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Abstract. We investigate the problem of approximation of measurable multifunctions by
monotone sequences of measurable simple ones. Our main tool is the Marczewski function,
i.e., the characteristic function of a sequence of sets.
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1. Preliminaries

We introduce the notation and basic definitions which will be used throughout the

paper. For a topological space Y we set

CL(Y ) = {A ∈ P(Y ) : A is a nonempty closed subset of Y },
K(Y ) = {A ∈ CL(Y ) : A is compact},
V − = {A ∈ CL(Y ) : A ∩ V �= ∅},
V + = {A ∈ CL(Y ) : A ⊂ V },

where V is a subset of Y . Recall that the Vietoris topology on CL(Y ) is gen-
erated by sets V − and U+, where U, V ⊂ Y are open. By a multifunction we

mean any mapping ϕ : X → P(Y ), where X and Y are arbitrary sets. Let X,Y
be two topological spaces. Recall that a multifunction ϕ : X → CL(Y ) is lower

semicontinuous, l.s.c. for short (resp.upper semicontinuous, u.s.c. for short) provided
ϕ−1(V −) = {x ∈ X : ϕ(x) ∩ V �= ∅} (ϕ−1(V +) = {x ∈ X : ϕ(x) ⊂ V }) is open in
X for every open V ⊂ Y . A multifunction is called simple if the set of its values is
finite.

113



Let (T,M) be a measurable space. A multifunction ϕ : T → CL(Y ) is called

measurable provided ϕ−1(V −) ∈ M whenever V is open in Y . Let Y be a metrizable
space. Then the condition ϕ−1(V +) ∈ M for each open V implies the measurability
of ϕ. For compact-valued multifunctions the reverse also holds (see Himmelberg [1,

Thm. 3.1]).

In [2] we investigated the problem of approximation of measurable multifunctions
by sequences of simple ones. It is a consequence of some general results that if Y

is separable and metrizable, then each measurable multifunction ϕ : T → K(Y ) is
the pointwise limit (with respect to the Vietoris topology) of a sequence of simple

measurable multifunctions ϕn : T → K(Y ). Such a theorem is no longer valid for
multifunctions with non-compact values (see the counter-example of Spakowski [6]).

In the present paper we look for monotone approximations of measurable multi-

functions. We use the Marczewski function and the results of Spakowski [7] on the
approximation of semicontinuous multifunctions by simple ones.

Let A = (An)n∈� be a sequence of measurable subsets of T and let χn be the
characteristic function of An. The function M : T → {0, 1}� defined by M(t) =
(χn(t))n∈� is called the Marczewski function of A (cf. [5]). We will consider M(T )
with the topology induced by the product {0, 1}�. It is easy to check that the
Marczewski function is measurable and M(An) is closed-open in M(T ) for each
n ∈ �. Some applications of the Marczewski function one can find in [3, 4].

2. The results

We start with an auxiliary technical lemma.

Lemma 1 (cf. [4]). Let B be a base of a topological space Y , let X be a set and
let ϕ : X → K(Y ) be a multifunction. Then for each open G ⊂ Y we have

ϕ−1(G+) =
⋃

{ϕ−1((V1 ∪ . . . ∪ Vk)+) : Vi ∈ B, Vi ⊂ G, i = 1, . . . , k, k ∈ �}.

We shall need the following versions of two results of Spakowski [7].

Theorem 2 ([7, Thm. 3]). Let X be a totally bounded metric space, let Y be a
metric space and let F : X → K(Y ) be an upper semicontinuous multifunction. Then
there exists a sequence of simple upper semicontinuous multifunctions Fn : X →
CL(Y ) pointwise convergent to F with respect to the Vietoris topology and such
that F (x) ⊂ Fn+1(x) ⊂ Fn(x) for every x ∈ X and n ∈ �.
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The sequence (Fn)n∈� is constructed in the following way. Let An be a 1n -dense

subset of X . Put
Fn(x) =

⋂
k�n

⋂
s∈Ak

Θs,k(x),

where

Θs,k(x) =

{
cl(F (B(s, 1k ))) if x ∈ B(s, 1k ),

Y otherwise.

Note that this is a modification of the definition of Spakowski but the same proof

holds. A similar remark applies to the next result.

Theorem 3 ([7, Thm. 4]). Let X be a totally bounded metric space and let
Y be a finite dimensional normed linear space. Assume that F : X → K(Y ) is a
lower semicontinuous multifunction whose values are convex with nonempty interiors.

Then there exists a sequence of simple lower semicontinuous multifunctions Fn : X →
K(Y )∪{∅} pointwise convergent to F with respect to the Vietoris topology and such
that Fn(x) ⊂ Fn+1(x) ⊂ F (x) for each x ∈ X and n ∈ �.

