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ON ITERATED LIMITS OF SUBSETS OF
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Abstract. In this paper we deal with the relation

lim
α
lim
α

X = lim
α

X

for a subset X of G, where G is an �-group and α is a sequential convergence on G.
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For a convergence �-group (shorter: cl-group) we apply the same notation and

definitions as in [4] with the distinction that now we do not assume the commutativity
of the group operation.

Let (G, α) be a cl-group (where G is an �-group and α is a convergence on G). For

X ⊆ G the symbol lim
α

X has the usual meaning. X will be said to be regular with

respect to (G, α) if the relation

lim
α
lim
α

X = lim
α

X

is valid.

An �-group G will be called absolutely regular, if whenever (G, α) is a convergence

�-group and H is an �-subgroup of G, then H is regular with respect to (G, α).

We denote by F the class of all �-groups K such that each disjoint subset of K is

finite; such �-groups were studied in [1] (cf. also [2] and [6]).
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In the present paper we prove that each �-group belonging to F is absolutely

regular.
This generalizes a result from [5] concerning �-groups which can be represented as

direct products of a finite number of linearly ordered groups.

1. Preliminaries

In the whole paper G is an �-group; the group operation is written additively, but

we do not assume commutativity of this operation.
For the notion of convergence α ∈ convG we apply the same definition as in [4]

with the distinction that to the conditions for α used in [4] we add the following one:

(∗) α is a normal subset of (GN )+ (i.e., if s ∈ (GN )+, then s+ α = α+ s).

The corresponding convergence �-group will be denoted by (G, α).

If X is a nonempty subset of G, then by lim
α

X we denote the set of all g ∈ G such

that there exists a sequence (xn) ∈ X with xn →α g.
It is easy to verify that

(i) if X is an �-subgroup of G, then lim
α

X is an �-subgroup of G as well;

(ii) if X is convex in G, then the same holds for lim
α

X .

We shall often apply the following rule:
If xn →α g and xn � g for each n ∈ N , then

∨
n∈N

xn = g (and dually).

A subset Y of G is called disjoint if Y ⊆ G+ and y1 ∧ y2 = 0 whenever y1 and y2
are distinct elements of G.

The direct product of �-groups G1, G2, . . . , Gk is defined in the usual way; it will
be denoted by G1 × G2 × . . . × Gn.
If H is a convex �-subgroup of G such that g > h for each g ∈ G+ \ H and each

h ∈ H , then G is said to be a lexico extension of H ; we express this fact by writing
G = 〈H〉. For the properties of the lexico extension cf., e.g., [2].

2. Auxiliary results

Let (G, α) be a cl-group.

2.1. Lemma. Let (xn) be a sequence in G, xn � xn+1 for each n ∈ N , g ∈ G,

xn →α g. Then
∨

n∈N

xn = g.

�����. If there exists a subsequence (x1n) of (xn) such that x1n � g for each
n ∈ N , then

∨
n∈N

x1n = g, and hence we have also
∨

n∈N

xn = g. If such a subsequence
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(x1n) does not exist, then there is a subsequence (x
2
n) of (xn) such that for each

n ∈ N , either x2n > g or x2n is incomparable with g. Hence x2n ∨ g > g for each
n ∈ N . Thus we obtain

(∗1) x2n ∨ g →α g

and

g < x21 ∨ g � x2n ∨ g for each n ∈ N,

so that the relation (∗1) cannot be valid. �

2.2. Lemma. Let H be an �-subgroup of the �-group G. Suppose that H can

be represented as a lexico extension H = 〈A〉 with A 	= {0}. Then

lim
α

H =
⋃

h∈H

lim
α
(h+A).

Moreover, if h1, h2 ∈ H and h1 /∈ h2 +A, then

lim
α
(h1 +A) ∩ lim

α
(h2 +A) = ∅.

�����. For h ∈ H we put h = h+A. If h1, h2 ∈ H and h1 /∈ h2+A, then from

the properties of the lexico extension we infer that either

(i) h′
1 < h′

2 for each h′
1 ∈ h1 +A and each h′

2 ∈ h2 +A,

or

(ii) h′
2 < h′

1 for each h′
1 ∈ h1 +A and each h′

2 ∈ h2 +A.

