
126 (2001) MATHEMATICA BOHEMICA No. 2, 505–519

INITIAL-BOUNDARY VALUE PROBLEM FOR GENERALIZED

STOKES EQUATIONS

V. A. Solonnikov, St. Peterburg

Dedicated to Prof. J.Nečas on the occasion of his 70th birthday

Abstract. The paper is concerned with the solvability theory of the generalized Stokes
equations arising in the study of the motion of non-Newtonian fluids.

Keywords: Stokes system, non-Newtonian fluids, Schauder estimates

MSC 2000 : 35Q30, 76D03

1. Introduction

We consider the initial-boundary value problem

�vt +A
(
x, t,

∂

∂x

)
�v +∇p = �f(x, t), ∇ · �v = 0, x ∈ Ω ⊂ �

3 , t ∈ (0, T ),(1.1)

�v(x, 0) = �v0(x), �v(x, t)
∣∣
x∈∂Ω

= 0(1.2)

where unknown are a vector field �v(x, t) = (v1(x, t), v2(x, t), v3(x, t)) and a function
p(x, t). By A we mean a matrix-formed differential second order elliptic operator with
real coefficients and by A0 we mean its principal part, i.e. the sum of all terms in A
containing derivatives of the second order. We assume that the matrix A0(x, t, iξ)
is positive definite for arbitrary ξ ∈ �

3 and arbitrary fixed x ∈ Ω, t ∈ [0, T ]. The
domain Ω is bounded.
When A = −∇2I, then (1.1) is the well known Stokes system.
Our main result is the following existence theorem for the problem (1.1), (1.2).

Theorem 1. Assume that ∂Ω ∈ C2+α, α ∈ (0, 1), that the coefficients of A
belong to Cα,α/2(Ω × (0, T )), T > 0, and that the leading coefficients satisfy the
Hölder condition with respect to t with an exponent α1/2, α1 > α, and belong to
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W 1
q (Ω), q > 3, for all t ∈ [0, T ]. Let the data �f(x, t), �v0(x) possess the following
properties:
1. �f ∈ Cα,α/2(Ω× (0, T )), ∇ · �f = 0 (in the weak sense), �f · �n|x∈∂Ω = 0 (�n is the

unit interior normal to ∂Ω),
2. �v0 ∈ C2+α(Ω), ∇ · �v0 = 0,
3. the following compatibility conditions are satisfied:

�v0(x)
∣∣
x∈∂Ω

= 0, A
(
x, 0,

∂

∂x

)
�v0(x) +∇p0(x)− �f(x, 0)

∣∣
x∈∂Ω

= 0,

where p0 is a solution of the Neumann problem

∇2p0(x) = −∇ ·A
(
x, 0,

∂

∂x

)
�v0(x), x ∈ Ω,

∂p0
∂n

∣∣
x∈∂Ω

= −�n · A
(
x, 0,

∂

∂x

)
�v0(x)

∣∣
x∈∂Ω

.

Then the problem (1.1), (1.2) has a unique solution �v ∈ C2+α,1+α/2(Ω × (0, T )),
∇p ∈ Cα,α/2(Ω× (0, T )), and the solution satisfies the inequality

(1.3)
|�v|C2+α,1+α/2(Ω×(0,T )) + |∇p|Cα,α/2(Ω×(0,T ))

� c(|�f |Cα,α/2(Ω×(0,T )) + |�v0|C2+α(Ω)).

A similar theorem holds in the two-dimensional case.
We recall the definition of the norms in Cl(Ω) and in Cl,l/2(Ω × (0, T )) (l =

[l] + λ, λ ∈ (0, 1)):

|u|Cl(Ω) = [u]
(l)
Ω +

∑
|j|<l

sup
Ω

|Dju(x)|, [u](l)Ω =
∑

|j|=[l]
sup

x,y∈Ω

|Dj
xu(x)−Dj

yu(y)|
|x− y|l−[l] ,

|u|Cl,l/2(Ω×(0,T )) =
∑

|j|+2k<l

sup
Ω×(0,T )

|Dk
tD

j
xu(x, t)|+ [u](l,l/2)Ω×(0,T ),

[u](l,l/2)Ω×(0,T ) = sup
t<T
[u(·, t)](l)Ω + sup

Ω
[u(x, ·)](l/2)(0,T ).

