r, x− z)Σ2(r, z) dz

]p

dr

� c(p, k, c0(p, T ))(1 + |x|k).

Hence

I2(t, s, x, y) � c(p, k, c0(p, T ))(1 + |x|k + |y|k).
On the other hand, we observe that

(|t− s| 12 + |x− y|)p/2 � (2n)p/4 · (|t− s| 12 + |x− y| 12 )p/2

� c · np/4 · |(t, x)− (s, y)|p/4

provided x, y ∈ [−n, n]d. Thus, putting V (t, . ) = V (T, . ) for t > T and V (t, . ) = 0
for t � 0 we have defined V on the whole �d+1 . Moreover, one observes that

V (t, x) − V (s, y) = V (0 ∨ t ∧ T, x)− V (0 ∨ s ∧ T, y).

Redefining in the same way the term we have just estimated, we obtain by summing
up

� c(a, k,m, p, c0(p, T )) · |(t, x)− (s, y)|p/4 · n p
4+k,

(t, x), (s, y) ∈ [−n, n]d+1.
(ii) Next we deal with the F -term in a similar way. We observe that

�

[ ∫ t

0

∫
�d

(G(t − r, x− z)− 1[0,s)(r)G(s − r, y − z))F (r, z) dz dr

]2p

� �

∣∣∣∣
∫ t

0

[∫
�d

|(e−m
2 (t−r)g(t− r, x− z)− 1[0,s)(r)e− m

2 (s−r)

× g(s− r, y − z)||F (r, z)| dz
]2
dr

∣∣∣∣
p/2

,

i.e. the same initial situation as in the Σ-term with the only unessential difference
that the exponential is e−

m
2 ·τ instead of e−mτ . Hence we obtain the same estimate

and conclude that

� c(k,m, p, c0(p, T )) · |(t, x) − (s, y)|p/4 · n p
4+k.
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Applying now Lemma 3.1.2 with δ = 2 we have finally

|V (t, x)| � Ξ(a, k,m, p, c0(p, T ))(1 + |(t, x)| 14+ 2+k
2p )

and hence also

|V (t, x)| � Ξ(a, k,m, p, c0(p, T ), T )(1 + |x| 14+ 2+k
2p )

� a.s. for any (t, x) ∈ � T , proving the claim.

������. In the course of the proof we have frequently used Hölder’s inequality

where exponents p/(p− 2) appear. The corresponding factors are less than one and
were therefore immediately omitted. However, here the requirement p > 2 is needed.

4.2. Proof of the existence and comparison results. ���� of Theorems
2.1.2 and 2.1.3. The conclusion basically follows from the respective proofs of Theo-

rems 2.4 and 2.5 of Manthey (1996). Therefore, we will very briefly describe only the
main ideas. First, f is pointwise monotonously approximated by fN := f ∨ (−N).
The mapping fN can be obtained as the pointwise monotonous limit of Lipschitz con-
tinuous mappings for which existence, uniqueness and spatial growth estimates of

the corresponding solutions are proved in Theorem 3.2.1 above. Condition (f2) com-
bined with the Comparison Theorem 2.3.1 guarantees the monotonous convergence

of the approximating solutions to the desired solution in Theorem 2.1.2. Because of
the difference in the noise the various steps of the proof in Manthey (1996) differ

in details from those needed here. But this difference can be easily handled by the
procedures and estimates described in the proofs of Theorems 2.1.1 and 3.2.1 above.

We will not repeat them here and omit further details.
���� of Theorem 2.3.3. Here we use again the above described procedure and

the pathwise uniqueness. Namely, first we obtain for the solution of the Lipschitz

approximation f (i)N,M of f
(i)
N the relation

u
(1)
N,M(t, x) � u

(2)
N,M (t, x)

� a.s. for any (t, x) ∈ � . There are subsequences of these solutions converging �
a.s. pointwise to u(i)N and preserving the above relation for the limits. Repeating this

conclusion for these limits and using the uniqueness we immediately arrive at the
desired result. For details of the corresponding constructions see again [5].

4.3. Proof of the uniqueness theorem. Let N � 1, define

τN := inf{t ∈ [0, T ] : |u(t, . )|ν−1� ∨ |v(t, . )|ν−1� > N} ∧ T,
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where inf ∅ =∞, and introduce the notation

z(t, x) : = �1{t�τN}(u(t, x)− v(t, x))2.

