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PREDUALS OF SOBOLEV-CAMPANATO SPACES
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Abstract. We present definitions of Banach spaces predual to Campanato spaces and
Sobolev-Campanato spaces, respectively, and we announce some results on embeddings
and isomorphisms between these spaces. Detailed proofs will appear in our paper in Math.
Nachr.
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Introduction

When the treatment of second order elliptic boundary value problems in Sobolev
spaces started, the differential equations were usually written as

(1) ∀v ∈ C1c (Ω):
∫
Ω

N∑
i,j=1

aijDju Div + . . . =
∫
Ω

(
gv +

N∑
i=1

fiDiv
)
,

and requirements with respect to the right hand side of the form

g ∈ Lq/2(Ω), fi ∈ Lq(Ω), i = 1, . . . , N,

were made in order to have W 1,q-regularity of the solutions (see [4]). Later it be-
came clear that what is essential is not the representation of the right hand side of

the equation by means of g, f1, . . . , fN , but the fact that the right hand side is in
W−1,q(Ω) for some q.
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The treatment of boundary value problems in Morrey-Campanato spaces started

also with the formulation (1) but with different requirements with respect to
g, f1, . . . , fN . For example, if

(2) g ∈ L2,(λ−2)+(Ω), fi ∈ L2,λ(Ω), i = 1, . . . , N,

then Diu ∈ L2,λ(Ω), i = 1, . . . , n; here λ is a parameter and L2,λ(Ω) the corre-
sponding Campanato space (see [9]). The question what, in the context of Cam-
panato spaces, could be an appropriate substitute for the Sobolev spaces W−1,q(Ω)
was ignored for a long time. Some years ago Rakotoson introduced appropriate
spaces of functionals and showed how to use these spaces (denoted by W−1,p,µ(Ω) in

this paper) for local estimates of solutions to boundary value problems in Sobolev-
Campanato spaces (see [6], [7]). Griepentrog [2] in his thesis showed that the spaces
W−1,2,µ are useful also for global estimates of solutions to second order elliptic
boundary value problems (even in the case of mixed boundary conditions). Because
for Sobolev spaces one has

(3) W−k,p(Ω) := (W k,p′
0 (Ω))∗, p ∈ ]1,∞[,

it was natural to ask whether W−k,p,µ(Ω) could be characterized as the dual of
another suitably chosen Banach space.

The definition W−k,p(Ω) := (W k,p′
0 (Ω))∗ is usually motivated by the fact that for

p ∈ ]1,∞[ the Lebesgue space Lp(Ω) is the dual of Lp′
(Ω), i.e. of a space from the

scale of Lebesgue spaces itself. It is this relation that allows to interpret the scale
W−k,p(Ω), k ∈ �, as a continuation of the scale W k,p(Ω), k ∈ �+. Generally it is

not true that Campanato spaces are duals of other Campanato spaces. However, it
is well known (see [5]) that for each of the Hölder spaces C0,α(Ω) (which are part of

the scale of Campanato spaces) there exists a predual Banach space, i.e., a Banach
space the dual of which is C0,α(Ω).

In the present paper we want to announce results on Campanato spaces and
Sobolev-Campanato spaces which are proved in full detail in [3]. We are going to

show how for all Campanato spaces predual Banach spaces can be constructed. The
scale of these preduals can be interpreted in a natural way as a continuation of the

scale of Campanato spaces. More precisely, using the notation Lp,m,µ(Ω) instead of
Campanato’s notation L(p,λ)

k (Ω) (where m = k + 1, µ = λ/p, cf. [1]), we introduce

spaces Lp,m,−µ(Ω) such that

Lp,m,µ(Ω) = (Lp′,m,−µ(Ω))∗.
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Moreover, we are going to show that for Sobolev-Campanato spaces the situation is

analogous: We present spaces W−k,p,m,µ(Ω) and W k,p,m,−µ
0 (Ω) such that

W−k,p,m,µ(Ω) = (W k,p′,m,−µ
0 (Ω))∗.