It is known that if u ∈ Cl,l/2(Ω × (0, T )), then Dj
xD

k
t u ∈ Cr,r/2(Ω × (0, T )), r =

l − |j| − 2k, provided that r > 0.
Theorem 1 can be used for the study of differentiability properties of solutions of

nonlinear equations

(1.4) �vt + (�v · ∇)�v −∇P(S(�v)) +∇p = �f, ∇ · �v = 0,

where the tensor P is a nonlinear function of the rate-of-strain tensor S(�v) =
∇�v + (∇�v)T (see [3–6]). In particular, one of its consequences is the local existence
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theorem for the Cauchy-Dirichlet problem (1.4), (1.2) (under appropriate assump-
tions concerning P).
For the Stokes system Theorem 1 is proved in [7–9]. The proof is based on the

analysis of the Cauchy and Cauchy-Dirichlet problems for the system with constant
coefficients containing only the highest order terms. This analysis is sketched in
Sections 2 and 3. Section 4 contains some comments on the Schauder procedure for
the problem (1.1), (1.2).
The work was done at the Center of Mathematics and Fundamental Applications

of the University of Lisbon and at the Max Planck Institute for Mathematics in
Natural Sciences. The author is thankful to both these institutions for hospitality.

2. Cauchy problem and fundamental solution for model equations

The solution of the Cauchy problem

�vt +A0
( ∂

∂x

)
�v +∇p = �f(x, t), ∇ · �v = 0, x ∈ �

3 , t > 0,(2.1)

�v(x, 0) = �v0(x)(2.2)

can be expressed as the sum of potentials

(2.3)

vk(x, t) =
3∑

m=1

∫ t

0

∫
�3

Tkm(x− y, t− τ)fm(y, τ) dy dτ

+
3∑

m=1

∫
�3

Tkm(x− y, t)v0m(y) dy,

p(x, t) =
3∑

m=1

∂

∂xm

∫
�3

E(x− y)fm(y, t) dy

+
3∑

m=1

∫ t

0

∫
�3

T ′
4m(x− y, t− τ)fm(y, τ) dy dτ

+
3∑

m=1

∫
�3

T ′
4m(x− y, t)v0m(y) dy

where Tkm(x, t) are elements of the fundamental matrix of solutions of the system
(2.1) and E(x) = −(4�|x|)−1 is a fundamental solution of the Laplace equation. The
fundamental matrix is defined in a standard way. Let us write (2.1) in the form

L
( ∂

∂x
,
∂

∂t

)
V = F
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where V = (�v, p), F = (�f, 0) and L is 4 × 4 matrix differential operator whose
characteristic matrix is given by

L(iξ, s) =



s+ a11(iξ) a12(iξ) a13(iξ) iξ1
a21(iξ) s+ a22(iξ) a23(iξ) iξ2
a31(iξ) a32(iξ) s+ a33(iξ) iξ3
iξ1 iξ2 iξ3 0


 ,

where akm are elements of A0(iξ). It is easy to see that

detL(iξ, s) ≡ L(iξ, s) = s2|ξ|2 + s(|ξ|2SpA0(iξ)− ξ · A0(iξ)ξ)) + ξ · Â(iξ)ξ,

where SpA0 = a11 + a22 + a33 and Â = A−1
0 detA0 is the adjugate matrix of A0.

