MONOTONE APPROXIMATION OF MEASURABLE MULTIFUNCTIONS BY SIMPLE MULTIFUNCTIONS

BEATA KUBIŚ, Katowice

(Received March 8, 1999)

Abstract. We investigate the problem of approximation of measurable multifunctions by monotone sequences of measurable simple ones. Our main tool is the Marczewski function, i.e., the characteristic function of a sequence of sets.

 $\mathit{Keywords}:$ measurable multifunction, Marczewski function, Vietoris topology, simple multifunction

MSC 2000: 26E25, 28A20, 54C60

1. Preliminaries

We introduce the notation and basic definitions which will be used throughout the paper. For a topological space Y we set

$$CL(Y) = \{A \in \mathcal{P}(Y) \colon A \text{ is a nonempty closed subset of } Y\},$$

$$K(Y) = \{A \in CL(Y) \colon A \text{ is compact}\},$$

$$V^{-} = \{A \in CL(Y) \colon A \cap V \neq \emptyset\},$$

$$V^{+} = \{A \in CL(Y) \colon A \subset V\},$$

where V is a subset of Y. Recall that the Vietoris topology on CL(Y) is generated by sets V^- and U^+ , where $U, V \subset Y$ are open. By a multifunction we mean any mapping $\varphi \colon X \to \mathcal{P}(Y)$, where X and Y are arbitrary sets. Let X, Y be two topological spaces. Recall that a multifunction $\varphi \colon X \to CL(Y)$ is lower semicontinuous, l.s.c. for short (resp. upper semicontinuous, u.s.c. for short) provided $\varphi^{-1}(V^-) = \{x \in X \colon \varphi(x) \cap V \neq \emptyset\}$ ($\varphi^{-1}(V^+) = \{x \in X \colon \varphi(x) \subset V\}$) is open in X for every open $V \subset Y$. A multifunction is called simple if the set of its values is finite.

Let (T, \mathfrak{M}) be a measurable space. A multifunction $\varphi \colon T \to CL(Y)$ is called measurable provided $\varphi^{-1}(V^-) \in \mathfrak{M}$ whenever V is open in Y. Let Y be a metrizable space. Then the condition $\varphi^{-1}(V^+) \in \mathfrak{M}$ for each open V implies the measurability of φ . For compact-valued multifunctions the reverse also holds (see Himmelberg [1, Thm. 3.1]).

In [2] we investigated the problem of approximation of measurable multifunctions by sequences of simple ones. It is a consequence of some general results that if Yis separable and metrizable, then each measurable multifunction $\varphi \colon T \to K(Y)$ is the pointwise limit (with respect to the Vietoris topology) of a sequence of simple measurable multifunctions $\varphi_n \colon T \to K(Y)$. Such a theorem is no longer valid for multifunctions with non-compact values (see the counter-example of Spakowski [6]).

In the present paper we look for monotone approximations of measurable multifunctions. We use the Marczewski function and the results of Spakowski [7] on the approximation of semicontinuous multifunctions by simple ones.

Let $\mathcal{A} = (A_n)_{n \in \mathbb{N}}$ be a sequence of measurable subsets of T and let χ_n be the characteristic function of A_n . The function $M: T \to \{0,1\}^{\mathbb{N}}$ defined by $M(t) = (\chi_n(t))_{n \in \mathbb{N}}$ is called the *Marczewski function of* \mathcal{A} (cf. [5]). We will consider M(T) with the topology induced by the product $\{0,1\}^{\mathbb{N}}$. It is easy to check that the Marczewski function is measurable and $M(A_n)$ is closed-open in M(T) for each $n \in \mathbb{N}$. Some applications of the Marczewski function one can find in [3, 4].

2. The results

We start with an auxiliary technical lemma.

Lemma 1 (cf. [4]). Let \mathcal{B} be a base of a topological space Y, let X be a set and let $\varphi \colon X \to K(Y)$ be a multifunction. Then for each open $G \subset Y$ we have

$$\varphi^{-1}(G^+) = \bigcup \{ \varphi^{-1}((V_1 \cup \ldots \cup V_k)^+) \colon V_i \in \mathcal{B}, \ V_i \subset G, \ i = 1, \ldots, k, \ k \in \mathbb{N} \}.$$

We shall need the following versions of two results of Spakowski [7].

Theorem 2 ([7, Thm. 3]). Let X be a totally bounded metric space, let Y be a metric space and let $F: X \to K(Y)$ be an upper semicontinuous multifunction. Then there exists a sequence of simple upper semicontinuous multifunctions $F_n: X \to CL(Y)$ pointwise convergent to F with respect to the Vietoris topology and such that $F(x) \subset F_{n+1}(x) \subset F_n(x)$ for every $x \in X$ and $n \in \mathbb{N}$.