Here the sequence (Fn)n∈� is defined as follows:

Fn(x) =
⋃
k�n

⋃
s∈Ak

Θs,k(x),

where

Θs,k(x) =


⋂

z∈B(s, 1k )

F (z) if x ∈ B(s, 1k ),

∅ otherwise.

It follows from the proof of [7, Thm. 4] that Fn(x) has nonempty interior for all

but finitely many n ∈ �.
For a multifunction taking the empty set as its value we understand measurability

and continuity similarly to the usual case.
Applying Theorems 2, 3 and using the Marczewski function we obtain the following

results.

Theorem 4. Let (T,M) be a measurable space and let Y be a separable metric
space. Then for each measurable multifunction ϕ : T → K(Y ) there exists a sequence
of simple measurable multifunctions ϕn : T → CL(Y ) pointwise convergent to ϕ with

respect to the Vietoris topology and such that ϕ(t) ⊂ ϕn+1(t) ⊂ ϕn(t) for every t ∈ T

and n ∈ �.

�����. Let B = {Vn : n ∈ �} be a countable base of Y closed under finite
unions. Set An = ϕ−1(V +n ). As ϕ is measurable and compact-valued, each An is
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measurable. Let M : T → {0, 1}� be the Marczewski function of (An)n∈�. Define
a multifunction Φ: M(T ) → K(Y ) by setting Φ(M(t)) = ϕ(t) for every t ∈ T . We
need to check that Φ is well-defined. Suppose that ϕ(t1) �= ϕ(t2) and e.g. there is
y0 ∈ ϕ(t1)\ϕ(t2). There exists a B0 ⊂ B such that Y \{y0} =

⋃B0. By compactness
we have ϕ(t2) ⊂ B1∪ . . .∪Bk for some B1, . . . , Bk ∈ B0. Now B1∪ . . .∪Bk = Vm for
some m ∈ �. Hence t2 ∈ ϕ−1(V +m ) and t1 /∈ ϕ−1(V +m ), which means M(t1) �=M(t2).
We now show that Φ is u.s.c. By Lemma 1 it is enough to check that Φ−1(V +n )

is open for every n ∈ �, but we have Φ−1(V +n ) = M(An) is a closed-open subset

of M(T ). Observe that M(T ) is totally bounded (with a suitable metric). Thus
we can apply Theorem 2. There exists a sequence of simple u.s.c.multifunctions

Φn : M(T ) → CL(Y ) pointwise convergent to Φ and such that Φ(x) ⊂ Φn+1(x) ⊂
Φn(x) for x ∈M(T ), n ∈ �. Define ϕn = Φn◦M . Notice that ϕ−1

n (G
+) is measurable

for each open G ⊂ Y . Hence ϕn is measurable. Clearly, for the sequence (ϕn)n∈�
our statement holds. �

In the above result we cannot require ϕn to be a compact-valued multifunction.

Indeed, if we consider a multifunction ϕ : [0, 1] → K(�) defined by ϕ(x) = [0, 1x ]
for x > 0 and ϕ(0) = {0}, then there does not exist a simple compact-valued
multifunction ψ with ϕ(x) ⊂ ψ(x) for all x ∈ [0, 1].

Theorem 5. Let (T,M) be a measurable space, let Y be a finite dimensional
normed linear space and let ϕ : T → K(Y ) be a measurable multifunction whose
values are convex with nonempty interiors. Then there exists a sequence of simple

measurable multifunctions ϕn : T → K(Y ) ∪ {∅} pointwise convergent to ϕ with
respect to the Vietoris topology and such that ϕn(t) ⊂ ϕn+1(t) ⊂ ϕ(t).

�����. Let B = {Vn : n ∈ �} be a base of Y . Put An = ϕ−1(V −
n ) ∈ M. Let

M be the Marczewski function of the sequence (An)n∈�. Define Φ: M(T )→ K(Y )
by setting Φ(M(t)) = ϕ(t) for t ∈ T . For the proof that Φ is well-defined let us

consider t1, t2 ∈ T such that ϕ(t1) �= ϕ(t2) and e.g. y0 ∈ ϕ(t1) \ ϕ(t2). Then there
exists m ∈ � with y0 ∈ Vm and Vm ∩ ϕ(t2) = ∅. Hence t1 ∈ Am and t2 /∈ Am, which

means that M(t1) �= M(t2). Observe that Φ is l.s.c. since Φ−1(V −
n ) = M(An) is

closed-open inM(T ). Now apply Theorem 3. There exists a sequence of l.s.c. simple

multifunctions Φn : M(T ) → K(Y ) ∪ {∅} pointwise convergent to Φ and such that
Φn(x) ⊂ Φn+1(x) ⊂ Φ(x) for x ∈ M(T ), n ∈ �. Define ϕn = Φn ◦ M . Clearly,
(ϕn)n∈� is as desired. �

In the above result, taking ϕ̂n(x) = convϕn(x) we obtain an increasing sequence
of convex-valued simple measurable multifunctions pointwise convergent to ϕ.
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