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1. Mathematical model

We consider the system of 2D Navier-Stokes equations for compressible medium
in conservative form:

(1)

Wt + Fx +Gy = Rx + Sy,

W = col ‖�, �u, �v, e‖,
p = (γ − 1)(e − 1

2�(u
2 + v2)

)
,

F = col ‖�u, �u2 + p, �uv, (e+ p)u‖,
G = col ‖�v, �uv, �v2 + p, (e+ p)v‖,
R = col ‖0, τ11, τ12, uτ11 + vτ12 + kTx‖,
S = col ‖0, τ21, τ22, uτ21 + vτ22 + kTy‖,

where � is the density, (u, v) the velocity vector, e the total energy per unit volume,

µ the viscosity coefficient, k is the heat conductivity, p is the pressure, γ is the
adiabatic coefficient, and the components of the stress tensor τ are

(2) τ11 = µ(43ux − 2
3vy), τ21 = τ12 = µ(uy + vx), τ22 = µ(− 23ux + 43vy).

The 2D Euler equations are obtained from the Navier-Stokes equations by setting

µ = k = 0.
The system of 3D Euler equations is written also in conservative form (here w is

the third component of the velocity vector):

(3)

Wt + Fx +Gy +Hz = 0,

W = col ‖�, �u, �v, �w, e‖,
p = (γ − 1) (e − 1

2�(u
2 + v2 + w2)

)
,

F = col ‖�u, �u2 + p, �uv, �uw, (e+ p)u‖,
G = col ‖�v, �uv, �v2 + p, �vw, (e+ p)v‖,
H = col ‖�w, �uw, �vw, �w2 + p, (e+ p)w‖.

1.1. Boundary conditions. We assume four types of boundary conditions:
�����. At the inlet we prescribe the direction of the velocity (by the inlet angle

for the 2D case and by 2 angles for the 3D case), the value of the stagnation density
�0 and the stagnation pressure p0. We extrapolate the static pressure p from inside
and compute the other required quantities using the following relations between the

stagnation and the static quantities:

(4) p0 = p
(
1 +

γ − 1
2

M2
) γ

γ−1
�0 = �

(
1 +

γ − 1
2

M2
) 1

γ−1
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whereM is the local Mach number defined byM =
√

u2 + v2 + w2/
√

γp/�. For the

Navier-Stokes equations we assume ∂T/∂�n = 0 and W∞ given.
������. At the outlet we prescribe the value of the static pressure p and ex-

trapolate the values of the density � and of the velocity vector from the flow field.

For the viscous flows we assume again ∂T/∂�n = 0.

���	
 ����. Here we prescribe the non-permeability condition (�u · �n = 0) for
the inviscid case or �u = 0 for the case of viscous flows. Here we assume also the

adiabatic walls (i.e. ∂T/∂�n = 0 where T is the temperature).

��	�
	�	��. Here we prescribe the periodical condition for all components of
the vector of unknowns W .

2. Numerical methods

2.1. TVD schemes for one-dimensional scalar case. The theory for full
nonlinear systems is very complicated and we restrict the analysis of the numerical

method only to the scalar case. We assume the initial value problem for the one-
dimensional scalar equation

(5) ut + f(u)x = 0

with the initial condition u(x, 0) = u0(x). This initial value problem is solved for

(x, t) ∈ � × �+ .

However the theoretical results are not straightforward applicable to nonlinear
systems and to bounded domains, the simple model case is still important for under-

standing some properties of the numerical methods and as a hint for constructing
good numerical methods for systems.

We approximate the weak solution to (5) by a piecewise constant function U(x, t) =

un
i for (i − 1)∆x < x � i∆x and (n − 1)∆t < t � n∆t where ∆x and ∆t are the
mesh spacings in the space and time variables. The initial condition u0 is computed

as

(6) u0i =
1
∆x

∫ i∆x

(i−1)∆x

u0(x) dx.

The values un
i are computed for n > 0 using the following explicit numerical

scheme in so the called conservation form:

(7) un+1
i = un

i − ∆t

∆x

[
f̃(un

i−p, u
n
i−p+1, . . . , u

n
i+q)− f̃(un

i−p−1, u
n
i−p, . . . , u

n
i+q−1)

]
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where f̃ is a continuous function of p + q + 1 parameters called the numerical flux

function which approximates the physical flux function f in the following sense:

(8) ∀v :: f̃(v, v, . . . , v) = f(v).

