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RANK 1 CONVEX HULLS OF ISOTROPIC FUNCTIONS

IN DIMENSION 2 BY 2

M. Šilhavý, Praha

Dedicated to Professor Jindřich Nečas on the occasion of his 70th birthday

Abstract. Let f be a rotationally invariant (with respect to the proper orthogonal group)
function defined on the set M2×2 of all 2 by 2 matrices. Based on conditions for the
rank 1 convexity of f in terms of signed invariants of A (to be defined below), an iterative
procedure is given for calculating the rank 1 convex hull of a rotationally invariant function.
A special case in which the procedure terminates after the second step is determined and
examples of the actual calculations are given.
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1. Introduction

Let M2×2 denote the linear space of all 2 by 2 matrices. A function f : M2×2 → �

is said to be rotationally invariant (briefly, invariant) if f(A) = f(RAQ) for all
A ∈ M2×2 and all Q,R proper orthogonal. A rotationally invariant function has a
representation

(1) f(A) = f̃(w)

where f̃ is a symmetric function on �2 and w = (w1, w2) are the signed singular val-

ues of A, defined ([7], [10]) as the unique pair such that w1 � |w2| are ordered
eigenvalues, with appropriate multiplicities, of

√
AAT , and sgnw2 = sgndetA.
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We write ŵ(A) = (ŵ1(A), ŵ2(A)) for the signed singular values of A. A function
f : M2×2 → � is said to be rank 1 convex if it is convex on each closed line segment
[A,B], A,B ∈ M2×2, such that rank(A − B) � 1. The rank 1 convexity and the
closely related notions of quasiconvexity and polyconvexity play important roles as

necessary or sufficient conditions on f for the existence of solutions (minimizers of
energy) in the calculus of variations [6], [3], nonlinear elasticity [1], and theory of

phase transitions, see e.g. [4], [8], [9]. When the stored energy f fails to be quasi-
convex, the effective energy of the system is represented by the quasiconvex hull (=

the relaxation) Qf : M2×2 → � of f , defined as the largest quasiconvex function
not exceeding f. Closely related to Qf are also the rank 1 convex and polyconvex

hulls Rf and Pf , defined as the largest rank 1 convex and polyconvex functions not
exceeding f. One has Pf � Qf � Rf and it may happen (as the experience shows)

that Pf = Rf , thereby determining also Qf , which is otherwise difficult.
This paper deals with rank 1 convex hulls of rotationally invariant functions.

By the results of [10], the rank 1 convexity of an invariant f takes the form of a
restricted ordinary convexity on certain cones K± when f is represented in terms of
signed invariants (see Section 2 for definitions). Using this, a limiting procedure is
given for finding the rank 1 convex hull of a rotationally invariant function, similar to

the construction of the rank 1 convex hull of a general function (with no invariance
property) by Kohn and Strang [5]. The difference is that the procedure is defined

in the 2-dimensional space of signed invariants, while in the case of [5] in the 4-
dimensional space of matrices. Each step requires to find a minimum of convex

combinations of the preceding step with the given barycenter, restricted to K±,
and then to apply certain monotonization of the result. Finally, the case when the

procedure terminates after the second step is determined, and two examples, one of
which resembles an isotropic double well potential, are given.

2. Invariant rank 1 convex functions

Let X̂± : M2×2 → �
2 be mappings defined by

X̂±(A) =
(√|A|2 ± 2 detA, detA)

, A ∈ M2×2.

We say that X̂+ associates, with a given A ∈M2×2, the pair x = (x1, x2) := X̂+(A)
of +signed invariants of A, and X̂− the pair y = (y1, y2) := X̂−(A) of −signed
invariants of A. We have

x1 = w1 + w2, x2 = w1w2,(2)

y1 = w1 − w2, y2 = w1w2,(3)
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where (w1, w2) are the signed singular values of A as defined in Introduction. Note
that as a consequence of (2), (3) we have

(4) y1 =
√
x21 − 4x2, y2 = x2.

The mappings X̂± map M2×2 onto Q±, respectively, where

Q+ := {(x1, x2) ∈ �
2 : x1 � 0, x2 � 1

4x
2
1},

Q− := {(y1, y2) ∈ �
2 : y1 � 0, y2 � − 14y21}.

If A,B ∈M2×2, then

X̂+(A) = X̂+(B) ⇔ A = QBR for some Q,R ∈ SO(2),

and a similar equivalence holds with X̂+ replaced by X̂−. See [10] for details. It
follows that any rotationally invariant function f : M2×2 → � has a representation

f̃+ : Q+ → � in terms of the +signed invariants such that

f(A) = f̃+(X̂+(A)), A ∈ M2×2,

and a representation f̃− : Q− → � in terms of the −signed invariants such that

f(A) = f̃−(X̂−(A)), A ∈ M2×2.

