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ON ITERATED LIMITS OF SUBSETS OF
A CONVERGENCE ¢-GROUP
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Abstract. In this paper we deal with the relation
lim lim X = lim X
(e} (e} [e]

for a subset X of GG, where G is an ¢-group and « is a sequential convergence on G.
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For a convergence ¢-group (shorter: cl-group) we apply the same notation and
definitions as in [4] with the distinction that now we do not assume the commutativity
of the group operation.

Let (G, a) be a cl-group (where G is an ¢-group and « is a convergence on G). For
X C @ the symbol lim X has the usual meaning. X will be said to be regular with

respect to (G, «) if the relation
limlim X = lim X

is valid.

An (-group G will be called absolutely regular, if whenever (G, ) is a convergence
{-group and H is an ¢-subgroup of G, then H is regular with respect to (G, «).

We denote by F' the class of all ¢-groups K such that each disjoint subset of K is
finite; such ¢-groups were studied in [1] (cf. also [2] and [6]).
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In the present paper we prove that each f-group belonging to F' is absolutely
regular.

This generalizes a result from [5] concerning ¢-groups which can be represented as
direct products of a finite number of linearly ordered groups.

1. PRELIMINARIES

In the whole paper G is an ¢-group; the group operation is written additively, but
we do not assume commutativity of this operation.

For the notion of convergence o € conv G we apply the same definition as in [4]
with the distinction that to the conditions for « used in [4] we add the following one:

(*¥) « is a normal subset of (GM)* (i.e., if s € (GV)T, then s + a = a + s).
The corresponding convergence ¢-group will be denoted by (G, «).
If X is a nonempty subset of G, then by lim X we denote the set of all g € G such

that there exists a sequence (z,,) € X with =, —4 g.
It is easy to verify that

(i) if X is an £-subgroup of G, then lim X is an ¢-subgroup of G as well;

(ii) if X is convex in G, then the same holds for lim X.

We shall often apply the following rule:

If 2, —4 g and x,, < g for each n € N, then \/ z, = g (and dually).
neN
A subset Y of G is called disjoint if Y € GT and y; A y2 = 0 whenever y; and y»

are distinct elements of G.

The direct product of ¢-groups G1,Ge,...,Gy is defined in the usual way; it will
be denoted by G1 X G X ... X Gj,.

If H is a convex f-subgroup of G such that g > h for each g € G+ \ H and each
h € H, then G is said to be a lexico extension of H; we express this fact by writing
G = (H). For the properties of the lexico extension cf., e.g., [2].

2. AUXILIARY RESULTS
Let (G, a) be a cl-group.

2.1. Lemma. Let (x,) be a sequence in G, z,, < x,41 for eachn € N, g € G,

Tn —a g. Then \/ xz, =g.
neN

Proof. If there exists a subsequence (z}) of (z,) such that xl < g for each

n € N, then \/ x} =g, and hence we have also \/ x, = g. If such a subsequence
neN neN
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(rl) does not exist, then there is a subsequence (x2) of (x,) such that for each

n € N, either 22 > g or 22 is incomparable with g. Hence z2 V g > g for each

n € N. Thus we obtain
(*1) 2V g —ayg

and
g<zivg<azlvg foreachnec N,

so that the relation (*;) cannot be valid. O

2.2. Lemma. Let H be an {-subgroup of the ¢-group GG. Suppose that H can
be represented as a lexico extension H = (A) with A # {0}. Then

lim H = | J lim(h + A).
¢ heH ¢

Moreover, if hi,he € H and hy ¢ he + A, then

hm(h1 + A) n hm(hg + A) = {.

Proof. Forhe Hweputh=h+A. If hy,hy € H and hy ¢ ha + A, then from
the properties of the lexico extension we infer that either

(i) h} < h for each b} € hi + A and each h), € hy + A,

or

(i) h4y < hf for each h} € hy + A and each hf € hy + A.

Let g € G and suppose that there exists a sequence (hy,) in H such that h, —4 g.

a) First suppose that there exist h; € H and a subsequence (h),) of (h,) such that
hl, € hy + A for each n € N. Then h), —, g, whence g € lim(hy + A).

b) Now suppose that the assumption from a) is not valid. Then there exists a
subsequence (hl,) of (hy,) such that, whenever n(1) and n(2) are distinct positive

integers, then
Ry + A # o) + A

Thus in view of the relations (i) and (ii) above, if n(1) and n(2) are distinct, then
either h;l(l) < h;@) or h’n(l) > h;@). This implies that there exists a subsequence
(k") of (hl,) such that either

hi < hy ., foreachn e N,
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or
hy > hy ., for eachn € N.