The analysis of the above mentioned method is complicated even in the one-

dimensional scalar case because of the nonlinearity of the flux function f (and con-
sequently f̃). Nevertheless, there exist good theoretical backgrounds for certain

subclasses of the general method. Namely, the following facts have been proved:
• the convergence towards the unique (so called viscosity vanishing1) weak solu-
tion of (5) for the class of monotone methods,

• the convergence towards the unique weak solution (5) for the class of weakly TV
bounded methods (see [2] for details),

• the convergence towards the set of all weak solutions2 of (5) for the class of
TVD methods (see [11], [10]).

However the theory for the monotone methods is very strong and is easily exten-
sible to the multidimensional case, the monotone methods are at most of the first

order of accuracy. Therefore we prefer the class of TVD methods which is defined
as follows:

Definition 1. The numerical method (7) is called total variation diminishing
(or simply TVD), if and only if for each numerical approximation U

(9) TV(un+1) � TV(un) =
+∞∑

i=−∞
|un

i+1 − un
i |.

Let us consider a general one-dimensional method of the form

(10) un+1
i = un

i − Ci− 1
2
(un

i − un
i−1) +Di+ 12

(un
i+1 − un

i ),

then the following theorem of Harten [11] can be used to check the TVD property.

Lemma 1 (Harten, 1983). Let the following conditions be fulfilled ∀i ∈ �:

(11) Ci− 1
2

� 0, Di+ 12
� 0, Ci+ 12

+Di+ 12
� 1.

Then the numerical method (10) is TVD.

1 The viscosity vanishing solution is obtained as a limit of solutions to the problems given
by the equation uε

t + f(uε)x = εuε
xx for ε → 0+.

2 The uniqueness of the solution follows from Coquel’s-LeFloch’s theorem for the weakly
TV bounded methods.
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This lemma gives some hints how to correct some classical high order methods in

order to be TVD. Unfortunately, this lemma is valid only for the one-dimensional
case. In fact, Goodman and LeVeque show in [9], that the TVD property in the
multidimensional case implies only a first order accuracy.

In spite of their result, many methods based on one-dimensional high order TVD
methods have been constructed for practical problems. Although they are not TVD,

they remain high order for smooth solutions and usually do not generate oscillations
near discontinuities.

For practical computations we use the MacCormack predictor-corrector scheme
because of its simple implementation especially for nonlinear systems. The TVD

MacCormack scheme has for one-dimensional scalar problem the following form:

u
n+ 12
i = un

i − ∆t

∆x

(
f(un

i )− f(un
i−1)

)
,(12)

un+1
i =

1
2

[
un

i + u
n+ 12
i − ∆t

∆x

(
f(u

n+ 12
i+1 )− f(u

n+ 12
i )

)]
,(13)

un+1
i = un+1

i +
[
G+(r+i ) +G−(r−i+1)

]
(un

i+1 − un
i )(14)

− [
G+(r+i−1) +G−(r−i )

]
(un

i − un
i−1)

with G± defined by

(15) G±(r±i ) =
|f ′(un

i )|∆t

2∆x

(
1− |f ′(un

i )|∆t

∆x

) [
1− Φ(r±i )

]
and

(16) Φ(r±i ) = max
(
0,min(2r±i , 1)

)
.

2.2. Extension to the 2D scalar case. The scalar initial value problem for
the 2D problem is given by the equation ut + f(u)x + g(u)y = 0 with the initial
condition u(x, y, 0) = u0(x, y). We again solve this problem in the unbounded domain

(x, y, t) ∈ � × � × �+ .
For a two-dimensional scalar case we analyzed in [6] a class of monotone schemes

(especially the so called l1-contractive schemes) and published in [8] the following
lemma:

Lemma 2. Let there exist functions f̃k of 2(p+ q + 1) parameters such that

(17) f̃(un
i−p, . . . , u

n
i+q)− f̃(vn

i−p, . . . , v
n
i+q)

=
q∑

k=−p

f̃k(un
i−p, . . . , u

n
i+q, v

n
i−p, . . . , v

n
i+q)(u

n
i+k − vn

i+k)
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for arbitrary u and v. If the functions f̃k satisfy the conditions

(18) f̃0(un
i−p, . . . , u

n
i+q, v

n
i−p, . . . , v

n
i+q)

− f̃1(un
i−p−1, . . . , u

n
i+q−1, v

n
i−p−1, . . . , v

n
i+q−1) �

∆x

∆t

and for each k �= 0 (we set f̃k = 0 for k < −p and k > q) the relations

(19) f̃k(un
i−p, . . . , u

n
i+q, v

n
i−p, . . . , v

n
i+q)

� f̃k+1(un
i−p−1, . . . , u

n
i+q−1, v

n
i−p−1, . . . , v

n
i+q−1)

are valid, then the scheme (7) is monotone (and hence TVD).

