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Abstract. The interval function (in the sense of H. M. Mulder) is an important tool for
studying those properties of a connected graph that depend on the distance between vertices.
An axiomatic characterization of the interval function of a connected graph was published
by Nebesky in 1994. In Section 2 of the present paper, a simpler and shorter proof of that
characterization will be given. In Section 3, a characterization of geodetic graphs will be
established; this characterization will utilize properties of the interval function.
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By a graph we mean here a finite undirected graph (without loops and multiple
edges). If G is a graph, then V(G) and E(G) denote its vertex set and its edge set,
respectively. Moreover, if G is connected and u,v € V(G), then d¢(u,v) denotes the
distance between u and v in G.

The letters f,g,...,n will be used for denoting integers.

1. Let G be a connected graph. Put W = V(G). Following Mulder’s book [4], by
the interval function of G we mean the mapping I of W x W into 2" (i.e.into the
set of all subsets of W) defined as follows:

Ig(r,s) ={t € W; dg(r,s) = dg(r,t) + dg(t,s)}
for each ordered pair r,s € W.

Lemma 1. Let G be a connected graph. Put W = V(G) and J = Ig. Then J
satisfies the following axioms (i1)—(i7):
(i1) J(v,u) = J(u,v) for all u,v € W;
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(i2) uw € J(u,v) for all u,v € W;

(i3) if x € J(u,v), then |J(u,z) N J(x,v)| =1 for all u,v,z € W;

(i4) ifx € J(u,v) and y € J(z,v), then y € J(u,v) for all u,v,x,y € W;

(i5) ifx € J(u,v) and y € J(z,v), then x € J(u,y) for all u,v,z,y € W;

(i6) if |J(u, )] =2 = |J(v,y)|, z,y € J(u,v) and u € J(x,y), then v € J(z,y) for
all u,v,z,y € W;

in) if |[J(u,z)| = 2 = |J(v,9)|, x € J(u,v), ¢ € J(u,y) and y ¢ J(u,v), then
v e J(x,y) for all u,v,z,y € W.

Proof. Axioms (i1)—(i5) can be verified easily. It is also not difficult to verify
axioms (i6) and (i7); their verification can be found in [6]. O

Remark 1. Properties of the interval function of a connected graph that are
very similar to axioms (il)—(i5) were presented in [4, 1.1.2.].

Let W be a finite nonempty set, and let J be a mapping of W x W into 2". We
denote by G; the graph H with V(H) = W and

EH)={rs; r,se W, r#sand J(r,s) = {r,s} = J(s,7)}.
If G; is connected and n > 0, then we denote by J,, the mapping of
Z, & {(u,v) e W x W; dg, (u,v) =n}
into 2" such that J,,(z,y) = J(x,y) for each (z,y) € Z,.

Lemma 2. If G is a connected graph and J = Ig, then G = Gy .
Proof is obvious. O
In Lemmas 3-5 and in Corollary 1 we will assume that a finite nonempty set W

and a mapping J of W x W into 2" are given.

Lemma 3. Assume that J satisfies axioms (i1), (i2) and (i3). Let ug, ..., u, € W,
where n > 1, and let

(1) 1 (s 1) = - . = | (e, un)| = 2.

Then uguy, . .., Un—1u, € E(Gy).
Proof is very easy. O
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Lemma 4. Assume that J satisfies axioms (i1)—(i4). Consider arbitrary distinct
u,v € W. Then (a) u and v belong to the same component of G; and (b) there
exists w € J(u,v) such that |J(u,w)| = 2.

Proof. We proceed by induction on |J(u,v)|. By (i1) and (i2), |J(u,v)| > 2.
If |J(u,v)| = 2, then, by virtue of (i3), u and v are adjacent and thus they belong
to the same component; we put w = v. Now, let |J(u,v)| > 2. There exists = €
J(u,v),u # x #v. By (i1) and (i2), u € J(u,x) and v € J(z,v). According to (il)
and (i4), J(u,z), J(z,v) C J(u,v). By virtue of (i3), |J(u, )|, |J(z,v)| < |J(u,v)].
By the induction hypothesis, (a’) « belongs to the same component as u and to the
same component as v, and (b’) there exists w € J(u,x) such that |J(u,w)| = 2.
Obviously, © and v belong to the same component. Combining (i1) and (i4), we get
w € J(u,v). Hence (a) and (b) hold. O

Corollary 1. If J satisfies axioms (i1)—(i4), then G, is connected.