The roots of the polynomial L(iξ, s) with respect to s have negative real parts for
arbitrary ξ ∈ �

3 \ {0}:
Re sk � −δ|ξ|2, δ > 0,

and
|L(iξ, s)| > c|ξ|2(|s|+ |ξ|2)2,

if ξ ∈ �
3 \ {0} and

(2.4) Re s > −κ|Im s| − δ|ξ|2

with a small κ > 0.
The fundamental matrix is defined by

Tkm(x, t) = (FL)
−1 L̂km(iξ, s)

L(iξ, s)

where FL means the Fourier-Laplace transform (Fourier with respect to x, Laplace
with respect to time), and (FL)−1 stands for the inverse transformation. L̂km are
elements of the adjugate matrix L̂ = LL−1.
If k,m = 1, 2, 3, then Tkm(x, t) satisfy the inequalities

(2.5) |Dj
xTkm(x, t)| � c(|j|)(|x|2 + t)−(3+|j|)/2, ∀t > 0,

and Tkm(x, t) = 0 for t < 0. T4m(x, t) contain the Dirac δ-function δ(t), namely,

(2.6)
T4m(x, t) = δ(t)

∂

∂xm
E(x) + T ′

4m(x, t),

|Dj
xT

′
4m(x, t)| � c(|j|)(|x|2 + t)−(4+|j|)/2, ∀t > 0,
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and T ′
4m(x, t) = 0 for t < 0.

It follows from (2.5), (2.6) that the solution of the problem (2.1), (2.2) satisfies
the inequality

(2.7)

sup
t<T
[�vt(·, t)](α)�3 + sup

t<T
[�v(·, t)](2+α)

�3
+ sup

t<T
[p(·, t)](1+α)

�3

� c(sup
t<T
[�f(·, t)](α)

�3
+ [�v0]

(2+α)
�3

),

and if ∇ · �f = 0, then

(2.8) [�v](2+α,1+α/2)
�3×(0,T ) + [∇p](α,α/2)

�3×(0,T ) � c([�f ](α,α/2)
�3×(0,T ) + [�v0]

(2+α)
�3

).

The number T > 0 is arbitrary, and the constants in (2.7), (2.8) are independent of
T .
These results are obtained in [11].

3. Model problem in the half space

Let us consider the problem

�vt +A0
( ∂

∂x

)
�v +∇p = 0, ∇ · �v = 0, x ∈ �

3
+ , t > 0,(3.1)

�v(x, 0) = 0, �v
∣∣
x3=0

= �b(x′, t)(3.2)

in the half space �3+ = {x3 > 0}.

Theorem 2. For arbitrary smooth �b(x′, t), x′ = (x1, x2), decaying at infinity
sufficiently rapidly and satisfying the conditions �b(x, 0) = �bt(x, 0) = 0,

(3.3) b3t(x′t) = ∇′ · �B′(x′, t) ≡ ∂B1(x′, t)
∂x1

+
∂B2(x′, t)

∂x2
, �B′(x′, 0) = 0,

the problem (3.1), (3.2) has a unique solution �v ∈ C2+α,1+α/2(�3+ × (0, T )), ∇p ∈
Cα,α/2(�3+ × (0, T )), ∀T > 0, and this solution satisfies the inequality

(3.4)
[�v](2+α,1+α/2)
�3+×(0,T )

+ [∇p](α,α/2)
�3+×(0,T )

� c([�b′](2+α,1+α/2)
�2×(0,T ) + sup

t<T
[b3(·, t)](2+α)

�2
+ [ �B′](1+α,(1+α)/2)

�2×(0,T ) ).

The proof of this theorem which is the central point of the analysis of the problem
(1.1), (1.2) proceeds in several steps. First of all, we perform the Fourier transform
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with respect to x′ (which we denote by the symbol F ′) and the Laplace transform
with respect to t and reduce the problem (3.1), (3.2) to the boundary value problem
for the system of ordinary differential equations:

s�̂v + Â�̂v + ∇̂p̂ = 0, ∇̂ · �̂v = 0, x3 > 0,

�̂v(x3), p̂(x3)→ 0, x3 → ∞, �̂v
∣∣
x3=0

= �̂b

where û = F ′Lu, ∇̂ = (iξ1, iξ2, d
dx3
), Â = A0(iξ′, d

dx3
). It can be shown that this

problem is uniquely solvable for arbitrary ξ′ ∈ �
2 \{0} and arbitrary s ∈ � satisfying

the condition

(3.5) Res+ κ|Ims| � −δ1|ξ′|2

with small κ, δ1 > 0. We look for a solution in the form

v̂k(x3) =
1
2�

3∑
m=1

∫ ∞

−∞

L̂km(iξ′, iξ3, s)
L(iξ′, iξ3, s)

eix3ξ3 dξ3 ĥm, k = 1, 2, 3,(3.6)

p̂(x3) =
1
2�

3∑
m=1

∫ ∞

−∞

L̂4m(iξ′, iξ3, s)
L(iξ′, iξ3, s)

eix3ξ3 dξ3 ĥm.(3.7)