This lemma (as well as its multidimensional variant) is proved for example in [6].
A similar lemma is valid also for multidimensional problems. Let us consider only

the two-dimensional case. Let the mesh steps be the same for both coordinates,
i.e.∆x = ∆y. The weak solution is approximated by a piecewise constant function

U(x, y, t) = un
i,j for (i − 1)∆x < x � i∆x, (j − 1)∆y < y � j∆y, and (n − 1)∆t <

t � n∆t. The functions f̃k and g̃k depend in a similar way as in the one-dimensional

problem on 2(p + q + 1) parameters un
i−p,j , . . . , u

n
i+q,j , vn

i−p,j , . . . , v
n
i+q,j for f̃k and

un
i,j−p, . . . , u

n
i,j+q , v

n
i,j−p, . . . , v

n
i,j+q for g̃k.

Lemma 3. Let there exist functions f̃k and g̃k of 2(p + q + 1) parameters such

that

f̃(un
i−p,j , . . . , u

n
i+q,j)− f̃(vn

i−p,j , . . . , v
n
i+q,j)(20)

=
q∑

k=−p

f̃k(un
i−p,j , . . . , v

n
i+q,j)(u

n
i+k,j − vn

i+k,j),

g̃(un
i,j−p, . . . , u

n
i,j+q)− g̃(vn

i,j−p,, . . . , v
n
i,j+q)(21)

=
q∑

k=−p

g̃k(un
i,j−p, . . . , v

n
i,j+q)(u

n
i,j+k − vn

i,j+k)

for each arbitrary u and v. If the functions f̃k and g̃k satisfy the conditions

(22) f̃0(u
n
i−p,j , . . . , v

n
i+q,j)− f̃1(u

n
i−p−1,j , . . . , v

n
i+q−1,j)

+ g̃0(un
i,j−p, . . . , v

n
i,j+q)− g̃1(un

i,j−p−1, . . . , v
n
i,j+q−1) �

∆x

∆t

and for each k �= 0 (we set f̃k = 0 and f̃k = 0 for k < −p and k > q)

(23) f̃k(un
i−p,j , . . . , v

n
i+q,j) � f̃k+1(un

i−p−1,j , . . . , v
n
i+q−1,j),

g̃k(u
n
i,j−p, . . . , v

n
i,j+q) � g̃k+1(u

n
i,j−p−1, . . . , v

n
i,j+q−1)
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then the scheme

(24) un+1
i,j = un

i,j −
∆t

∆x
(f̃n

i+ 12 ,j − f̃n
i− 1

2 ,j)−
∆t

∆y
(g̃n

i,j+ 12
− g̃n

i,j− 1
2
),

f̃n
i+ 12 ,j = f̃(un

i−p,j , u
n
i−p+1,j, . . . , u

n
i+q,j),

g̃n
i,j+ 12

= g̃(un
i,j−p, un

i,j−p+1, . . . , u
n
i,j+q)

is monotone (and hence TVD).

2.3. TVD schemes for hyperbolic systems. Let us consider a linear system

(25) Wt +AWx = 0.

The solution is now a vector-valued function W : �×�+ → �
m (m is the number of

equations) and A is an m×m constant matrix. The system (25) is called hyperbolic
if the matrix A has m real eigenvalues andm linearly independent right eigenvectors.

In that case, we can decompose the matrix A into

(26) A = RΛR−1

where R is the regular matrix composed of the eigenvectors of A and Λ =
diag(a(1), . . . , a(m)) is the diagonal matrix containing the eigenvalues of A.