Using (f4) we have

z(t, x) � c(K) · �
[ ∫ t

0

∫
�d

G(t− s, x− y)1{s�τN}|u(s, y)− v(s, y)|

× (1 + |u(s, y)|ν−1 + |v(s, y)|ν−1) dy ds
]2

+ �1{t�τN}

[ ∫ t

0

∫
�d

G(t− s, x− y)(σ(u(s, y)− σ(v(s, y))) dW (s, y)

]2
.

Note that

1{s�τN}(1 + |u(s, y)|ν−1 + |v(s, y)|ν−1) � 3 · �ν−1(y) ·N.

Now we can continue the estimate by

� c(N,K, ν) ·
∫ t

0

∫
�d

G(t− s, x− y)�2ν−2(y) dy ds×

×
∫ t

0

∫
�d

G(t− s, x− y)�1{s<τN}|u(s, y)− v(s, y)|2 dy ds

+ �1{t�τN}

[∫ t

0

∫
�d

G(t− s, x− y)(σ(u(s, y)− σ(v(s, y))) dW (s, y)

]2
.

To handle the last term we consider it first in the cylindrical case. In this situation

we have

�1{t�τN}

[∫ t

0

∫
�

G(t− s, x− y)(σ(u(s, y)− σ(v(s, y))) dW (s, y)

]2

� c ·
∫ t

0

∫
�

G2(t− s, x− y)�1{s<τN}|u(s, y)− v(s, y)|2 dy ds

� c ·
∫ t

0
(t− s)−1/2

∫
�

G(t− s, x− y)z(s, y) dy ds.

In the nuclear case we arrive at

�1{t�τN}

[∫ t

0

∫
�d

G(t− s, x− y)(σ(u(s, y)− σ(v(s, y))) dW (s, y)

]2

� c ·
∫ t

0
�

[∫
�d

G(t− s, x− y)1{s<τN}|u(s, y)− v(s, y)| dy
]2
ds

� c ·
∫ t

0

∫
�d

G(t− s, x− y)z(s, y) dy ds.
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Because of 1 + (t− s)−1/2 � c(T ) · (t− s)−1/2 we have in both cases

� c ·
∫ t

0
(t− s)−1/2

∫
�d

G(t− s, x− y)z(s, y) dy ds

with d = 1 in the cylindrical case. Hence

z(t, x) � c · �2ν−2(x) ·
∫ t

0
(t− s)−1/2

∫
�d

G(t− s, x− y)z(s, y) dy ds,

where c = c(T,N,K, ν, a, cσ). Now we iterate this inequality and obtain

� cn · �2ν−2(x) ·
∫ s0

0
. . .

∫ sn−1

0

∫
�d

. . .

∫
�d

n−1∏
i=0

(si − si+1)−1/2

×G(si − si+1, xi − xi+1)�2ν−2(xi)z(si+1, xi+1) dxn . . . dx1 dsn . . . ds1,

where s0 = t and x0 = x. Using z(t, x) � �2(x)N2, t ∈ [0, T ], and Lemma 3.1.4 and
trivial estimates we observe that

� cn · �2(n+1)ν(x) ·N2 ·
∫ s0

0
. . .

∫ sn−1

0

n−1∏
i=0

(si − si+1)−1/2 dsn . . . ds1.

For the integral with respect to dsn we get 12 · s1/2n−1. Then going further step by step
we always arrive at integrals of the type

s
k/2
n−k ·

∫ 1

0
(1− r)−1/2r(k−1)/2 dr = sk/2

n−k · Γ(
1
2 )Γ(

k+1
2 )

Γ(k+22 )
.

This leads to the estimate

z(t, x) � c · �4ν(x) ·N2 · (�
2ν(x)c(T ))n−1

(n− 1)! → 0, n→ ∞.

This implies

�({|u(t, x)− v(t, x)| = 0}) + �({t > τN}) � 1.

Because of lim
N→∞

�({t > τN}) = 0 and the pathwise continuity of both u and v we
obtain

�

({
sup

x∈[−M,M ]
|u(t, x)− v(t, x)| = 0

})
= 1
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for any M ∈ � and hence

�

({
sup
x∈�d

|u(t, x)− v(t, x)| = 0
})
= 1,

proving the theorem.

4.4. Proof of the stability theorem. First we shall explain the simple strategy
of the proof that is a combination of a comparison technique with (f2) or (f2)∗.
For a real-valued mapping ψ we will use the notation ψ+ := ψ∨0 and ψ− := ψ∧0.