Boundary conditions �̂v|x3=0 = �̂b lead to a linear algebraic system

(3.8) U
�̂
h = �̂b

where U is 3× 3 matrix with the elements

Ukm =
1
2�

∫ ∞

−∞

L̂km(iξ′, iξ3, s)
L(iξ′, iξ3, s)

dξ3, k,m = 1, 2, 3.

Proposition 3.1. If ξ′ ∈ �
2 \ {0} and s ∈ � satisfy the condition (3.5), then

the system (3.8) is uniquely solvable. The elements Ukm, k +m < 6, of the inverse
matrix U−1 are representable in the form

Ukm(ξ′, s) = ukm(ξ′, s) + vkm(ξ′, s)

where ukm and vkm possess the following properties:
(i) ukm(ξ′, s) are analytic functions with respect to s and to the first two arguments

which can take complex values ζj = ξj + ηj , j = 1, 2, provided that condition (3.5)
is satisfied and

(3.9) |η| � δ2(|ξ′|2 + |s|)1/2

with a certain small δ2 > 0,
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(ii) ukm(ξ′, s) are homogeneous functions of the first order:

ukm(λξ′, λ2s) = λukm(ξ′, s), ∀λ > 0,

and they satisfy the inequality

(3.10) |ukm(ζ′, s)| � c(|s|+ |ξ′|2)1/2

in the domain (3.5), (3.9),

(iii) uk3(ξ′, s) = u3k(ξ′, s) = 0, k = 1, 2,

(iv) vkm(ξ′, s) are linear combinations of the functions

ξβξγ
|ξ′| wβγ(ξ′, s), β, γ = 1, 2,

where wβγ(ζ′, s) ≡ wkm
βγ are analytic with respect to s, ζ1, ζ2 if s ∈ C satisfies the

condition (3.5) and

(3.11) |η| � δ2|ξ′|,

(v) wβγ(ζ′, s) are homogeneous of order zero: wβγ(λξ′, λ2s) = wβγ(ξ′, s) and

|wβγ(ξ′, s)| � c

in the domain (3.5), (3.11);

finally,

U33(ξ′, s) =
1
|ξ′| (u

33(ξ′, s) + v33(ξ′, s))

where u33(ξ′, s), v33(ξ′, s) possess the same properties as ukm(ξ′, s), vkm(ξ′, s),
k,m = 1, 2, but u33 are homogeneous functions of the second order, w33βγ are ho-
mogeneous of the first order, and

|u33(ζ′, s)| � c(|s|+ |ξ′|2),
|w33βγ(ζ

′, s)| � c(|s|+ |ξ′|2)1/2,

in the domains (3.5), (3.9) and (3.5), (3.11), respectively.

We cannot give the proof of this proposition because of the lack of space.
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Formulas (3.6), (3.7) are equivalent to the representation of (�v, p) in the form of
the simple layer potential

vk(x, t) =
3∑

m=1

∫ t

0

∫
�2

Tkm(x′ − y′, x3, t− τ)hm(y′, τ) dy′ dτ, k = 1, 2, 3,

p(x, t) =
∫
�2

∇E(x′ − y′, x3) · �h(y′, t) dy′

+
3∑

m=1

∫ t

0

∫
�2

T ′
4m(x

′ − y′, x3, t− τ)hm(y′, τ) dy′ dτ,

for which the following proposition can be proved.

Proposition 3.2. The estimate

(3.12)

sup
t<T
[�vt(·, t)](α)�3+ + supt<T

[�v(·, t)](2+α)
�
3
+
+ sup

t<T
[p(·, t)](1+α)

�
3
+

� c

2∑
j=1

(
[hj ]

(1+α,(1+α)/2)
�2×(0,T ) +

[∂h3
∂xj

](α,α/2)

�2×(0,T )

)

holds with a constant independent of T .