Let us define a new set of variables by V = R−1W (we call it the characteristic
variables). Multiplying the original system (25) by R−1 one gets

(27) R−1Wt +R−1AWx = 0

and hence, using the characteristic variables,

(28) Vt + ΛVx = 0

which is a set of m independent scalar problems. For each component we can use the
TVD MacCormack scheme defined in the previous section. In order to get the TVD
MacCormack scheme for the original variables W , we multiply the scheme written

for the characteristic variables V by the matrix R. Finally, we get

W
n+ 12
i =Wn

i − ∆t

∆x
(AWn

i − AWn
i−1),(29)

Wn+1
i =

1
2

[
Wn

i +W
n+ 12
i − ∆t

∆x
(AW

n+ 12
i+1 − AW

n+ 12
i )

]
,(30)

Wn+1
i =Wn+1

i +R[G̃+(r̃+i ) + G̃−(r̃−i+1)]R
−1(Wn

i+1 − Wn
i )(31)

− R[G̃+(r̃+i−1) + G̃−(r̃−i )]R
−1(Wn

i − Wn
i−1).
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Here r̃±i are vectors with m components

(r̃+i )
(l) =

(
R−1(Wn

i − Wn
i−1)

)(l)
/

(
R−1(Wn

i+1 − Wn
i )

)(l)
,(32)

(r̃−i )
(l) =

(
R−1(Wn

i+1 − Wn
i )

)(l)
/

(
R−1(Wn

i − Wn
i−1)

)(l)
,(33)

where r(l) denotes the l-th component of the vector r.

The viscosity coefficients G̃ are m× m diagonal matrices with the elements given
by

(34) G̃±(r̃±i )
(l,l) =

1
2
|a(l)|∆t

∆x

(
1− |a(l)|∆t

∆x

)
[1− Φ((r̃±i )(l))].

In order to avoid the evaluation of eigenvectors of the Jacobian matrix A we use

the so called simplified TVD scheme proposed by D.M.Causon in [1] which is for
the case of the one-dimensional nonlinear system written as:

W
n+ 12
i =Wn

i − ∆t

∆x

(
F (Wn

i )− F (Wn
i−1)

)
,(35)

Wn+1
i =

1
2

[
Wn

i +W
n+ 12
i − ∆t

∆x
(F (W

n+ 12
i+1 )− F (W

n+ 12
i ))

]
,(36)

Wn+1
i =Wn+1

i +
[
G
+
(r+i ) +G

−
(r−i+1)

]
(Wn

i+1 − Wn
i )(37)

−
[
G
+
(r+i−1) +G

−
(r−i )

]
(Wn

i − Wn
i−1)

with G
±
and r± given by the formulas

(38) r+i =

〈
Wn

i − Wn
i−1, W

n
i+1 − Wn

i

〉〈
Wn

i+1 − Wn
i , Wn

i+1 − Wn
i

〉 , r−i =

〈
Wn

i − Wn
i−1, W

n
i+1 − Wn

i

〉〈
Wn

i − Wn
i−1, W

n
i − Wn

i−1
〉 ,

G
±
(r±i ) =

1
2
C(νi)

[
1− Φ(r±i )

]
, C(νi) =

{
νi(1− νi) for νi � 0.5
0.25 for νi > 0.5,

νi = �Ai

∆t

∆x
.

Here 〈·, ·〉 denotes the standard inner (scalar) product in �m and �Ai is the spectral
radius of the Jacobi matrix ∂F/∂W at the point Wi (for the case of the Euler

equations, �Ai = |ui| + ci where ui is the local flow speed and ci is the local sound
speed.

386



3. Implicit finite volume method for 2D inviscid flows

The numerical solution is again obtained by the finite volume approach: The

domain Ω is approximated by a polygonal domain Ωh and this polygonal domain is
divided into m polygonal convex cells3 Ci possess the following property:

Ωh =
m⋃

i=1

Ci and Ci ∩ Cj = ∅ for i �= j .

Figure 1 shows a sample of such a domain divided into 13 triangular, quadrilateral,

and pentagonal cells. Let mi denote the number of cells adjacent to Ci (i.e. number
of cells that share an edge with the cell Ci) and let the set Ni = {i1, i2, . . . , imi}
contain their indices (see Fig. 1 where mi = 5). Next, let us denote by Binleti the
set of edges shared by the cell Ci and the inlet boundary Γinleth of Ωh; similarly for

Boutleti and Bwalli .

i

i1

i2

i3

i4

i5 �Si1

�Si2

�Si3

�Si4

�Si5

Figure 1. Unstructured grid with mixed type of cells.

The basic finite volume scheme is obtained in the usual way: integrating the con-

servation law in a cell Ci, applying Green’s theorem and approximating the integral
over the boundary of Ci by the numerical flux functions. The scheme is then

(39) Wn+1
i =Wn

i −∆tR1(Wn)i.