Hence, the relation (3) has a counterpart in the theory of Sobolev-Campanato spaces.

In [3] a rather general scheme for the construction of predual spaces has been
developed which helps to understand why predual Banach spaces of Camapanato

spaces and Sobolev-Camapanato spaces exist. This general scheme will not be pre-
sented here. Instead of this we directly proceed to definitions of predual spaces for

Campanato spaces and Sobolev-Campanato spaces.

1. Campanato spaces

Throughout this section we assume that Ω is a fixed bounded open subset of �N

and that F is the family of all nonempty open subsets of Ω. The diameter of a set
U ∈ F (with respect to the usual Euclidean metric of �N ) will be denoted by dU .
Measurability, integrability and integrals will always be understood with respect

to the N -dimensional Lebesgue measure. If E is a measurable subset of �N , then
|E| denotes its measure. The letter p will always denote a number from ]1,∞[. For
a given p the dual exponent p′ is defined by 1p +

1
p′ = 1. The spaces Lp(U), U ∈ F ,

will be equipped with their standard norms, denoted by ‖ · ‖p,U or simply ‖ · ‖p.

We define �m, m ∈ �, as the space of polynomials of degree less than m with
respect to the coordinates of the argument x ∈ �N . For m � 0 we define �m := {0}.
Definition 1.1. Let µ ∈ [0, m+ N

p ]. We introduce

Lp,m,µ(Ω) := {u ∈ Lp(Ω); ‖u‖p,m,µ < ∞},

where
‖u‖p,m,µ := max{‖u‖p, sup

U∈F
d−µ

U inf
w∈�m

‖u − w‖p,U}.

Obviously, ‖ · ‖p,m,µ is a norm on Lp,m,µ(Ω), and the space (Lp,m,µ(Ω), ‖ · ‖p,m,µ)
is complete. Moreover, it is easy to check that Cm

c (Ω) (the space of functions on Ω

with compact support having continuous derivatives up to the order m) is contained
in Lp,m,µ(Ω). Hence Lp,m,µ(Ω) is dense in Lp(Ω).

Definition 1.2. Let v ∈ Lp(Ω) and µ ∈ [0, m+ N
p′ ]. We put

‖v‖p,m,−µ := inf
{
‖v0‖p +

∑
U∈G

dµ
U‖vU‖p; v = v0 +

∑
U∈G

vU , v0, vU ∈ Lp(Ω),

∫
Ω

vUw = 0 for all w ∈ �m, supp vU ⊂ U, G ⊂ F finite
}
.
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Lemma 1.3. If µ ∈ [0, m+ N
p′ ], then ‖ · ‖p,m,−µ is a norm on Lp(Ω).

�����. 1. It is easy to check that ‖ · ‖p,m,−µ is a seminorm on Lp(Ω).

2. Let v ∈ Lp(Ω) and ‖v‖p,m,−µ = 0. If

v = v0 +
∑
U∈G

vU , v0, vU ∈ Lp(Ω),
∫
Ω

vUw = 0 for all w ∈ �m,

supp vU ⊂ U, G ⊂ F finite,

then, for every u ∈ Lp′,m,µ(Ω) and arbitrarily chosen wU ∈ �m, U ∈ G,
∣∣∣
∫
Ω

uv
∣∣∣ �

∣∣∣
∫
Ω

uv0

∣∣∣+ ∑
U∈G

∣∣∣
∫
Ω
(u − wU )vU

∣∣∣ � ‖u‖p′‖v0‖p +
∑
U∈G

‖u − wU‖p′,U‖vU‖p.

Because of the arbitrariness of wU we find that

∣∣∣
∫
Ω

uv
∣∣∣ � ‖u‖p′,m,µ

(
‖v0‖p +

∑
U∈G

dµ
U‖vU‖p

)
.