Let g ∈ G and suppose that there exists a sequence (hn) in H such that hn →α g.

a) First suppose that there exist h1 ∈ H and a subsequence (h′
n) of (hn) such that

h′
n ∈ h1 +A for each n ∈ N . Then h′

n →α g, whence g ∈ lim
α
(h1 +A).

b) Now suppose that the assumption from a) is not valid. Then there exists a

subsequence (h′
n) of (hn) such that, whenever n(1) and n(2) are distinct positive

integers, then

h′
n(1) +A 	= h′

n(2) +A.

Thus in view of the relations (i) and (ii) above, if n(1) and n(2) are distinct, then
either h′

n(1) < h′
n(2) or h′

n(1) > h′
n(2). This implies that there exists a subsequence

(h′′
n) of (h

′
n) such that either

h′′
n < h′′

n+1 for each n ∈ N,
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or

h′′
n > h′′

n+1 for each n ∈ N.

Suppose that the first case occurs (in the second case we apply a dual argument).

We have h′′
n →α g and thus according to 2.1 the relation

∨

n∈N

h′′
n = g

is valid.
If there exists n(1) ∈ N such that h′′

n(1) + A = g + A, then h′′
n(1)+1 > g, which is

a contradiction. Hence

h′′
n(1) +A 	= g +A for each n(1) ∈ N.

Since A 	= {0}, there exists a ∈ A with a > 0. Then

h′′
n < g − a for each n ∈ N,

which is imposible. Thus we have verified that the condition from a) must be valid.
Therefore ⋃

h∈H

lim
α
(h+A) ⊆ lim

α
H ⊆

⋃

h∈H

lim
α
(h+A),

which proves the first assertion of the lemma.
c) Let g be as above; we have shown that there is h1 ∈ H such that g ∈ lim

α
(h1+A).

Let h2 ∈ H , h1 /∈ h2 + A. By way of contradiction, suppose that g ∈ lim
α
(h2 + A).

Hence there exists a sequence (h2n) in h2 +A such that h2n →α g. At the same time,

there exists a sequence (h1n) in h1 +A such that h1n →α g. Let a be as above. If (i)
is valid, then

h1n + a < h2n for each n ∈ N,

thus g + a � g, which is a contradiction. In the case when (ii) is valid we proceed
dually. �

2.3. Lemma. Let H be as in 2.2. Then lim
α

H = 〈lim
α

A〉.
�����. We obviously have lim

α
A ⊆ lim

α
H and thus lim

α
A is an �-subgroup of

lim
α

H . Let h1, h2 ∈ lim
α

A, h ∈ lim
α

H , h1 � h � h2. Then there exist sequences

(h1n), (h
2
n) in A and (h′

n) in H such that

h1n →α h1, h2n →α h2, h′
n →α h.
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Put (h′
n ∨ h1n) ∧ h2n = h′′

n. Then h′′
n ∈ A for each n ∈ N and

h′′
n →α (h ∨ h1) ∧ h2 = h,

whence h ∈ lim
α

A. Thus lim
α

A is a convex subset of lim
α

H .

Let h ∈ (lim
α

H)+ \ lim
α

A. In view of 2.2 there exist h1 ∈ H and a sequence (hn)

in h1 + A such that hn →α h. Moreover, h1 does not belong to A. Since h ∈ G+,
without loss of generality we can suppose that all hn belong to G+. Further, 2.2
yields that there is a subsequence (h1n) of (hn) such that for each n ∈ N the relation

h1n /∈ A is valid. Thus h1n > a for each a ∈ A. Therefore h � a; since h /∈ A we
obtain that h > a for each a ∈ A.

If a′ ∈ lim
α

A, then there exists a sequence (an) in A with an →α a′. Thus h > an

for each n ∈ N , hence h � a′. Since h /∈ lim
α

A we get h > a′ for each a′ ∈ lim
α

A.

Therefore lim
α

H = 〈lim
α

A〉. �

2.4. Corollary. If H is as in 2.2 and if A is regular with respect to (G, α), then
H is regular with respect to (G, α).

2.5. Corollary. Let H be and �-group, H = 〈A〉, A 	= {0} and suppose that A

is absolutely regular. Then H is absolutely regular.