HereWn
i stands for the approximation of the solution in the cell Ci at a time t = n∆t

and R1(Wn)i is the component of the residual vector computed as

(40) R1(Wn)i =
1

µ(Ci)

[ ∑
j∈Ni

H(Wn
i , Wn

j , �Si,j) +
∑

b

∑
e∈Bb

i

Hb(Wn
i , �Se)

]
.

3 Since the structured grid can be viewed from the mathematical point of view as a special
case of the unstructured grid, we present only the scheme for unstructured meshes.

387



The superscript 1 denotes the first order approximation, µ(Ci) is the volume of

the cell Ci, �Si,j denotes the outer normal vector to the common edge between Ci

and Cj , the function H is the numerical flux, b denotes the type of the boundary
conditions and belongs to the set b ∈ {inlet, outlet, wall}, Hb is the numerical flux

through the boundary and �Se denotes the outer normal vector to the boundary edge
e. Both vectors �Si,j and �Se have the length equal to the length of the corresponding

edge. The numerical flux H(Wn
i , Wn

j , �Si,j) in the previous formula is the numerical
approximation of the integral of the physical flux function over the common edge ei,j

shared between Ci and Cj :

(41) H(Wn
i , Wn

j , �Si,j) ≈
∫

ei,j




�u

�u2 + p

�uv

(e+ p)u

nx +


�v

�uv

�v2 + p

(e+ p)v

 ny

 dS
where nx and ny are the components of the unit normal vector to the edge ei,j

oriented as the outer normal for the cell Ci. Analogous, Hb(Wn
i , �Se) is the approxi-

mation of the flux through the edge on the boundary.

3.1. First order implicit scheme. As a building block for the implicit scheme
we choose the first order finite volume scheme based on Osher’s flux and the related
approximate Riemann solver (see [12]). The advantage of the Osher flux is that one

can evaluate simply the Jacobians of the numerical flux function which are needed
for the implicit scheme.

The usual explicit first order scheme is then

(42) Wn+1 =Wn −∆tR1(Wn)

and the implicit scheme is obtained from the explicit version (39) by replacing

R1(Wn) by R1(Wn+1):

(43) Wn+1
i =Wn

i −∆tR1(Wn+1)i.

The operator R is nonlinear, so we cannot solve this equation directly. Therefore we
linearize the equation at the point Wn:

(44) Wn+1 =Wn −∆t
(
R1(Wn) +

∂R1

∂W
(Wn+1 − Wn)

)
,

hence,

(45)
( I
∆t
+

∂R1

∂W

) (
Wn+1 − Wn

)
= −R1(Wn).
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The matrix ∂R1

∂W is evaluated at the point Wn using the expressions for the Jacobian

matrices of Osher’s flux functions ∂H(WL,WR,�S)
∂WL

and ∂H(WL,WR,�S)
∂WR

and the appropriate

Jacobian matrices of boundary fluxes.
The resulting system of linearized equations is solved using a GMRES method

preconditioned with the ILU decomposition.

3.2. Second order semi-implicit scheme. In order to improve the accuracy of
the basic first order scheme we use a piecewise linear reconstruction of the solution
(for details see [7]). The second order semi-implicit scheme uses the high order

residual R2 on the right hand side (explicit part) and the matrix on the left hand
side is computed from the low order residual:

(46)
( I
∆t
+

∂R1

∂W

)
(Wn+1 − Wn) = −R2(Wn).

The second order residual R2 is computed in the following way: we compute first

the approximation of the gradient of the solution gradWn in each cell4 and then
using this gradient we define the second order residual vector by

WL
i,j =Wn

i + (�xi,j − �xi) · gradWn
i , WR

i,j =Wn
j + (�xj,i − �xj) · gradWn

j ,(47)

R2(Wn)i =
1

µ(Ci)

[ ∑
j∈Ni

H(WL
i,j , W

R
i,j ,

�Si,j) +
∑

b

∑
e∈Bb

i

Hb(WL
i,j ,

�Se)
]
,

where �xi is the center of gravity of the cell i and �xi,j is the center of the common

edge between the cells i and j. The numerical fluxes H and Hb are computed in
the same way as for the first order scheme (i.e. using Osher’s Riemann solver) but
instead of Wi and Wj we use the interpolated values WR

i,j and WL
i,j .