Lemma 5. Assume that J satisfies axioms (i2), (i4) and (i5). Let ug, ..., un,v €
W, wheren > 1, and let

(21) Uir1 € J(ui,v)
for each i, 0 <i <n—1. Then
(SJ) u; € J(UQ,U) and Uj—1 € J(UO,Uj)

for each j, 1 < j < n.

Proof. We proceed by induction on j. The case j = 1 is trivial. Let j > 2. By
the induction hypothesis, uj_1 € J(uo,v). By (2j-1), u; € J(u;j—1,v). As follows
from (i4), u; € J(ug,v). As follows from (i5), uj—1 € J(uo, u;). O

2. The interval function of a connected graph G plays a very important role in
studying those structural properties of G' that depend on distance between vertices.
Cf. Mulder [4] or, for example, Bandelt and Mulder [1] and [2], and Bandelt, Mulder
and Wilkeit [3].

However, the concept of the interval function of a connected graph is not only well-
motivated; it is also transparently characterizable. Nebesky [6] proved a theorem
which can be reformulated as follows: If W is a finite nonempty set, J is a mapping
of W x W into 2% and G; is connected, then J is the interval function of Gy if and
only if J satisfies axioms (i1)—(i7).

The proof given in [6] was unnecessarily complicated. A new proof will be pre-
sented here. It will utilize some ideas of the original proof but it will be shorter and
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significantly simpler. We will formulate a theorem slightly stronger than the one
mentioned above:

Theorem 1. Let W be a finite nonempty set, and let J be a mapping of W x W
into 2W. Then J is the interval function of a connected graph if and only if J satisfies
axioms (i1)—(i7).

Proof. If J is the interval function of a connected graph G, then, by virtue of
Lemma 2, V(G) = W and thus, by Lemma 1, J satisfies axioms (i1)—(i7).

Conversely, let J satisfy axioms (i1)-(i7). Put G = G;. By Corollary 1, G is
connected. Put d = dg and I = Ig. We will prove that J = 1.

Suppose, to the contrary, that I # J. Then there exists n > 0 such that J,, # I,
and

(4) Jy=1Iyforall f, 0< f <n.

It is easy to see that n > 2. We distinguish two cases.

Case 1. Let I, \ J, # 0. There exist u,v,w € W such that d(u,v) = n and
w € I(u,v) \ J(u,v). Thus, there exist vg,...,v, € W and g, 0 < g < n, such
that vg = v,v, = u,vy = w and (v, ...,vp) is a path from u to v of length d(u,v)
in G. Let v,—1 € J(u,v); clearly, d(v,—1,v) = n—1 and vy € I(v,-1,v); by (4),
vg € J(vn—1,v) and by (i4), vy € J(u,v); a contradiction. Hence v,—1 & J(u,v).
By (i1) and (i2), v € J(u,v). Recall that d(u,v) = n. Lemmas 3 and 4 imply
that there exist ug, ..., u, € W such that ug = u, (1) holds and (2;) holds for each
i, 0<i<n-—1. By Lemma 5, (3,) holds. As follows from Lemma 3,

(5) d(uj,vj) < n for each j, 0 < j < n.

Put u_y = v,,—1. The following three statements hold for ¢ = 0:

(6;) d(ui,v;) =mn,
(7:) v € J(ug,v;),
(81) Ui—1 ¢ J(ul,vz)

By (3,) and (il), up—1 € J(un,ug). Since v, = ug, (8,) does not hold.

There exists h, 0 < h < n — 1, such that (63), (7) and (8;,) hold but at least one
of (6n41), (7Th+1) and (841) does not. Combining (2), (75) and (i1) with (i4) and
(i5), we get

(9) Up+1 € J(uh,vh),
(10) v € J(ups1,vn).



As follows from (64,),
(1) Aun on 1) =0~ 1.

Clearly, Up—1 € I(uh,vh+1). By (11) and (4), Up—1 € J(uh,vh+1). Let Vh4+1 €
J(up,vp); by (11) and (i4) we get up—1 € J(up, vy ), which contradicts (85). Hence

(12) Vh+1 ¢ J(uh,vh).