For ĥk we have the formula

ĥk =
3∑

m=1

Ukm(ξ′, s)b̂m, k = 1, 2, 3,

and, as a consequence,

ĥβ =
2∑

γ=1

(uβγ + vβγ

r2
r2b̂γ +

vβ3

r2
iξγD̂γ

)
, β = 1, 2,

iξβ ĥ3 =
2∑

γ=1

( iξβ
|ξ′|

v3γ

r2
r2b̂γ − ξβξγ

|ξ′|
u33 + v33

r3
rD̂γ

)

where r =
√
s+ |ξ′|2, D̂γ = B̂γ − iξγ b̂3 (we have used the condition (3.3): sb̂3 =

iξ1B̂1 + iξ2B̂2). Making the inverse Fourier-Laplace transformation we represent
h1, h2, h3xβ

in the form of sums of potentials with the kernels

Pβγ(x′, t) = (F ′L)−1
uβγ

r2
,

Qkm(x′, t) = (F ′L)−1
vkm

r2
, k +m < 6

∂

∂xγ
Rβ(x

′, t) = (F ′L)−1
ξβξγ

|ξ′|
u33 + v33

r3
.
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We show that

|Dk
tD

j
xPβγ(x′, t)| � ct−3/2−|j|/2−ke−b|x′|2/t,

|Dj
xQkm(x′, t)|+ |Dj

xRβ(x′, t)| � ct−1/2(|x′|2 + t)−1−|j|/2,

|DtD
j
xQkm(x′, t)|+ |DtD

j
xRβ(x′, t)| � ct−3/2(|x′|2 + t)−1−|j|/2, ∀t > 0,

which makes it possible to obtain the inequality

2∑
j=1

(
[hj ]

(1+α,(1+α)/2)
�2×(0,T ) +

[∂h3
∂xj

](α,α/2)

�2×(0,T )

)

� c([�b′](2+α,1+α/2)
�2×(0,T ) + sup

t<T
[b3(·, t)](2+α)

�2
+ [ �B′](1+α,(1+α)/2)

�2×(0,T ) ).

Together with (3.12), this inequality yields

sup
t<T
[�vt(·, t)](α)�3+ + supt<T

[�v(·, t)](2+α)
�3+

+ sup
t<T
[p(·, t)](1+α)

�3+

� c([�b′](2+α,1+α/2)
�2×(0,T ) + sup

t<T
[b3(·, t)](2+α)

�2
+ [ �B′](1+α,(1+α)/2)

�2×(0,T ) ).

The next step is an estimate of the Hölder constant of ∇p with respect to t. We
consider p as a solution of the Neumann problem

∇2p = −∇ ·A( ∂
∂x
)�v(x, t), x ∈ �

3
+ ,

∂p

∂x3
= −

(
A

( ∂

∂x

)
�v(x, t)

)
3
−∇′ · �B′(x′, t), x3 = 0,

which is given by the formula

p(x, t) =
∫
�3+

∇yN(x, y) · A
( ∂

∂y

)
�v(y, t) dy −

∫
�2

N(x, y′, 0)∇′ · �B(y′, t) dy′

where N(x, y) = E(x− y) +E(x− y∗), y∗ = (y1, y2,−y3). Applying Lemma 8 in [8]
and some interpolation inequalities, we obtain

sup
R3+

[∇p(x, ·)](α/2)
(0,T ) � c(sup

t<T
[�vt(·, t)](α)�3+ + supt<T

[�v(·, t)](2+α)
�3+

+ [ �B′](1+α,(1+α)/2)
�2×(0,T ) )

� c([�b′](2+α,1+α/2)
�2×(0,T ) + sup

t<T
[b3(·, t)](2+α)

�2
+ [ �B′](1+α,(1+α)/2)

�2×(0,T ) )

and, in addition,

〈p〉(γ,1+α) ≡ sup
t∈(0,T )

sup
h∈(0,T−t)

sup
x,y∈�3+

|�p(y, t+ h)− �p(y, t)− �p(x, t+ h) + �p(x, t)|
h(1+α−γ)/2|x− y|γ

� c([�b′](2+α,1+α/2)
�2×(0,T ) + sup

t<T
[b3(·, t)](2+α)

�2
+ [ �B′](1+α,(1+α)/2)

�2×(0,T ) )
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where γ ∈ (0, 1).
The Hölder constant of �vt can now be estimated with help of the equation (3.1).