4. 2D transonic inviscid flow through a channel and
a turbine cascade

4.1. Transonic flow through the 2D test channel with a bump. As a first
test case we choose the transonic flow through the two-dimensional test channel with
a bump, i.e. the so-called Ron-Ho-Ni channel. This is a well-known test case and it

was solved by many researchers. See for example [3], [4].
We use the structured mesh with 120× 30 quadrilateral cells for the MacCormack

scheme and an unstructured triangular mesh with 4424 triangles (with refinement
in the vicinity of the shock wave) for the implicit scheme. At the inlet (x = −1) we
4 The evaluation of the gradients is described in detail in [7].
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prescribe the stagnation pressure p0 = 1, the stagnation density �0 = 1 and the inlet

angle α1 = 0. At the outlet we keep the pressure p2 = 0.737. The upper (y = 1) and
lower part are solid walls.
Figure 2 (a) shows the distribution of the Mach number along the upper and the

lower wall after 30000 iterations of two above mentioned variants of the MacCormack
scheme with CFL = 0.5 while figure 2 (b) shows the results obtained by the implicit

scheme.
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(a) TVD MacCormack scheme (b) Implicit scheme

Figure 2. Distribution of the Mach number along the lower and upper walls for the 2D
channel.

We can see that the results obtained by the full TVD MacCormack scheme are
quite good. Causon’s simplified scheme uses too much artificial dissipation.

4.2. Transonic flow through the 2D turbine cascade SE 1050. Next we
solve the transonic flow through the 2D turbine cascade SE 1050 given by Škoda
Plzeň. Figure 3 shows the results of the interferometric measurement obtained for the

inlet Mach numberM1 = 0.395. One can see the characteristic structure of the shock
waves emitted from the outlet edge and the reflected shock waves. Moreover, one

can notice the recompression zone on the suction side of the blade. Our computation
was performed on a structured mesh with 200 × 40 quadrilateral cells for the full
TVD MacCormack scheme (see Fig. 4 (a)) and on an unstructured mesh with 7892
triangles for the implicit scheme (Fig. 4 (b)).

4.3. Laminar viscous flow through a 2D turbine cascade. Next we solve
the transonic viscous flow through the DCA 8% cascade. We consider the flow with
the non-dimensional viscosity µ = 10−4 which gives, for the inlet conditions p0 = 1,

�0 = 1, α1 = 20 and outlet pressure p2 = 0.48, the value of the Reynolds number
Re = 6450, inlet Mach number M1 = 0.76 and outlet Mach number M2 = 1.03.

We use a simple structured mesh with 90 × 50 quadrilateral cells refined in the
vicinity of profiles. Figure 5 shows the results obtained by an improved version of
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Figure 3. Interferometric measurement of SE 1050

(a) TVD MacCormack scheme, structured grid (b) Implicit scheme, unstructured grid

Figure 4. Distribution of the Mach number in a 2D turbine cascade

Causon’s scheme5 after 50000 and 50200 iterations. We can see that the solution is

non-stationary (see the changes in the shape of the wake). Let us mention that these
flow conditions (it means relatively low Reynolds number and high Mach number)

are not interesting for practical applications. We have done this computation in
order to show that the effects of artificial viscosity can be very important for a

viscous flow calculation. As a matter of fact, a similar case was formerly solved

5 The so called modified scheme which we published for example in [8].
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by M.Huněk and K.Kozel [5] using an implicit residual averaging method. Their

method gave stationary results whereas our computation leads to a non-stationary
solution. This is probably due to the fact, that the residual smoothing method uses
too much artificial viscosity.

(a) 50000 time steps (b) 50200 time steps

Figure 5. Isolines of Mach number for the non-stationary laminar transonic flow through
the DCA 8% cascade.

5. 3D transonic flow through a turbine cascade

The three-dimensional Causon’s scheme and its improved variant are used for the

computation of the transonic flow through the stator stage of the real 3D turbine
given by Škoda Plzeň company.

At the inlet we prescribe the stagnation pressure p0(r) = 0.38274, stagnation
density �0(r) = 1. The direction of the velocity at the inlet is given by two angles

α1(r) and µ1(r).
We use a structured mesh with 90× 24× 17 hexahedral cells.

(a) Hub (k = 1) (b) Middle (k = 9) (c) Tip (k = 18)

Figure 6. Distribution of Mach number for the sections k = const.

392



(a) Mach number distribution on the
pressure side of the blade

(b) Mach number distribution on the
suction side of the blade

Figure 7. Distribution of Mach number on the blade
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