Suppose that the first case occurs (in the second case we apply a dual argument).
We have h!" —,, g and thus according to 2.1 the relation

V hn=g
neN
is valid.
If there exists n(1) € N such that hx(l) +A =g+ A, then hx(1)+1 > g, which is
a contradiction. Hence

x(1)+A7ég—|—A for each n(1) € N.
Since A # {0}, there exists a € A with a > 0. Then
h! <g—a foreachn e N,

which is imposible. Thus we have verified that the condition from a) must be valid.
Therefore

U lim(h + A) C lim H C U lim(h + A),

heH heH
which proves the first assertion of the lemma.

c¢) Let g be as above; we have shown that there is h; € H such that g € lién(hl +A).
Let he € H, hy ¢ ha + A. By way of contradiction, suppose that g € 1i£n(h2 + A).
Hence there exists a sequence (h2) in hy + A such that h2 —, g. At the same time,
there exists a sequence (h}) in hy + A such that Al —, g. Let a be as above. If (i)
is valid, then
hl +a < h? foreachne N,

thus g + a < g, which is a contradiction. In the case when (ii) is valid we proceed
dually. O

2.3. Lemma. Let H be as in 2.2. Then lim H = (lim A).

Proof. We obviously have lim A C lim H and thus lim A is an {-subgroup of
limH. Let hi,he € limA, h € im H, h; < h < hg. Then there exist sequences
(hl),(h2) in A and (h!,) in H such that

h}l o h17 hi —a h27 h/

n —a h.
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Put (k) vV hl) Ah%2 = Rh!. Then h! € A for each n € N and
h;: —a (h\/hl)/\hg = h,

whence h € ligén A. Thus ligénA is a convex subset of liortn H.

Let h € (lién H)*\ liortn A. In view of 2.2 there exist h' € H and a sequence (h;,)
in h' + A such that h,, —, h. Moreover, h! does not belong to A. Since h € G,
without loss of generality we can suppose that all h, belong to G*. Further, 2.2
yields that there is a subsequence (hl) of (h,) such that for each n € N the relation
hl ¢ A is valid. Thus hl > a for each a € A. Therefore h > a; since h ¢ A we
obtain that h > a for each a € A.

Ifd € lién A, then there exists a sequence (a,,) in A with a,, —4 a’. Thus h > a,
for each n € N, hence h > o'. Since h ¢ lim A we get h > o’ for each @’ € lim A.
Therefore ling = <li(£n A). ’ ) O

2.4. Corollary. IfH isas in 2.2 and if A is regular with respect to (G, «), then
H is regular with respect to (G, «).

2.5. Corollary. Let H be and ¢-group, H = (A), A # {0} and suppose that A
is absolutely regular. Then H is absolutely regular.

2.6. Proposition. Let A be an {-group which can be represented as a direct
product of a finite number of linearly ordered groups. Suppose that A # {0} and
H = (A). Then H is absolutely regular.

Proof. Thisis a consequence of 2.6 and of Theorem 3.6, [3]. g

2.7. Lemma. Let H be an ¢-subgroup of G such that

(i) H can be represented as a direct product Hy X Ha X ... X Hy;
(ii) there are (-subgroups A; of H; such that H; = (A;), H; # A; # {0} (i =
1,2,...,k).

Then lim H = lim Hy X ... X lim Hy.
Proof. Letie{1,2,...,k}. In view of 2.3,

Now we proceed by induction with respect to k. For k& = 1 the assertion is trivial.
Let £ > 1. Consider an element g € lim H with g > 0. Then there exists a sequence
«@

(zn) in H such that z, —, g and z, > 0 for each n € N.
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a) First we prove that ¢ cannot be an upper bound of the set H. In fact, if g > h

for each h € H, then g > z, for each n € N, whence g = \/ z, and thus g = sup H.
neN
There exists hg € H with hg > 0. Then h 4+ hg € H for each h € H, yielding that

h+ho < g. Hence h < g — hg < g for each h € H, which is a contradiction.
b) For h € H and i € I we denote by h(H;) the component of h in H;. If h > 0,
then

h=h(Hy) + h(Hs) + ...+ h(Hy) = h(Hy) V h(H3) V ...V h(H,).

Thus in view of a) there exists igp € {1,2, ..., k} such that g fails to be an upper bound
of the set H;,. Without loss of generality we can suppose that i9 = k. Therefore
there exists zo € H;' such that 2o £ g.

We have

2n Nxo = (zn(H1) V 20 (H2) V ...V 2, (Hg)) A 2o = zn(Hg) A xog € Hy,
(since zp(H;) Axg =0fori=1,2,...,k—1). Then
zn(Hy) AN xg — g A 20,

whence g A xg € lim Hy, C lim H.
[e] (e}
For each h* € H), we denote h* = h* + A;,. Further we put

Fk = {W hk € Hk}.

If h_’f and h_’g are distinct elements of Hj, and h¥ < h%, then we put h_’f < h_’g In
this way H, turns out to be a linearly ordered set.