The solution of (C) with (ϑ−, f−, σ) will be denoted by u and u stands for the solution
of (C) with (ϑ+, f+, σ).
Both assertions in Theorem 2.4.3 will be proved by the same method. There-

fore, the only difference will be indicated at the corresponding places. To show the
assertions we distinguish between two cases.
(i) Suppose f(0) � 0. Introduce the mapping f∗(u) := f(u)−f(0) � f(u). Because

of f∗(0) = 0 Theorem 2.3.1 leads to u∗ � 0. Moreover, the same theorem ensures
u∗ � u � u � u and u � 0. Hence

|u(t, . )|2� � |u∗(t, . )|2� ∨ |u(t, . )|2�.
In this way, it is enough to estimate both terms on the right hand side in mean square.

Because both u∗ and u are sign-stable we can use for this purpose respectively (f2)
or (f2)∗ in the corresponding equations.
(ii) In the case f(0) � 0 we have f∗(u) � f(u) and get analogously u∗ � u � u � u

and u∗ � 0 as well as u � 0. Therefore, we are in principle in the same situation as
before and consequently, it suffices to handle only one of them.
Note that if f has properties (f2) and (f4) then f± and f∗ have them, too. Conse-

quently, the corresponding problems (C) have pathwise unique solutions. Moreover,
due to Theorem 2.3.3 the comparison principle holds correspondingly.

We shall show now the estimate stated above. We have

u∗(t, x) =
∫
�d

G(t, x − y)ϑ+(y) dy +
∫ t

0

∫
�d

G(t− s, x− y)f+∗ (u∗(s, y)) dy ds

+
∫ t

0

∫
�d

G(t− s, x− y)σ(u∗(s, y)) dW (s, y),

t > 0, x ∈ �
d . Next we shall estimate separately the three terms on the right hand

side in mean square in �2� (�
d ). Obviously, for the first term we observe

�

∫
�d

[∫
�d

G(t, x − y)ϑ+(y) dy

]2
µ( dx)

�
∫
�d

∫
�d

G(t, x− y) dy ·
∫
�d

G(t, x − y)�(ϑ+ (y))2 dyλ−�(x) dx.
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Using Lemma 3.1.7 we get

� 2�/2 · e−mt ·
∫
�d

∫
�d

G(t, x− y)�(ϑ+ (y))2 · λ�(x− y)λ−�(y) dy dx,

which is by Lemma 3.1.5

� 2�/2 · ψ1(�)e−mt ·
∫
�d

�(ϑ+ (y))2µ(dy) � 2�/2 · ψ1(�)e−mt · � |ϑ|2� .

We have to estimate the second term first with f+∗ and then with f− using in both
cases the sign stability of the corresponding solution (i.e.u∗ � 0, u � 0). In the first
case we obtain by using the Cauchy-Schwarz inequality

�

∫
�d

[ ∫ t

0
exp

(
− m

4
(t− s)

) ∫
�d

exp
(
− 3m
4
(t− s)

)

× g(t− s, x− y)f+∗ (u∗(s, y)) dy ds
]2
µ( dx)

� �

∫
�d

∫ t

0
exp

(
− m

2
(t− s)

)
ds

×
∫ t

0

[ ∫
�d

exp
(
− 3m
4
(t− s)

)
g(t− s, x− y)f+∗ (u∗(s, y)) dy

]2
dsµ( dx)

� 2 ·
∫
�d

∫ t

0
exp

(
− 3m
2
(t− s)

)∫
�d

g(t− s, x− y) dy ds

×
∫
�d

g(t− s, x− y)�(f+∗ (u∗(s, y)))
2 dy dsµ( dx)

= 2 · e−mt

∫ t

0
ems

∫
�d

∫
�d

exp
(
− m

2
(t− s)

)
× g(t− s, x− y)�(f+∗ (u∗(s, y)))

2 dyµ( dx) ds.

Lemma 3.1.7 leads to

� 2(�/2)+1 · e−mt ·
∫ t

0
ems

∫
�d

�(f+∗ (u∗(s, y)))
2

×
∫
�d

g(t− s, x− y) exp(−m
2
(t− s))λ�(x− y)λ−�(y) dxdy ds

while Corollary 3.1.6 gives

� 2(�/2)+1 · e−mt · ψ 1
2
(�) ·

∫ t

0

∫
�d

ems
�(f+∗ (u∗(s, y)))

2µ( dy) ds.
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At this place we have to distinguish between the two cases formulated in Theorem

2.4.3. Because of u∗ � 0 we can apply (f2) to obtain

� 2(�/2)+2 · e−mt · ψ 1
2
(�) · c2f ·

∫ t

0

∫
�d

ems(1 + �u2∗(s, y)))µ( dy) ds.