Putting all the estimates together, we arrive at (3.4).
Theorem 2 and results of Sect. 2 make it possible to consider more general half

space problems. We present the result for the case of homogeneous initial conditions:

�vt +A0
( ∂

∂x

)
�v +∇p = �f(x, t), ∇ · �v = 0, x ∈ �

3
+ , t > 0,(3.13)

�v(x, 0) = 0, �v
∣∣
x3=0

= �b(x′, t).(3.14)

Theorem 3. If �f ∈ Cα,α/2(�3+ × (0, T )) decays at infinity sufficiently rapidly
and satisfies the conditions ∇ · �f(x, t) = 0, f3|x3=0 = 0, �f(x, 0) = 0, and �b satisfies
the hypotheses of Theorem 2, then Problem (3.13), (3.14) has a unique solution
�v ∈ C2+α,1+α/2(�3+ × (0, T )), ∇p ∈ Cα,α/2(�3+ × (0, T )), ∀T > 0, and this solution
satisfies the inequality

[�v](2+α,1+α/2)
�3+×(0,T ) + [∇p](α,α/2)

�3+×(0,T ) + 〈p〉(γ,1+α)(3.15)

� c([�f ](α,α/2)
�
3
+×(0,T )

+ [�b′](2+α,1+α/2)
�2×(0,T ) + sup

t<T
[b3(·, t)](2+α)

�2
+ [ �B′](1+α,(1+α)/2)

�2×(0,T ) ).

4. On the estimate (1.3)

In the conclusion, we say a few words about the proof of inequality (1.3). It
is obtained by Schauder’s method. It is clear that such operations as change of
coordinates or multiplication by a cut-off function destroy the solenoidality property,
so the results of Sect. 3 are not directly applicable. In what follows we give an idea
of how this difficulty should be put under control.
For the Stokes equations Schauder’s method was carried out in [8]; here we use the

same kind of arguments. Let us estimate �v(x, t) and p(x, t) in the neighbourhood of
an arbitrary point x(0) ∈ ∂Ω on a small time interval (0, t(0)) assuming for simplicity
that �v0 = 0. Without loss of generality it can be assumed that the point x(0) coincides
with the origin of our coordinate system and that the x3-axis is directed along the
interior normal �n(x(0)) = �n(0). Let

x3 = F (x1, x2) ≡ F (x′), |x′| =
√
x21 + x

2
2 � d,

be the equation of ∂Ω in the neighbourhood of the origin, and let ψλ(x), λ ∈ (0, d/2),
be a smooth cut-off function equal to one for |x| � λ, to zero for |x| > 2λ and
satisfying the inequalities

0 � ψλ(x) � 1, |Djψλ(x)| � c(j)λ−|j|.
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We make a change of variables near the origin according to the formula

y′ = x′, y3 = x3 − F (x′),

and introduce functions �u = ψλ�v, q = ψλp. They satisfy the relations

�ut +A00
( ∂

∂y

)
�u+∇q = �fψλ + (∇− ∇̃)q + (A00 − Ã)�u+ �f1(y, t) ≡ �h(y, t),(4.1)

∇ · �u = (∇− ∇̃) · �u+ �v · ∇̃ψλ ≡ g(y, t),(4.2)

�u|t=0 = 0, �u|y3=0 = 0

where ∇̃ is the transformed gradient: ∇̃ = ( ∂
∂y1

− F ′
y1

∂
∂y3

, ∂
∂y2

− F ′
y2

∂
∂y3

, ∂
∂y3
), Ã is

the transformed operator A, A00( ∂
∂y ) = A0(0, 0,

∂
∂y ) = Ã0(0, 0,

∂
∂y ) and

�f1 = Ã(�vψλ)− ψλÃ�v + p∇̃ψλ.