In view of the arbitrariness of the representation v = v0+
∑

U∈G
vU and ‖v‖p,m,−µ = 0

we get
∫
Ω uv = 0 for every u ∈ Lp′,m,µ(Ω). Since Lp′,m,µ(Ω) is dense in Lp′

(Ω) this

implies that v = 0. Hence ‖ · ‖p,m,−µ is a norm. �

Definition 1.4. Let µ ∈ [0, m + N
p′ ]. By Lp,m,−µ(Ω) we denote the completion

of the space (Lp(Ω), ‖ · ‖p,m,−µ). The norm ‖ · ‖p,m,−µ is extended to Lp,m,−µ(Ω) by
continuity.

Theorem 1.5. For µ ∈ [0, m+ N
p′ ] we have (Lp,m,−µ(Ω))∗ = Lp′,m,µ(Ω).

A proof of this theorem is given in [3]. There it is shown that Theorem 1.5 can be
regarded as a special case of a rather general duality result for spaces constructed

by means of projective and inductive systems of Banach spaces.

������ 1.6. It is easy to check that ‖u‖Lp,m,µ(Ω), µ ∈ [0, m+ N
p ], is equivalent

to the norm

(1.1) max{‖u‖p, sup
r>0, x∈Ω

inf
w∈�m

r−µ‖u − w‖p,Br(x)∩Ω}.

(As usual, Br(x) denotes the open ball of radius r centered at x.) Another equivalent

norm is obtained by replacing Br(x) in (1.1) by the cube of side length r centered
at x with edges parallel to the coordinate axes in �N .
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������ 1.7. Lp,m,µ(Ω), 1 < p < ∞, m ∈ �+, µ ∈ [0, m+ N
p ], is the well known

scale of Campanato spaces. We changed, however, the notation of these spaces and
replaced the original norms by equivalent norms (cf. [1]). Our notation also differs
from that adopted by Triebel [8]. Our notation allows to express the duality result

of Theorem 1.5 in a very simple way. This result would look more complicated
with Campanato’s or Triebel’s notation. The change of norms compared to those

in [1] allows a simpler description of the predual spaces Lp′,m,−µ(Ω). The original
Campanato norm differs only slightly from the norm (1.1).

������ 1.8. Our notation suggests that all the spaces defined above should be
considered members of one scale of spaces. This point of view will be justified, for

example, by the next theorem. Since both Lp,m,0(Ω) and Lp,m,−0(Ω) coincide with
Lp(Ω) (including the norm), our notation does not cause problems for µ = 0.

Theorem 1.9. Let 1 � q � p � ∞, λ := N
q − N

p and −m − N
q′ � ν � λ + µ �

m + N
q . Moreover, let ωN denote the measure of the unit ball in �N . Then the

following holds:

(i) If µ � 0 then Lp,m,µ(Ω) ↪→ Lq,m,ν(Ω), and the norm of the corresponding

imbedding operator does not exceed ω
λ/N
N dλ

Ω.

(ii) If µ < 0 then Lp(Ω) ↪→ Lq,m,ν(Ω). The imbedding of Lp(Ω) into Lq,m,ν(Ω) can

be extended uniquely to a continuous (linear) mapping from Lp,m,µ(Ω) into Lq,m,ν(Ω)
the norm of which does not exceed ω

λ/N
N dλ

Ω.

In [3] it is shown that this theorem can be derived easily from the fact that

‖u‖q,U � |U | 1q − 1
p ‖u‖p,U � ω

λ/N
N dλ

U‖u‖p,U for u ∈ Lq(U), U ∈ F .

������ 1.10. For ν � 0 part (i) of the theorem had been proved already by
Campanato [1]. Note that the extended operator in part (ii) of the theorem is not

necessarily injective.

To state the next result we need the following definition.

Definition 1.11. A bounded set Ω in �N is said to be of type A, A > 0, if for
every x ∈ Ω and every r ∈ ]0, dΩ] we have |Ω ∩ Br(x)| � ArN .

