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Abstract. We are interested in algorithms for constructing surfaces Γ of possibly small
measure that separate a given domain Ω into two regions of equal measure. Using the
integral formula for the total gradient variation, we show that such separators can be
constructed approximatively by means of sign changing eigenfunctions of the p-Laplacians,
p → 1, under homogeneous Neumann boundary conditions. These eigenfunctions turn out
to be limits of steepest descent methods applied to suitable norm quotients.
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1. Introduction

Let Ω ⊂ �
n , n � 1, be an open, bounded, connected Lipschitzian domain. We

denote by C10 , L
p, H1,p and (H1,p)′ = H−1,p′

, 1 � p � 2, p′ = p
p−1 , the usual spaces

of functions defined on Ω (cf. [13]); (·, ·) means the pairing between spaces and their
duals, ‖ · ‖p is the norm in Lp. Further, BV denotes the space of functions with

bounded variation on Ω [11] and∫
Ω
|Du| = sup

g

( ∫
Ω

u∇ · g dx
)
, g ∈ C10 (Ω,�n ), |g(x)| � 1, x ∈ Ω.

(Note that
∫
Ω |Du| = ‖∇u‖1, provided u ∈ H1,1.) Let finally

Vp =




{
u ∈ H1,p,

∫
Ω
|u|p−2u dx = 0

}
, if p > 1,

{
u ∈ BV,

∫
Ω
signu dx = 0

}
, if p = 1.

Based on a joint work with K. Gärtner [8]
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There is a practical interest [12] in algorithms for constructing surfaces Γ of pos-

sibly small measure |Γ| which separate Ω into two regions of equal measure, i.e., in
solving the minimum problem

(1) ϕ1(E) =
PΩ(E)
|E| → min, E ⊂ Ω, |E| = |Ω|

2
,

where PΩ(E) = |Γ| is the perimeter of E relative to Ω and |E| is the measure of E.
In this contribution we show how to solve the geometrical problem (1) by analytical

tools. Roughly speaking, we look for approximative solutions of the form E = {x ∈
Ω, u(x) > 0}, where u minimizes

(2) F1(u) =

∫
Ω |Du|
‖u‖1 → min, u ∈ V1.

The key idea for this approach is Federer’s observation (cf. [5]) that the infimum

of the functional

(3) ϕ(E) =
PΩ(E)

min(|E| 1p∗ , |Ω \ E| 1p∗ )
→ min, E ⊂ Ω, p∗ =

n

n − 1 ,

coincides with that of

(4) ϕ(u) =

∫
Ω |Du|

‖u − t0(u)‖p∗
→ min, u ∈ BV,

where the functional t0 is defined by

(5) t0(u) = sup{t, |Et| � |Ω \ Et|}, Et = {x ∈ Ω, u(x) > t}.

To specify the connection between (3) and (4) we quote some basic facts from [5],
[6]:

(i) Let u be locally integrable on Ω. Then

(6)
∫
Ω
|Du| =

∫ ∞

−∞
PΩ(Et) dt.

(ii) Let Ω ⊂ �
n be an open, bounded and connected Lipschitzian domain. Then Ω

satisfies a relative isoperimetric inequality, i.e., there exists a constantQ = Q(Ω)
such that

(7) min(|E| 1p∗ , |Ω− E| 1p∗ ) � QPΩ(E).
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(iii) Let Ω, Q be as in (ii) and let u be as in (i). Then

(8) ‖u − t0(u)‖p∗ � Q

∫
Ω
|Du|.

A special case of (i) is

(9)
∫
Ω
|DχE | = PΩ(E),

where χ is the characteristic function. Hence the map E → χE − χΩ\E directly
connects (1) and (2). The inverse direction may be indicated by the map u → Eu

with
Eu = {x ∈ Ω, u(x) > 0}.

The functional F1 still is unpleasant from the algorithmical point of view. Therefore

we shall approximate F1 by (apart from zero) differentiable functionals

(10) Fp(u) =
‖∇u‖p

p

‖u‖p
p

, 0 �= u ∈ Vp, p ∈ (1, 2].

The next section clarifies the relation between ϕ, ϕ1 and F1. In Section 3 we establish
convergence of minimizers of Fp, p → 1, to minimizers of F1. Section 4 is devoted to a
convergence result concerning a steepest descent method for Fp. Here each iteration
up,i has to be calculated as a (unique) solution of a nonlinear elliptic boundary

value problem under homogeneous Neumann conditions. It is shown that Fp(up,i)
for i → ∞ tends monotonically decreasing to Fp(up), where up is a sign changing

eigenfunction of the p-Laplacian.
Proofs of these results can be found in [8].

2. Relations between ϕ1 and F1

In this section we want to justify the transition from (1) to (2). We start with an
adaptation of inequality (8), which will be more convenient for our purposes.

Lemma 1. Let Q be the relative isoperimetric constant from (7). Then

(11)
‖u‖1 �

( |Ω|
2

) 1
n

Q

∫
Ω
|Du|, u ∈ V1,

‖u‖p � 2
p−1

p

( |Ω|
2

) 1
n

Q‖∇u‖p, u ∈ H1,p ∩ V1, p ∈
[
1, p∗ =

n

n − 1
]
.
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������ �� The inequality (11) specifies the constant in Poincaré’s inequality.