We extend �u and q by zero into the domain |y′| > 2λ, y3 > 0 and consider (4.1),
(4.2) as equations in �3+ .
Now, following [8], we introduce functions �w1 and Φ as solutions to the problems

�w1t +A00
( ∂

∂y

)
�w1 = �h

∗, y ∈ �
3 , �w1|t=0 = 0,

∇2Φ = g −∇ · �w1, y ∈ �
3
+ ,

∂Φ
∂x3

= −w13, y3 = 0,

where �h∗ is an extension of �h into �3 with the preservation of class, i.e. such that

[�h∗](α,α/2)
�3×(0,t) � c[�h](α,α/2)

�3+×(0,t), ∀t > 0.

The first problem is a parabolic Cauchy problem, and �w1 is given by

�w1(y, t) =
∫ t

0

∫
�3

Z(y − ξ, t− τ)�h∗(ξ, τ) dτ

whereZ is a fundamental matrix of solutions of the parabolic system �wt+A00( ∂
∂y )�w =

0. The second Neumann problem has a solution

(4.3)

Φ(y, t) =
∫
�3+

N(y, z)(g(z, t)−∇ · �w1(z, t)) dz −
∫
�2

N(y, ξ′, 0)w13(ξ′, t) dξ′

=
∫
�3+

∇zN(y, z) · �w1(z, t) dz −
∫
�3+

∂N(y, z)
∂z3

∇F (z′) · �u(z, t) dz

+
∫
�3+

N(y, z)�v · ∇̃ψλ dz.
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Further we set

�w2 = ∇Φ, q2 = −Φt, �w3 = �u− �w1 − �w2, q3 = q − q2.

For �w3, q3 we have

�w3t +A00
( ∂

∂y

)
�w3 +∇q3 = −A00

( ∂

∂y

)
�w2, ∇ · �w3 = 0, y ∈ �

3
+ ,(4.4)

�w3|t=0 = 0, �w3|x3=0 = −(�w1 + �w2)
∣∣
x3=0

≡ �b(y′, t).

It is easily seen that b3 = 0.
As for the estimates, for �w1 they follow from the results of S.D. Eidelman [1]:

[�w1]
(2+α,1+α/2)
�
3
+×(0,t) � c[�h∗](α,α/2)

�3×(0,t) � c[�h](α,α/2)
�
3
+×(0,t),

and classical estimates for the solution of the Neumann problem imply

sup
τ<t
[�w2(·, τ)](2+α)

�
3
+
= sup

τ<t
[∇Φ(·, τ)](2+α)

�
3
+

� c(sup
τ<t
[g(·, τ)](1+α)

�
3
+
+ sup

τ<t
[�w1(·, τ)](2+α)

�
3
+
).

The estimate of the Hölder constant of �w2t = ∇Φt with respect to t is slightly more
complicated. We differentiate (4.3) with respect to t, make use of equations for
�v, �u, �w1 and observe that the terms containing �f disappear, because

∫
�
3
+

∇zN(y, z) · �f(z, t)ψλ(z) dz −
∫
�
3
+

∂N(y, z)
∂z3

∇F (z′) · �f(z, t)ψλ(z) dz

+
∫
�3+

N(y, z)�f · ∇̃ψλ dz =
∫
�3+

∇̃z · (N(y, z)�f(z, t)ψλ(z)) dz

= −
∫
�2

N(y, z′, 0)(f3 −∇F · �f) dz′ = 0.

The remaining terms contain derivatives of �v, �u, �w1 with respect to zk or derivatives
of the cut-off function ψλ. Generic principal term in the formula for �w2t has the form

∂

∂yk

∫
�3+

∂N(y, z)
∂zj

�d(z, t) · ∇H(z, t) dz ≡ ω(y, t)

where H may be equal to q, ∂um

∂zi
or to ∂w1m

∂zi
. Without loss of generality we may

assume that �d(z, t) = const or �d(z, t) has a compact support. We estimate such
terms using the following proposition.
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Proposition 4.1. Assume that �d = const or �d has a compact support and that
�d belongs to Cα(�3+ ) for arbitrary t ∈ (0, T ) and satisfies the Hölder condition with
respect to time with an exponent α1/2, α1 > α. Then