The importance of f̃± derives from the fact that the rank 1 convexity of f takes
the form of a restricted ordinary convexity of f̃± on certain cones K± in Q±. These
cones are defined as follows. For each x ∈ Q+,

K+(x) := {x+ (t, st) : w2 � s � w1, t ∈ �, x+ (t, st) ∈ Q+},

where (w1, w2) are uniquely determined by (2); for each y ∈ Q−,

K−(y) := {y + (t, st) : −w1 � s � w2, t ∈ �, x+ (t, st) ∈ Q−}

where (w1, w2) are uniquely determined by (3). The reader is referred to [10;
Figures 1(b), 2(b)] for the pictures of K+(x) and K−(y). Furthermore, for each
p ≡ x ∈ Q+ or p ≡ y ∈ Q− we denote

A±(p) = {(α, z) ∈ �
2 : 0 � α � 1, p+ (1 − α)z, p− αz ∈ K±(p)}.
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Each (α, z) ∈ A+(x) determines a decomposition of x ∈ Q+ in the form

x = αx̃ + (1− α)x,

where x̃ = x+ (1− α)z, x = x− αz, x̃, x ∈ K+(x). A similar interpretation applies
to A−(y).

2.1 Proposition. An invariant function f is rank 1 convex if and only if the
following two conditions hold simultaneously:

(a) f̃+ is nondecreasing in the first variable and for each x ∈ Q+ we have

(5) f̃+(x) � αf̃+(x+ (1 − α)z) + (1 − α)f̃+(x− αz)

whenever (α, z) ∈ A+(x);
(b) f̃− is nondecreasing in the first variable and for each y ∈ Q− we have

(6) f̃−(y) � αf̃−(y + (1− α)z) + (1− α)f̃−(y − αz)

whenever (α, z) ∈ A−(y).

�����. If f is continuously differentiable, this is just a reformulation of
[10; Proposition 6.2]. The general case is treated similarly, and the details are omit-

ted. �

3. Rank 1 convex hulls of invariant functions

Note that if f is rotationally invariant then the rank 1 convex hull Rf is rota-

tionally invariant, see [2], [11]. In this section we describe an iterative procedure
V kf, k → ∞, for the construction of Rf. Another procedure will be described in
[11].
The operations M±, S± to be now introduced are motivated by the form of Con-

ditions (a), (b) of Proposition 2.1. For each f : Q+ → � we denote by M+f : Q+ →
�, S+f : Q+ → � the functions defined by

M+f(x) = inf{f(t, x2) : t � x1},
S+f(x) = inf{αf(x+ (1 − α)z) + (1 − α)f(x− αz) : (α, z) ∈ A+(x)},

x ∈ Q+. Clearly, M+f � f, S+f � f ; M+f is the largest function nondecreasing

in the first variable not exceeding f. Similarly, for each f : Q− → � we denote by
M−f : Q− → �, S−f : Q− → � the functions defined by

M−f(y) = inf{f(t, y2) : t � y1},
S−f(y) = inf{αf(y + (1 − α)z) + (1 − α)f(y − αz) : (α, z) ∈ A−(y)},
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y ∈ Q−. Let f be an invariant function and define a function V f : M2×2 → � by

V f(A) = min{M+S+f̃+(x),M−S−f̃−(y)}, A ∈M2×2,

where x, y are given by (2) and f̃± are the representations of f in terms of the signed
invariants. We have

Rf � V f � f

where we use Proposition 2.1.

3.1 Theorem. Let f be an invariant function, bounded from below by a rank 1
convex function and define a sequence fk, k = 0, . . ., by f0 = f, fk+1 = V fk. Then

(7) Rf = lim
k→∞

fk.

�����. The sequence fk is nonincreasing and so the limit g in (7) exists; since
f is bounded from below by a rank 1 convex function, g is finite. We shall verify

that g satisfies the conditions of Proposition 2.1. Let f̃±
k , g̃

± be the representations
of fk, g. For any x ∈ Q+, y ∈ Q− related by (4) we have

(8) f̃+k+1(x) = f̃
−
k+1(y) = min{M+S+f̃+k (x),M

−S−f̃−
k (y)}.

By the construction, the functions M+S+f̃+k (x),M
−S−f̃−

k (y) are nondecreasing

with respect to their first variables x1, y1, respectively. By (4), M−S−f̃−
k (y) can be

expressed as a function of x and the form of (4) shows that then x �→ M−S−f̃−
k (y)

is a nondecreasing function in x1. Thus by (8), f̃
+
k+1(x) is the minimum of two func-

tions nondecreasing in x1 and hence so is also f̃
+
k+1. The same applies to f̃

−
k+1 and

y1. This in turn implies that g̃±, being the limits of f̃±
k , are nondecreasing in their

first variables. Thus g satisfies the monotonicity requirements in Proposition 2.1.
Thus it remains to verify (5) and (6). For each k and (α, z) ∈ A±(x) we have

f̃±
k+1(x) � αf̃±

k (x+ (1 − α)z) + (1 − α)f̃±
k (x− αz).