For p = 1, (11) is sharp. Indeed, suppose equality is attained in (7) for a set E

with |E| = |Ω|
2 , as for example in the case of convex domains Ω ⊂ �

2 (cf. [2]). Then
u = χE − χΩ\E ∈ V1 and

‖u‖1 = |Ω| = 2
( |Ω|
2

) 1
n
( |Ω|
2

) 1
p∗
= 2

( |Ω|
2

) 1
n

QPΩ(E) = 2
0
( |Ω|
2

) 1
n

Q

∫
Ω
|Du|.

For convex domains Ω another specification is well known [10]:

‖u‖p �
( |Ω|

ωn

) 1−n
n

dn‖∇u‖p, u ∈ H1,p,

∫
Ω

u dx = 0,

where ωn is the volume of the unit sphere in �n and d is the diameter of Ω.

The minimum problems (3) and (2) are equivalent in the following sense:

Proposition 1. A set E1 ⊂ Ω with |E1| = |Ω|
2 is a minimizer of ϕ if and only if

u1 = χE1 − χΩ\E1 ∈ V1 is a minimizer of F1.

������ �� Evidently, each minimizer E of ϕ with |E| = |Ω|
2 is a solution of the

minimum problem (1). For convex domains Ω ⊂ �
2 the existence of such minimizers

is proved in [2].

On the basis of the next result we will replace (1) by (2).

Theorem 1. (i) Let u1 ∈ V1 be a minimizer of F1 and let E1 = {x ∈ Ω,
u1(x) > 0}. Then

(12) ϕ1(E1) � ϕ1(E) for all E ⊂ Ω with |E| = |Ω|
2

.

(ii) Let in addition |{x ∈ Ω, u1(x) = 0}| = 0. Then E1 is a solution of (1).
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3. The functionals Fp and the limit p → 1

In this section we will justify the transition from the minimum problem (2) to the
regularized minimum problems

(13) Fp(u) =
‖∇u‖p

p

‖u‖p
p

→ min, 0 �= u ∈ Vp, p ∈ (1, 2].

������ 	� Since Fp is homogeneous, (13) is equivalent to

Gp(u) = ‖∇u‖p → min, u ∈ Vp, ‖u‖p = 1, p ∈ (1, 2].

Proposition 2. Let

d = inf
u∈Vp

Fp(u).

Then there exists a (minimizer) u ∈ Vp such that Fp(u) = d.

Minimizers of u ∈ H1,p satisfy necessarily the Euler Lagrange equations, i.e., the

nonlinear eigenvalue problem (cf. [4])

(14) Apu = Fp(u)Bpu,

where the operators Ap, Bp ∈ (H1,p)→ (H−1,p′
) are defined by

(15)
(Apu, h) = (|∇u|p−2∇u,∇h), ∀h ∈ H1,p,

(Bpu, h) = (bp(u), h), bp(u) = |u|p−2u.

������� (14), (15) can be seen as a weak formulation (comp. [9]) of the non-
linear eigenvalue problem

−∇ · (|∇u|p−2∇u) = Fp(u)|u|p−2u in Ω, ν · ∇u = 0 on ∂Ω,

where ν is the outer unit normal on ∂Ω.

The minimum problem (13) approximates (2) in the following sense:

Theorem 2. Let up ∈ H1,p, 1 < p � 2, be a minimizer for Fp in (13), such that

(16) ‖up‖p = 1.

Then
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(i) there exists a sequence pi → 1 and a function u ∈ BV such that

ui := upi → u in Lq, q ∈ (1, p∗), Fpi(ui)→ λ � F1(u);

(ii) u is a minimizer of F1;

(iii)

Biui ⇀ z in Lq, z ∈ Su,

∫
Ω

z dx = 0,

where S is the maximal monotone operator generated by the (multivalued)

function

Sign s =

{
sign s if s �= 0,
[−1, 1] if s = 0.

4. Steepest descent method

Due to Theorems 1, 2 the original minimum problem (1) is approximatively re-

duced to the construction of minimizers up of the functional Fp for suitable p near 1.
In this section we fix p ∈ (1, 2] and establish a steepest descent method for solving
iteratively the corresponding Euler Lagrange equations, i.e., the nonlinear eigenvalue
problems (14):

(17) Bpui + τApui = Bpui−1 + τFp(ui−1)Bpui, i = 1, 2, . . . , u0 ∈ Vp, u0 �= 0,

where τ is a relaxation parameter, which may be interpreted as a time step.

Theorem 3. Let τpFp(u0) < 1.

Then

(i) for each i (17) has a unique solution ui ∈ Vp;

(ii) the sequence (Fp(ui)) is decreasing, Fp(ui)→ λ > 0;

(iii) the sequence (‖ui‖p) is bounded, moreover,

‖u0‖p
p � ‖ui‖p

p � c : =
1

1− τpF (u0)
‖u0‖p

p, ‖Bpui − Bpui−1‖1 → 0;

(iv) there exist a subsequence (uij ) ⊂ (ui) and a function u ∈ Vp such that u is a

nontrivial solution of the nonlinear eigenvalue problem (14) and

uij → u in H1,p, Fp(u) = λ,

∫
Ω

Bpu dx = 0.
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Corollary 1. The nonlinear eigenvalue problem (14) has a solution up ∈ H1,p for

p ∈ (1, 2] such that
‖up‖p = 1,

∫
Ω
|up|p−2up dx = 0.

up is in H1,p the strong limit of the iteration sequence (up,i) defined by (17). More-

over,

Fp(up,i) ↓i→∞ Fp(up).
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