(4.5) sup
�
3
+

[ω(y, ·)](α/2)
(0,T ) � c1(sup

�
3
+

[∇H(y, ·)](α/2)
(0,T ) + 〈H〉(γ,1+α)) + c2 sup

τ<T
|∇H |Cβ(0,T )

with arbitrary β ∈ (0, α). The constants c1 and c2 are proportional to the norms
sup
t<T

|�d(·, t)|Cβ(�3+)
and sup

t<T
|�d(·, t)|Cα(�3+)

+ sup
�3+

[�d(z, ·)](α1/2)(0,T ) , respectively.

This proposition is an analogue of Lemma 8 in [8] where the case of the constant
�d is considered (see also [11], Proposition 2.3 and Remark).
Let us turn to the problem (4.4). The second term −A00( ∂

∂y )�w2 is not solenoidal
but it can be written as

−A00
( ∂

∂y

)
�w2 = �f2 +∇χ,

χ(y, t) =
∫
�3+

∇zN(y, z) · A00
( ∂

∂z

)
�w2(z, t) dz,

so that �f2 is solenoidal and f23 = 0 for z3 = 0. By virtue of Proposition 4.1,

[�f2]
(α,α/2)
�
3
+×(0,t)

+ [∇χ](α,α/2)
�
3
+×(0,t)

� c[�w2]
(2+α,1+α/2)
�
3
+×(0,t)

,

hence we may incorporate χ into the pressure p3 and apply Theorem 3. Putting
all the above estimates together and making use of the smallness of λ and of t(0),
we estimate higher order norms of �v and p by the norm of �f and by some weaker
norms of the solution. This may be done in the neighbourhood of an arbitrary point
(x(0), t(0)) ∈ Ω× (0, T ), so in the end we obtain

|�v|C2+α,1+α/2(Ω×(0,T )) + |∇p|Cα,α/2(Ω×(0,T ))

� c(|�f |Cα,α/2(Ω×(0,T )) + sup
Ω
sup
t<T

|�v(x, t)| + sup
Ω

|p(x, ·)|Cα/2(0,T )).

The last norm we estimate considering p as a solution of the Neumann problem

∇2p(x, t) = −∇ ·A
(
x, t,

∂

∂x

)
�v, x ∈ Ω,

∂p

∂n

∣∣
x∈∂Ω

= −�n ·A
(
x, t,

∂

∂x

)
�v
∣∣
x∈∂Ω

.

It can be written in the form

p(x, t) =
∫
Ω
∇yNΩ(x, y) · A

(
y, t,

∂

∂y

)
�v(y, t) dy
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where NΩ is the Green function for the Neumann problem in Ω studied in [2] (see
also [10]). We can prove the following proposition.

Proposition 4.2. If the hypotheses of Theorem 1 are satisfied, then

(4.6)

|p(x, t)| � c
∑
|j|�2

sup
Ω

|Dj
x�v(x, t)|,

|p(x, t)− p(x, t′)| � c
(
|t− t′|α/2

∑
|j|�2

sup
Ω

|Dj
x�v(x, t)|

+
∑
|j|�1

sup
Ω

|Dj
x�v(x, t)−Dj

x�v(x, t
′)|

)
.

Now, making use of interpolation inequalities and of the Gronwall lemma, we
easily arrive at (1.3).
In fact, the assumption that the leading coefficients of A belong to W 1

q (Ω), q > 3,
is used only in the proof of (4.6) to prevent the appearence of the differences of the
second derivatives of �v on the right hand side. In the case of the Cauchy problem
or of the problem with periodicity conditions these differences can be estimated by
inequality (2.7) (also in the case of variable coefficients, see [11]), so the above-
mentioned assumption is not necessary.
This assumption can be replaced by the requirement that A0�v could be written in

the form

A0

(
x, t,

∂

∂x

)
�v(x, t) = ∇ · A(x, t,∇�v) +A1(x, t, �v,∇�v)

and the coefficients of the operators A, A1 belong to Cα,α/2(Ω× (0, T )).
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