Let upt1 € J(up, vht1). By (11) and (4), upt1 € I(up, vpt1). Thus d(un41,vp+1)
=n — 2. As follows from (65,), d(unt1,vn) =n — 1 and vp41 € I(upt1,vn). By (4),
Uht1 € J(upy1,vn). Combining (9) and (i4), we see that vp41 € J(up,vp), which
contradicts (12). Hence up4+1 & J(up,vp+1). Thus, combining (9), (12) and (i7), we
get

(13) Vp € J(uh+1,vh+1).

Let d(upt1,vp+1) < n. By (13) and (4), vy € I(upt1,vp+1). Therefore,
d(upt1,vn) < n — 1. This means that d(up,vn) < n, which contradicts (6y,).
Thus, by virtue of (5), we get (6p41).

Combining (10), (13), (i1) and (i4), we get (Th+1).

Assume that up, € J(upy1,vp+1). Combining (9), (13) and (i6), we see that
vp+1 € J(up,vp), which contradicts (12). We get (8y+1), which is a contradiction
with the definition of h.

Case 2. Let I, C J,. Then J, \ I, # (. There exist u,v,z € W such that
d(u,v) = n and z € J(u,v) \ I(u,v). By (i2), 2 # u. By Lemma 3, there exists
t € J(u, z) such that |J(u,t)| = 2. By (il), (i4) and (i5), t € J(u,v) and z € J(t,v).
If d(t,v) < n, then d(t,v) =n —1,t € I(u,v) and, by (4), z € I(t,v) C I(u,v); a

contradiction. Hence d(t,v) > n. Lemmas 3 and 4 imply that there exist ug, ..., u, €
W such that ug = u, ug = ¢, (1) holds and (2;) holds for each 7,0 < i < n — 1. Since
d(ui,v) = n and ujug, ..., un—1u, € E(G), we have

(14i) d(qu, ’U) Z n—1

for each i, 0 < i < n—1. Thus u, # v. By Lemma 5, (3,,) holds. Since d(u,v) = n,
there exist v, ...,v, € W such that vg = v,v, = u and (v,,...,v) is a path from
u to v of length d(u,v) in G. Thus

(151) d(’U, ’Ui) =1
for each i, 0 < ¢ < n— 1. Moreover, (5) holds.
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Obviously, both (6¢) and (7¢) hold. By (3,), un € J(v,,v). Since u, # v, (il),
(i2) and (i3) imply that (7,) does not hold.

There exists h, 0 < h < n — 1, such that (65,) and (75) hold but at least one of
(6p+1) and (7p+1) does not. Similarly as in Case 1, we get (9), (10) and (11).

Let d(un+1,vn) < n. Combining (4) and (10), we get v € I(up+1,vp). By virtue
of (144), we have d(v,vp) < h, which contradicts (155). Hence d(upt1,vp) = n.

Let d(up+1,vn+1) < n. Since d(up+1,vn) = n, we have d(upy1,vn) = n and
d(tup41,Vh41) =n — 1. Therefore, vy 41 € I(upy1,vp). Since I, C J,,, we get vp41 €
J(up+1,vp). Thus, combining (9) and (i5), we see that up+1 € J(up, vp+1). By (11)
and (4), upt+1 € I(up,vp41) and therefore, d(un41,vp+1) = n — 2; a contradiction.
Thus, by virtue of (5), (65+1) holds.

By virtue of (63), vat1 € I(un,vp); by (6n+1), up € I(ups1,vn+1). Recall that
I, C J,. We have vy,11 € J(up,vs) and up € J(upt1,vp+1). Thus, (9) and (i6)
imply (13). Similarly as in Case 1, we get (7541), which is a contradiction with the
definition of h.

Thus J = I, which completes the proof. O

Remark 2. An extension of Theorem 1 (with a different and rather long proof)
was presented in Nebesky [8].

3. A graph G is said to be geodetic if it is connected and for each pair r,s €
V(G), there exists exactly one path from r to s of length dg(r, s). The problem to
characterize geodetic graphs was stated in Ore’s book [10].

The next theorem gives a characterization of geodetic graphs based on properties
of the interval function.

Theorem 2. Let G be a graph. Put W = V(G). Then G is geodetic if and only
if there exists a mapping J of W x W into 2V such that G = G; and J satisfies
axioms (il), (i2), (i3) and the following axioms (gl) and (g2):

(gl) ifx € J(u,v), then J(u,v) = J(u,z) U J(z,v) for all u,v,z € W;
(g2) if |J(u, )] =2 = |J(v,y)| and x € J(u,v), then x € J(u,y) orv € J(z,y) for
all u,v,z,y € W.