2.6. Proposition. Let A be an �-group which can be represented as a direct

product of a finite number of linearly ordered groups. Suppose that A 	= {0} and
H = 〈A〉. Then H is absolutely regular.

�����. This is a consequence of 2.6 and of Theorem 3.6, [3]. �

2.7. Lemma. Let H be an �-subgroup of G such that

(i) H can be represented as a direct product H1 × H2 × . . . × Hk;

(ii) there are �-subgroups Ai of Hi such that Hi = 〈Ai〉, Hi 	= Ai 	= {0} (i =
1, 2, . . . , k).

Then lim
α

H = lim
α

H1 × . . . × lim
α

Hk.

�����. Let i ∈ {1, 2, . . . , k}. In view of 2.3,

lim
α

Hi = 〈lim
α

Ai〉.

Now we proceed by induction with respect to k. For k = 1 the assertion is trivial.

Let k > 1. Consider an element g ∈ lim
α

H with g > 0. Then there exists a sequence

(zn) in H such that zn →α g and zn > 0 for each n ∈ N .
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a) First we prove that g cannot be an upper bound of the set H . In fact, if g � h

for each h ∈ H , then g � zn for each n ∈ N , whence g =
∨

n∈N

zn and thus g = supH .

There exists h0 ∈ H with h0 > 0. Then h + h0 ∈ H for each h ∈ H , yielding that

h+ h0 � g. Hence h � g − h0 < g for each h ∈ H , which is a contradiction.
b) For h ∈ H and i ∈ I we denote by h(Hi) the component of h in Hi. If h � 0,

then

h = h(H1) + h(H2) + . . .+ h(Hn) = h(H1) ∨ h(H2) ∨ . . . ∨ h(Hn).

Thus in view of a) there exists i0 ∈ {1, 2, . . . , k} such that g fails to be an upper bound
of the set Hi0 . Without loss of generality we can suppose that i0 = k. Therefore
there exists x0 ∈ H+k such that x0 � g.

We have

zn ∧ x0 = (zn(H1) ∨ zn(H2) ∨ . . . ∨ zn(Hk)) ∧ x0 = zn(Hk) ∧ x0 ∈ Hk

(since zn(Hi) ∧ x0 = 0 for i = 1, 2, . . . , k − 1). Then

zn(Hk) ∧ x0 → g ∧ x0,

whence g ∧ x0 ∈ lim
α

Hk ⊆ lim
α

H .

For each hk ∈ Hk we denote hk = hk +Ak. Further we put

Hk = {hk : hk ∈ Hk}.

If hk
1 and hk

2 are distinct elements of Hk and hk
1 < hk

2 , then we put hk
1 < hk

2 . In

this way Hk turns out to be a linearly ordered set.
Consider the sequence (zn(Hk)). If there existed a subsequence (yn) of (zn(Hk))

such that yn > x0 for each n ∈ N , then we would have g � x0, which is a contra-
diction. Hence there is a subsequence (yn) of (zn(Hk)) such that yn � x0 for each

n ∈ N .
Since Hk 	= Ak there exists x′

0 ∈ Hk such that x0 < x′
0. We can replace x0 by

x′
0 and then the previous considerations remain valid. Moreover, yn < x′

n for each
n ∈ N . We have yn = z1n(Hk), where (z1n) is a subsequence of (zn). Thus

z1n(Hk) < x′
0 for each n ∈ N,

and z1n(Hk) ∧ x′
0 →α g ∧ x′

0. Hence z1n(Hk)→α g ∧ x′
0. This yields that

z′n − z′n(Hk)→α g − (g ∧ x′
0).
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Since

z′n − z′n(Hk) = z′n(H1) + z′n(H2) + . . .+ z′n(Hk−1) ∈ H1 × . . . × Hk−1,

in view of the induction hypothesis we obtain

g − (g ∧ x′
0) ∈ limα H1 × lim

α
H2 × . . . × lim

α
Hk−1.

Denote

lim
α

H1 × lim
α

H2 × . . . × lim
α

Hk−1 = Yk−1.

It is easy to verify that if yk−1 ∈ (Yk−1)+ and yk ∈ (lim
α

Hk)+, then

yk−1 ∧ yk = 0.

Further, we obviously have

0 ∈ (Yk−1)+ ∩ (limHk)+.