Consider the sequence (z,(Hy)). If there existed a subsequence (7,,) of (z,(Hg))
such that §,, > Zp for each n € N, then we would have g > z(, which is a contra-

diction. Hence there is a subsequence (7,,) of (z,(Hy)) such that 7, < To for each
n € N.

Since Hy, # Ay there exists x; € Hy such that Ty < %. We can replace Ty by
x, and then the previous considerations remain valid. Moreover, 7,, < @/, for each
n € N. We have y,, = 2} (H}), where (z}) is a subsequence of (zy,). Thus

2} (Hy) < xy  for each n € N,

and z} (Hg) A zf —a g A . Hence 2} (Hy) —o g A xj. This yields that

4 j—

z, — 2y, (Hi) —a g — (9 A xp).
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Since
2t — 2l (Hy) = 25 (H1) + 2, (H2) + ... + 25 (Hi—1) € Hy X ... X Hg_1,
in view of the induction hypothesis we obtain
g—(gNzp) € liénHl X 1i£nH2 X ... X% liénHk,l.

Denote
hmH1 X hmHQ X ... X limHk_l = Yk—l-

It is easy to verify that if yp_1 € (Yx—1)" and yi, € (ligtn Hg)™T, then
Yr—1 AN yr = 0.
Further, we obviously have
0€ (Yeo1)™ N (lim Hy)™".
Let Y be the sublattice of the lattice G* generated by the set
(Yi_1)" U (lim Hy) ™.
Since the lattice G is distributive, we obtain
Y ={yr—1 Vur: yk—1 € Y1) and yx € (lim Hy) ™}
Thus in view of Lemma 3.4 in [5] we get

(1) Y = (Y1)t x Vi,

where Y," is the underlying lattice of the lattice ordered semigroup (lim Hy,)".

For A, B C G we put
A—B={a—-b: a€ Aand b€ B}.

Clearly
lim Hy, = Y, — V'

Therefore according to (1) and by applying Theorem 2.9 in [3] we obtain

ImH =Y —Y = (YVe_1)t — (Veo1)?) x (V7 = VF) = Vi x lim Hy

=lim H; x lim Hy X ... x lim Hy_1 x lim Hy,.
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2.8. Lemma. Let H and Hy,Hs,...,Hy be as in 2.7. Further suppose that all
A; (i=1,2,...,k) are regular with respect to (G, «)). Then lim H can be represented
in the form :

liénH = <li(£nA1> X <li(£nA2> X ... X <liénAk>

and allim A; (i =1,2,...,k) are regular with respect to (G, o).

Proof. The first assertion is a consequence of 2.7 and 2.3; the latter is obvious.
O

2.9. Lemma. Let H and Hy,Hs,...,Hy be as in 2.8. Then H is regular with
respect to (G, o).

Proof. In view of 2.3, 2.7 and 2.8 we have

limlim A = lim(lim A;) x ... x lim(lim Ag)

= (limlim A;) X ... x (limlim Ag)

= (lim A;) X ... x {lim A) = lim H.
t

2.10. Corollary. Let H and H; (i = 1,2,...,k) be {-groups such that the
conditions (i) and (ii) from 2.7 are valid. Further suppose that all A; (i =1,2,...,k)
are absolutely regular. Then H is absolutely regular.

3. ON /-GROUPS BELONGING TO F

In this section we assume that H is an /-group belonging to the class F' and that
H # {0}.

It follows from the results of [1] concerning the structure of ¢-groups belonging to
the class F' that there exist a positive integer n and finite systems Fy, Fs, ..., F, of
convex nonzero subgroups of H such that

(i) Fy = {A}, AL, .. .,A}l(l)}, all ¢-groups A} (i = 1,...,n(1)) are linearly or-
dered and A%(l) N A}@) = {0} whenever i(1),4(2) are distinct elements of the
set {1,2,...,n(1)}.

(ii) If & > 1, then Fj, = {A}, A3, ..., A} 4} such that

(i) Ajfy) NAJ,) = {0} whenever i(1),i(2) are distinct elements of the set
{1,2,...,n(k)};
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(i) if 7 € {1,2,...,n(k)}, then either A¥ is equal to an element of Fj_1,
or there are B1, B, ..., By; € Fg—1 such that t(i) > 2 and Af =
(B1 X By X ... X Bys)).
(iii) F, ={H}.

3.1. Lemma. Let us apply the above notation and let k € {1,2,...,n}. Then
all ¢-groups of the system F}, are absolutely regular.

Proof. We proceed by induction with respect to k. For k = 1, this is a
consequence of Theorem 3.6 in [5]. Suppose that £ > 1 and that the assertion is
valid for £ — 1. Then 2.10 yields that the elements of F}, are absolutely regular. O

As a corollary we obtain

3.2. Theorem. FEach {-group belonging to F is absolutely regular.

If an ¢-group H is a direct product of a finite number of linearly ordered groups,
then H belongs to F. Hence 3.2 generalizes Theorem 3.6 from [5].
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