Theorem 1.12. Let Ω be a bounded domain of type A > 0. Then the spaces
Lp,m,µ(Ω) and Lp,n,µ(Ω) coincide as linear topological spaces, provided n < m and

−n − N
p′ < µ < n+ N

p .

�����. 1. For µ � 0 the assertion has been proved by Campanato [1].
2. Let µ < 0. Then Lp′,m,−µ(Ω) and Lp′,n,−µ(Ω) coincide as topological linear

spaces. Hence Theorem 1.5 allows to regard Lp,m,µ(Ω) and Lp,n,µ(Ω) as closed
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subspaces of the dual to Lp′,m,−µ(Ω). Because Lp(Ω) is dense in Lp,m,µ(Ω) as well

as in Lp,n,µ these spaces must be equal as topological linear spaces. �

2. Sobolev-Campanato spaces

As in the preceding section we assume that an open bounded set Ω ⊂ �
N is fixed

and that F is the family of all nonempty open subsets of Ω. Throughout this section
k and m denote numbers from �+, and p means again a number from ]1,∞[. We are
going to define spaces of functions with derivatives in Campanato spaces.

The spaces W k,p(U), U ∈ F , are the usual Sobolev spaces equipped with their
standard norms, denoted by ‖ · ‖k,p,U or shortly ‖ · ‖k,p. We define W k,p

0 (U) as the

closure of the set {u ∈ W k,p(U); suppu ⊂ U} in W k,p(U), and W−k,p′
(U) as the

dual of W k,p
0 (U). For k = 0 this means that we identify (Lp(U))∗ and Lp′

(U).

Definition 2.1. Let µ ∈ [0, m+ N
p ]. We define

W k,p,m,µ(Ω) := {u ∈ W k,p(Ω); ‖u‖k,p,m,µ < ∞},

where

‖u‖k,p,m,µ := max{‖u‖k,p, sup
U∈F

d−µ
U inf

w∈�m+k

‖u − w‖k,p,U}.

Obviously, ‖ · ‖k,p,m,µ is a norm on W k,p,m,µ(Ω), and the space (W k,p,m,µ(Ω),

‖ · ‖k,p,m,µ) is complete.

Definition 2.2. Let v ∈ W k,p
0 (Ω) and µ ∈ [0, m+ N

p′ ]. We put

‖v‖k,p,m,−µ := inf
{
‖v0‖k,p +

∑
U∈G

dµ
U‖vU‖k,p; v = v0 +

∑
U∈G

vU , v0, vU ∈ W k,p
0 (Ω),

∫
Ω

vUw = 0 for all w ∈ �m−k, supp vU ⊂ U, G ⊂ F finite
}
.

Using Lemma 1.3 it is easy to check that ‖ · ‖k,p,m,−µ is a norm on W k,p
0 (Ω).

Definition 2.3. Let µ ∈ [0, m + N
p′ ]. By W k,p,m,−µ

0 (Ω) we denote the com-

pletion of the space (W k,p
0 (Ω), ‖ · ‖k,p,m,−µ). The norm ‖ · ‖k,p,m,−µ is extended to

W k,p,m,−µ
0 (Ω) by continuity.

Theorem 2.4. Let Ω be a bounded Lipschitz domain, and let µ ∈ [0, m + N
p ].

Then

(2.1) W k,p,m,µ(Ω) = {u ∈ Lp(Ω); Dαu ∈ Lp,m+k−|α|,µ(Ω), |α| � k}

and the norm ‖ · ‖W k,p,m,µ(Ω) is equivalent to
∑

|α|�k

‖Dαu‖Lp,m+k−|α|,µ(Ω).
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The result (2.1) is not at all obvious. It is proved in [3] (even under a slightly

weaker assumption with respect to Ω). Of course one could also use the relation
(2.1) as an alternative definition of W k,p,m,µ(Ω).