Let Y be the sublattice of the lattice G+ generated by the set

(Yk−1)+ ∪ (limHk)
+.

Since the lattice G+ is distributive, we obtain

Y = {yk−1 ∨ yk : yk−1 ∈ (Yk−1)+ and yk ∈ (limHk)+}.

Thus in view of Lemma 3.4 in [5] we get

(1) Y = (Yk−1)+ × Y +k ,

where Y +k is the underlying lattice of the lattice ordered semigroup (limα
Hk)+.

For A, B ⊆ G we put

A − B = {a − b : a ∈ A and b ∈ B}.

Clearly
lim
α

Hk = Y +k − Y +k .

Therefore according to (1) and by applying Theorem 2.9 in [3] we obtain

lim
α

H = Y − Y = ((Yk−1)+ − (Yk−1)+)× (Y +k − Y +k ) = Yk−1 × lim
α

Hk

= lim
α

H1 × lim
α

H2 × . . . × lim
α

Hk−1 × lim
α

Hk.

�
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2.8. Lemma. Let H and H1, H2, . . . , Hk be as in 2.7. Further suppose that all

Ai (i = 1, 2, . . . , k) are regular with respect to (G, α). Then lim
α

H can be represented

in the form

lim
α

H = 〈lim
α

A1〉 × 〈lim
α

A2〉 × . . . × 〈lim
α

Ak〉

and all lim
α

Ai (i = 1, 2, . . . , k) are regular with respect to (G, α).

�����. The first assertion is a consequence of 2.7 and 2.3; the latter is obvious.

�

2.9. Lemma. Let H and H1, H2, . . . , Hk be as in 2.8. Then H is regular with

respect to (G, α).

�����. In view of 2.3, 2.7 and 2.8 we have

lim
α
lim
α

H = lim
α
〈lim

α
A1〉 × . . . × lim

α
〈lim

α
Ak〉

= 〈lim
α
lim
α

A1〉 × . . . × 〈lim
α
lim
α

Ak〉
= 〈lim

α
A1〉 × . . . × 〈lim

α
Ak〉 = lim

α
H.

�

2.10. Corollary. Let H and Hi (i = 1, 2, . . . , k) be �-groups such that the

conditions (i) and (ii) from 2.7 are valid. Further suppose that all Ai (i = 1, 2, . . . , k)

are absolutely regular. Then H is absolutely regular.

3. On �-groups belonging to F

In this section we assume that H is an �-group belonging to the class F and that
H 	= {0}.
It follows from the results of [1] concerning the structure of �-groups belonging to

the class F that there exist a positive integer n and finite systems F1, F2, . . . , Fn of
convex nonzero subgroups of H such that

(i) F1 = {A11, A12, . . . , A1n(1)}, all �-groups A1i (i = 1, . . . , n(1)) are linearly or-

dered and A1i(1) ∩ A1i(2) = {0} whenever i(1), i(2) are distinct elements of the
set {1, 2, . . . , n(1)}.

(ii) If k > 1, then Fk = {Ak
1 , A

k
2 , . . . , A

k
n(k)} such that

(ii1) Ak
i(1) ∩Ak

i(2) = {0} whenever i(1), i(2) are distinct elements of the set
{1, 2, . . . , n(k)};
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(ii2) if i ∈ {1, 2, . . . , n(k)}, then either Ak
i is equal to an element of Fk−1,

or there are B1, B2, . . . , Bt(i) ∈ Fk−1 such that t(i) � 2 and Ak
i =

〈B1 × B2 × . . . × Bt(i)〉.
(iii) Fn = {H}.

3.1. Lemma. Let us apply the above notation and let k ∈ {1, 2, . . . , n}. Then
all �-groups of the system Fk are absolutely regular.

�����. We proceed by induction with respect to k. For k = 1, this is a
consequence of Theorem 3.6 in [5]. Suppose that k > 1 and that the assertion is

valid for k − 1. Then 2.10 yields that the elements of Fk are absolutely regular. �

As a corollary we obtain

3.2. Theorem. Each �-group belonging to F is absolutely regular.

If an �-group H is a direct product of a finite number of linearly ordered groups,

then H belongs to F . Hence 3.2 generalizes Theorem 3.6 from [5].
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