Proof. I Assume that G is geodetic. Then G is connected. Let J denote its
interval function. By Lemma 1, J satisfies (i1), (i2) and (i3). As immediately follows
from the definition of a geodetic graph, J satisfies (g1). We will show that J satisfies
(82).

Consider arbitrary w,v,z,y € W. Assume that |J(u,z)| = 2 = |J(v,y)| and
z € J(u,v). If y = u, then x = v and thus v € J(z,y). Let y # u. Since G is
geodetic, there exists exactly one path P from u to v of length dg(u,v) in G. If
y € J(u,v), then y belongs to P and thus = € J(u,y). Let y ¢ J(u,v). Then
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da(z,v) < dg(z,y) < da(z,v) + 1. If dg(z,y) = da(z,v) + 1, then v € J(z,y). If
da(z,y) = dg(z,v), then x € J(u,y). Thus J satisfies (g2).

II. Conversely, assume that J satisfies (i1), (i2), (i3), (gl) and (g2). The fact that
J satisfies (g2) implies that J satisfies (i7). First, we will show that J also satisfies
(i4), (i5) and (i6).

Consider arbitrary u,v,z,y € W.

Let z € J(u,v) and y € J(z,v). By (gl),

(16) J(u,v) = J(u,z) U J(z,v) and J(x,v) = J(z,y) U J(y,v).
Combining (i2) and (16), we get y € J(u,v). By (gl) again,
(17) J(u,v) = J(u,y) U J(y,v).

If x = y, then (il), (i2) and (17) imply that = € J(u,y). Let z # y. By (i2),
x € J(x,y). Since y € J(x,v), it follows from (i3) that J(z,y) N J(y,v) = {y}, and
therefore, z ¢ J(y,v). Since x € J(u,v), (17) implies that x € J(u,y). We see that
J satisfies (i4) and (i5).

Let |J(u,z)] =2 = |J(v,y)| and let z,y € J(u,v). As follows from (i1), (i2) and
(i3), we have x # u # v # y, J(u,z) = {u,z}, J(v,y) = {v,y} and u,v € J(u,v).
Hence |J(u,v)| > 2. First, let |J(u,v)] = 2. Then v = y and v = x. We have
u,v € J(u,v). Now, let |J(u,v)| > 2. Then z # v and y # u. It follows from (i3)
and (gl) that [{u,z}NJ(z,v)| =1 and J(u,v) = J(u,z) UJ(x,v). Thus u &€ J(z,v).
As follows from (i3) and (g1) again, |J(z,y){y,v}| = 1 and J(z,v) = J(z,y)U{y, v}.
By (i1) and (i2), y € J(z,y), Thus v & J(x,y). Since u & J(x,v), we get u & J(z,y).
We see that J satisfies also (i6).

Put G = G;. By Corollary 1, G is connected. By Theorem 1 and Lemma 2, J is
the interval function of G. Recall that J satisfies (g1). We will show that

(18) there exists exactly one path from u to v of length dg(u,v) in G

for each pair of distinct u,v € W.

Consider arbitrary distinct u,v € W. Put n = dg(u,v). To prove (18), we will
proceed by induction on n. Obviously, n > 1. There exist ug, uq,...,u, € W such
that ug = u,u, = v and (ug, u1,...,u,) is a path in G. Since dg(u,v) = n, we see
that u; and u; are adjacent in G if and only if [ — j| =1 for all i and j, 0 <i < n
and 0 < j < n. Clearly, if n = 1, then (18) holds. Let n > 1. Then u; # v. Since
dg(u1,v) = n—1, the induction hypothesis implies that (ug,...,u,) is the only path
from u;y to v of length n — 1 in G. Thus J(u1,v) = {u1,...,u,}. By virtue of (gl),
J(u,v) = {ug, u1,...,un}. This means that (ug,u1,...,uy,) is the only path from u
to v of length n in G.

Thus G is geodetic. O
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Remark 3. A characterization of geodetic graphs utilizing properties of the set
of all shortest paths was given in Nebesky [5] and [7]. A characterization of geodetic
graphs based on a binary operation on the vertex set was given in Nebesky [9].
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