Taking the limit, we obtain

g̃±(x) � αg̃±(x+ (1− α)z) + (1− α)g̃±(x− αz).

�
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4. The separable case

In this section we describe an elementary case when the procedure described in
Theorem 3.1 terminates after a few steps, and apply the results to examples. The

main feature of the special case is that the representations f̃± are of the separated
form in the variables x1, x2 or y1, y2.

4.1 Proposition. Let f± : M2×2 → � be defined by

f±(A) = ψ(s±) + γ detA

where

s± =
√
|A|2 ± 2 detA,

ψ : [0,∞)→ � is bounded from below, and γ ∈ �. Then

Rf±(A) = Pf±(A) = ψ0(s±) + γ detA

where ψ0 : [0,∞)→ � is the largest convex nondecreasing function not exceeding ψ.

�����. Let us consider only f+, which we denote by f ; the treatment of f−
is similar. Consider the sequence fk defined in Theorem 3.1 and denote by f̃

±
k the

corresponding representations in terms of the signed invariants. Let us show that

f̃+0 (x) = ψ(x1) + γx2,

f̃+1 (x) = ψ0(x1) + γx2,

f̃+k (x) = f̃
+
1 (x), k � 1.

The expression for f̃+0 is just the representation of f. To obtain the expression for

f̃+1 , let ψ1 : (0,∞)→ � be the convexification of ψ. Let x ∈ Q+ be such that x2 > 0.
Then

S+f̃+0 (x) = inf{αf̃+0 (x+ (1 − α)z) + (1 − α)f̃+0 (x− αz) : (α, z) ∈ A+(x)}
= inf{αψ(x1 + (1− α)z1) + (1− α)ψ(x1 − αz1) + γx2 : (α, z) ∈ A+(x)}
= ψ1(x1) + γx2.

Next we have to apply the monotonization operator M+ to ψ1(x1) + γx2, which
leads to ψ0(x1) + γx2 and hence the expression for f̃

+
1 is proved. The proof is now

completed by noting that f̃+1 represents a polyconvex function. This follows from
the fact that A �→ ŵ1(A)± ŵ2(A), A ∈ M2×2, is convex, see [9], [7], [10]. �
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4.2 �����	
. Let f : M2×2 → � be given by

f(A) = (ŵ1(A)− a)2 + (ŵ2(A)− a)2, A ∈M2×2,

where a > 0. Then

Rf(A) = Pf(A) =

{
a2 − 2 detA if

√
|A|2 + 2detA � a,

f(A) if
√
|A|2 + 2detA � a.

This example shows that even though f is represented by a convex function of the

signed singular values of the well form, f is not rank 1 convex. The reason is that
in the region w1 + w2 � a, the function f violates the Baker-Ericksen inequalities.

�����. One finds that

f(A) = ψ(ŵ1(A) + ŵ2(A))− 2 detA,

where

ψ(t) = (t− a)2 + a2, t � 0.

The function Rf is calculated in 4.1, and we find that the largest convex nondecreas-
ing function ψ0 not exceeding ψ is

ψ0(t) =

{
a2 if 0 � t � a,

(t− a)2 + a2 if t � a.

This completes the proof. �

4.3 �����	
. Let f : M2×2 → � be given by

f(A) = min{f1(A), f2(A)}, A ∈M2×2,

where

f1(A) = (ŵ1(A)− a)2 + (ŵ2(A)− a)2, f2(A) = (ŵ1(A)− b)2 + (ŵ2(A)− b)2,

where 0 < a < b, i.e.,

f(A) =

{
f1(A) if s(A) � a+ b,

f2(A) if s(A) > a+ b,

where
s(A) = ŵ1(A) + ŵ2(A).
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Then

Rf(A) = Pf(A) =


a2 − 2 detA if s(A) � a,

f1(A) if a � s(A) � 1
2 (3a+ b),

(a+ b)s(A) + c− 2 detA if 1
2 (3a+ b) � s(A) � 1

2 (a+ 3b),

f2(A) if s(A) � 1
2 (a+ 3b),

where

c = a2 − 1
4 (a+ b)(5a+ b).

This is a relaxation of a “double well potential.”

�����. We have

f(A) = ψ(s(A)) − 2 detA, A ∈M2×2,

where

ψ(t) =

{
(t− a)2 + a2 if 0 < t � a+ b,

(t− b)2 + b2 if t � a+ b,

and
Rf(A) = Pf(A) = ψ0(s(A)) − 2 detA, A ∈ M2×2

where ψ0 is the largest nondecreasing function not exceeding ψ. We have

ψ0(t) =


a2 if 0 < t � a,

(t− a)2 + a2 if a � t � 1
2 (3a+ b),

(a+ b)t+ c if 1
2 (3a+ b) � t � 1

2 (a+ 3b),

(t− b)2 + b2 if t � 1
2 (a+ 3b).

The proof is complete. �
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