In case (f2)∗ there is no additional summand of size one under the intergral, i.e.,
in this situation we have simply

� 2(�/2)+2 · e−mt · ψ 1
2
(�) · c2f ·

∫ t

0

∫
�d

ems · �u2∗(s, y)µ( dy) ds.

To handle the additional summand we introduce the abbreviation cµ := µ(�d ) in

case (f2) and cµ := 0 in the remaining case. Now we can continue by

� 2(�/2)+2 · e−mt · ψ 1
2
(�) · c2f ·

∫ t

0
ems

[
cµ +

∫
�d

�u2∗(s, y)µ( dy)
]
ds.

Note that in the case of u we have f− � 0 and u � 0. Consequently,

(f−)2(u(t, x)) � c2f (1− u(t, x))2 � 2c2f(1 + u2(t, x)).

That means simply that we are just in the situation we have already discussed.
Both cases give the same estimate. In this way, we finally have

� 2(�/2)+2 · ψ 1
2
(�) · c2f · e−mt ·

[
cµ · emt +

∫ t

0
ems · � |u2∗(s, . )|2� ds

]
.

It remains to estimate the third term of the initial relation above. We get

�

∫
�d

[∫ t

0

∫
�d

G(t− s, x− y)σ(u∗(s, y)) dW (s, y)
]2
µ( dx)

� a · c2σ ·
∫
�d

∫ t

0
�

[∫
�d

G(t− s, x− y)u2∗(s, y) dy
]2
µ( dx)

� a · c2σ ·
∫
�d

∫ t

0

∫
�d

G(t− s, x− y) dy ·
∫
�d

G(t− s, x− y) · �u2∗(s, y) dy dsµ( dx)

� 2�/2 · a · c2σ ·
∫
�d

∫ t

0
e−m(t−s) ·

∫
�d

G(t− s, x− y)λ�(x− y)λ−�(y)�u2∗(s, y) dy ds dx

� 2�/2 · a · c2σ · ψ1(�)e−mt ·
∫ t

0
ems · � |u∗(s, . )|2� ds.
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Because we have only used (σ1) and (σ2), there is no difference from the case

when we have to estimate the terms with u. Hence in both cases we get in all three
terms the same bounds.

To sum up let

ϕ(t) := emt · � |u∗(t, . )|2�, t � 0.

We have

ϕ(t) � 2�/2 · ψ1(�) · � |ϑ|2� + 2(�/2)+2 · ψ 1
2
(�) · c2f ·

[
emtcµ +

∫ t

0
ϕ(s) ds

]

+ 2�/2 · a · c2σ · ψ1(�) ·
∫ t

0
ϕ(s) ds.

Denoting

c1 := 2�/2 · ψ1(�) · � |ϑ|2� ,
c2 := 2(�/2)+2 · ψ 1

2
(�) · c2f · cµ,

and

c3 := 2(�/2)+2 · ψ 1
2
(�) · c2f + 2�/2 · a · c2σ · ψ1(�)

we get

ϕ(t) � c1 + c2emt + c3 ·
∫ t

0
ϕ(s) ds.

Since ϕ is bounded on each finite interval we can apply Gronwall’s lemma to obtain

ϕ(t) � c1 + c2emt + c3 ·
∫ t

0
(c1 + c2ems) exp(c3(t− s)) ds

� c1 · exp(c3t) + c2
(
1 +

c3
m− c3

)
emt, t � 0.

Consequently,

� |u∗(t, . )|2� � c2

(
1 +

c3
m− c3

)
+ c1exp(−(m− c3)t), t � 0.

Thus in the case m > c3 there exist positive constants β = m− c3 and

M = c2
(
1 +

c3
m− c3

)

such that

� |u∗(t, . )|2� � 2�/2 · ψ1(�) · � |ϑ|2� · e−βt +M.
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The same holds for u and hence for u. Therefore, the ultimate exponential bound-

edness is proved.
Under condition (f2)∗ we get cµ = 0. This leads to

� |u(t, . )|2� � 2�/2 · ψ1(�) · � |ϑ|2� · e−βt,

proving part (ii) of the assertion.

������. Note that we need the assumption m � 1 only for the proof of the
stability results. In fact, we have used Corollary 3.1.6 to obtain the factors ψm

and ψm/2 in the previous proof, which are smaller than ψ1 and ψ1/2, respectively, if
m � 1. In this way we avoid the additional dependence of c1, c2 and especially c3
on m.
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