Definition 2.5. For µ ∈ [0, m+ N
p ] we define

W−k,p,m,µ(Ω) := {f ∈ W−k,p(Ω); ‖f‖−k,p,m,µ < ∞},

where

‖f‖−k,p,m,µ = max{‖f‖−k,p,Ω, sup
U∈F

d−µ
U inf

w∈�m−k

‖f − w‖−k,p,U}.

Obviously, ‖ · ‖−k,p,m,µ is a norm on W−k,p,m,µ(Ω), and (W−k,p,m,µ(Ω),

‖ · ‖−k,p,m,µ) is complete.

Definition 2.6. Let µ ∈ [0, N
p′ ]. For f ∈ (W k,p′

(Ω))∗ we put

‖f‖∗−k,p,m,−µ := inf
{
‖f0‖(W k,p′(Ω))∗ +

∑
U∈G

dµ
U‖fU‖(W k,p′ (Ω))∗ ; f = f0 +

∑
U∈G

fU ,

f0, fU ∈ (W k,p′
(Ω))∗, 〈fU , w〉 = 0 for w ∈ �m+k, supp fU ⊂ U, G ⊂ F finite

}
.

Arguing as in the proof of Lemma 1.3 one can show that ‖ · ‖∗−k,p,m,−µ is a norm

on (W k,p′
(Ω))∗ provided that W k,p′,m,µ(Ω) is dense in W k,p′

(Ω). This is the case if
Ω is a bounded Lipschitzian domain, because in that case the set of restrictions of

functions from C∞(�N ) to Ω is dense in W k,p′
(Ω).

Definition 2.7. Let Ω be a bounded Lipschitz domain, and let µ ∈ [0, m+N
p′ ]. By

W−k,p,m,−µ
∗ (Ω) we denote the completion of the space ((W k,p′

(Ω))∗, ‖ · ‖∗−k,p,m,−µ).
The norm ‖ · ‖∗−k,p,m,−µ is extended to W k,p,m,−µ

∗ (Ω) by continuity.

Ifm = 0, then this number is often omitted in the notation of the spaces introduced

above. For example, the space W−1,2,µ(Ω) mentioned in the introduction is nothing
but W−1,2,0,µ(Ω).

Theorem 2.8. For µ ∈ [0, m+ N
p ] we have

W−k,p,m,µ(Ω) = (W k,p′,m,−µ
0 (Ω))∗ and W k,p,m,µ(Ω) = (W−k,p′,m,−µ

∗ (Ω))∗.

For the second assertion it is assumed that Ω is a bounded Lipschitz domain.

This theorem is a special case of a general duality result proved in [3]. It includes
Theorem 1.5 (first assertion for k = 0).
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������ 2.9. By means of Theorem 2.8 it is easy to prove the following result:

If fα ∈ Lp,m−k+|α|,µ(Ω), |α| � k, and

〈f, v〉 :=
∑
|α|�k

〈fα, Dαv〉 for v ∈ W k,p′
0 (Ω),

then f ∈ W−k,p,m,µ(Ω).

������ 2.10. By the Poincaré Inequality

‖u‖2 � cNdU‖u‖1,2 for all u ∈ W 1,2
0 (Ω) such that suppu ⊂ U, U ∈ F .

Thus, W 1,2
0 (Ω) ↪→ L2,1(Ω) ↪→ L2,1−µ, 0 � µ � 1. This implies that for

g ∈ L2,µ−1(Ω) ↪→ (L2,1−µ(Ω))∗, 0 � µ � 1,

the mapping

u 
−→ 〈g, u〉 , u ∈ W 1,2
0 (Ω),

is well defined and can be extended uniquely to an element f ∈ W−1,2,µ(Ω). This
fact can be used to show that in (2) the requirement g ∈ L2,(λ−2)+(Ω) can be replaced
by the weaker and more naturally looking requirement g ∈ L2,λ−2(Ω) := L2,

λ
2−1(Ω).
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