The sequence $(F_n)_{n \in \mathbb{N}}$ is constructed in the following way. Let A_n be a $\frac{1}{n}$ -dense subset of X. Put

$$F_n(x) = \bigcap_{k \leqslant n} \bigcap_{s \in A_k} \Theta_{s,k}(x),$$

where

$$\Theta_{s,k}(x) = \begin{cases} \operatorname{cl}(F(B(s, \frac{1}{k}))) & \text{if } x \in B(s, \frac{1}{k}) \\ Y & \text{otherwise.} \end{cases}$$

Note that this is a modification of the definition of Spakowski but the same proof holds. A similar remark applies to the next result.

Theorem 3 ([7, Thm. 4]). Let X be a totally bounded metric space and let Y be a finite dimensional normed linear space. Assume that $F: X \to K(Y)$ is a lower semicontinuous multifunction whose values are convex with nonempty interiors. Then there exists a sequence of simple lower semicontinuous multifunctions $F_n: X \to K(Y) \cup \{\emptyset\}$ pointwise convergent to F with respect to the Vietoris topology and such that $F_n(x) \subset F_{n+1}(x) \subset F(x)$ for each $x \in X$ and $n \in \mathbb{N}$.

Here the sequence $(F_n)_{n \in \mathbb{N}}$ is defined as follows:

$$F_n(x) = \bigcup_{k \leqslant n} \bigcup_{s \in A_k} \Theta_{s,k}(x),$$

where

$$\Theta_{s,k}(x) = \begin{cases} \bigcap_{z \in B(s,\frac{1}{k})} F(z) & \text{if } x \in B(s,\frac{1}{k}) \\ \emptyset & \text{otherwise.} \end{cases}$$

It follows from the proof of [7, Thm. 4] that $F_n(x)$ has nonempty interior for all but finitely many $n \in \mathbb{N}$.

For a multifunction taking the empty set as its value we understand measurability and continuity similarly to the usual case.

Applying Theorems 2, 3 and using the Marczewski function we obtain the following results.

Theorem 4. Let (T, \mathfrak{M}) be a measurable space and let Y be a separable metric space. Then for each measurable multifunction $\varphi \colon T \to K(Y)$ there exists a sequence of simple measurable multifunctions $\varphi_n \colon T \to CL(Y)$ pointwise convergent to φ with respect to the Vietoris topology and such that $\varphi(t) \subset \varphi_{n+1}(t) \subset \varphi_n(t)$ for every $t \in T$ and $n \in \mathbb{N}$.

Proof. Let $\mathcal{B} = \{V_n : n \in \mathbb{N}\}$ be a countable base of Y closed under finite unions. Set $A_n = \varphi^{-1}(V_n^+)$. As φ is measurable and compact-valued, each A_n is

measurable. Let $M: T \to \{0,1\}^{\mathbb{N}}$ be the Marczewski function of $(A_n)_{n \in \mathbb{N}}$. Define a multifunction $\Phi: M(T) \to K(Y)$ by setting $\Phi(M(t)) = \varphi(t)$ for every $t \in T$. We need to check that Φ is well-defined. Suppose that $\varphi(t_1) \neq \varphi(t_2)$ and e.g. there is $y_0 \in \varphi(t_1) \setminus \varphi(t_2)$. There exists a $\mathcal{B}_0 \subset \mathcal{B}$ such that $Y \setminus \{y_0\} = \bigcup \mathcal{B}_0$. By compactness we have $\varphi(t_2) \subset B_1 \cup \ldots \cup B_k$ for some $B_1, \ldots, B_k \in \mathcal{B}_0$. Now $B_1 \cup \ldots \cup B_k = V_m$ for some $m \in \mathbb{N}$. Hence $t_2 \in \varphi^{-1}(V_m^+)$ and $t_1 \notin \varphi^{-1}(V_m^+)$, which means $M(t_1) \neq M(t_2)$.

We now show that Φ is u.s.c. By Lemma 1 it is enough to check that $\Phi^{-1}(V_n^+)$ is open for every $n \in \mathbb{N}$, but we have $\Phi^{-1}(V_n^+) = M(A_n)$ is a closed-open subset of M(T). Observe that M(T) is totally bounded (with a suitable metric). Thus we can apply Theorem 2. There exists a sequence of simple u.s.c. multifunctions $\Phi_n: M(T) \to CL(Y)$ pointwise convergent to Φ and such that $\Phi(x) \subset \Phi_{n+1}(x) \subset$ $\Phi_n(x)$ for $x \in M(T), n \in \mathbb{N}$. Define $\varphi_n = \Phi_n \circ M$. Notice that $\varphi_n^{-1}(G^+)$ is measurable for each open $G \subset Y$. Hence φ_n is measurable. Clearly, for the sequence $(\varphi_n)_{n \in \mathbb{N}}$ our statement holds.

In the above result we cannot require φ_n to be a compact-valued multifunction. Indeed, if we consider a multifunction $\varphi \colon [0,1] \to K(\mathbb{R})$ defined by $\varphi(x) = [0,\frac{1}{x}]$ for x > 0 and $\varphi(0) = \{0\}$, then there does not exist a simple compact-valued multifunction ψ with $\varphi(x) \subset \psi(x)$ for all $x \in [0,1]$.

Theorem 5. Let (T, \mathfrak{M}) be a measurable space, let Y be a finite dimensional normed linear space and let $\varphi \colon T \to K(Y)$ be a measurable multifunction whose values are convex with nonempty interiors. Then there exists a sequence of simple measurable multifunctions $\varphi_n \colon T \to K(Y) \cup \{\emptyset\}$ pointwise convergent to φ with respect to the Vietoris topology and such that $\varphi_n(t) \subset \varphi_{n+1}(t) \subset \varphi(t)$.

Proof. Let $\mathcal{B} = \{V_n : n \in \mathbb{N}\}$ be a base of Y. Put $A_n = \varphi^{-1}(V_n^-) \in \mathfrak{M}$. Let M be the Marczewski function of the sequence $(A_n)_{n \in \mathbb{N}}$. Define $\Phi : M(T) \to K(Y)$ by setting $\Phi(M(t)) = \varphi(t)$ for $t \in T$. For the proof that Φ is well-defined let us consider $t_1, t_2 \in T$ such that $\varphi(t_1) \neq \varphi(t_2)$ and e.g. $y_0 \in \varphi(t_1) \setminus \varphi(t_2)$. Then there exists $m \in \mathbb{N}$ with $y_0 \in V_m$ and $V_m \cap \varphi(t_2) = \emptyset$. Hence $t_1 \in A_m$ and $t_2 \notin A_m$, which means that $M(t_1) \neq M(t_2)$. Observe that Φ is l.s.c. since $\Phi^{-1}(V_n^-) = M(A_n)$ is closed-open in M(T). Now apply Theorem 3. There exists a sequence of l.s.c. simple multifunctions $\Phi_n \colon M(T) \to K(Y) \cup \{\emptyset\}$ pointwise convergent to Φ and such that $\Phi_n(x) \subset \Phi_{n+1}(x) \subset \Phi(x)$ for $x \in M(T), n \in \mathbb{N}$. Define $\varphi_n = \Phi_n \circ M$. Clearly, $(\varphi_n)_{n \in \mathbb{N}}$ is as desired.

In the above result, taking $\hat{\varphi}_n(x) = \operatorname{conv} \varphi_n(x)$ we obtain an increasing sequence of convex-valued simple measurable multifunctions pointwise convergent to φ .

A c k n o w l e d g e m e n t. This research was supported by the Silesian University Mathematics Department (Continuity and Measurability Properties of Multifunctions program).

References

- [1] C. J. Himmelberg: Measurable relations. Fund. Math. 87 (1975), 53-72.
- [2] B. Kubiś: Approximation of measurable multifunctions. To appear in Tatra Mt. Math. Publ.
- [3] A. Kucia: Some results on Carathéodory selections and extensions. J. Math. Anal. Appl. 223 (1998), 302–318.
- [4] A. Kucia, A. Nowak: Approximation of Carathéodory type multifunctions. Bull. Polish Acad. Sci. Math. 45 (1997), 187–195.
- [5] E. Marczewski: The characteristic function of a sequence of sets and some of its applications. Fund. Math. 31 (1938), 207–223.
- [6] A. Spakowski: On approximation of multifunctions with respect to the Vietoris topology. Acta Univ. Carol. Math. Phys. 29 (1988), 75–80.
- [7] A. Spakowski: On approximation by step multifunctions without compactness conditions. Časopis Pěst. Mat. 115 (1990), 225–231.

Author's address: Beata Kubiś, Institute of Mathematics, University of Silesia, ul. Bankowa 14, 40-007 Katowice, e-mail: potaczek@gate.math.us.edu.pl.