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EXISTENCE OF NONOSCILLATORY SOLUTIONS OF A CLASS OF
NONLINEAR DIFFERENCE EQUATIONS WITH A FORCED TERM
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Abstract. In this paper, necessary and sufficient conditions for the existence of nonoscil-
latory solutions of the forced nonlinear difference equation

A(zn = pnTr(n)) + F(N, To(n)) = an

are obtained. Examples are included to illustrate the results.
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1. INTRODUCTION
In this paper, we consider the nonlinear difference equation with a forced term
(1) A(Tp = pnrm)) + f(0, Zo(m)) = G, 1 =1,2,3,...,

where A is the forward difference operator defined by Ax,, = xp4+1 —Zn, f: NXR —
R is a continuous function, and 7,0: N — N with nh_}ngo o(n) = 4o0, nh_}n;o T(n) =
+00; {pn}, {gn} are real sequences. A solution of (1) is a real sequence x,, defined for
all n > min{ Ny, min o(n), min 7(n)} and satisfying (1) for all n > Ny. A nontrivial
n2=No nzNo
solution {z,} of (1) is said to be oscillatory if for any N > Ny there exists n > N
such that x, 1z, < 0. Otherwise, the solution is said to be nonoscillatory.
Difference equations of neutral type have been studied by a number of authors in
recent years, for example, see [2-11,13] and the references contained therein. Various
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authors have obtained results guaranteeing the oscillation of equation (1), and we
cite the papers [2, 6-8]. In this paper we are interested in obtaining necessary and
sufficient conditions for the existence of nonoscillatory solutions of (1).

2. MAIN RESULTS

Let X denote the Banach space [, of all bounded real sequences # = {z,,}, n > N,

with the norm ||z|| = sup |z,|. We will use the following assumptions:
n>N

(D) [f(n,2)] < |f(n,y)l, provided |2] < |yl;
(ii) for each closed interval L = [dy,d2] (0 < dy < d2), there exists L(n) such that

|f(n,2) = f(n,y)l < L(n)|z —y|, .y € L,

and > L(i) < oo;
i=N

(ili) 2f(n,2) >0 (x+#0);

(iv) nglqil < o0;
(v) there exists r € (0,1) such that

O0<pn<l—r,n=2N;
(vi) there exists r € (0, 1) such that

(vil) |pn|<1=7r,m>=N,r¢€ (%,1);
(viii) p, = 1.

Theorem 1. Suppose that (i), (ii) and (iv) hold. Further suppose that either (v)
or (vi) holds. If
(2) Z |f(n,d)| < oo for some d # 0,
n=N
then Eq. (1) has a bounded nonoscillatory solution {x,} such that liminf |z,| > 0.
Proof. Define a subset 2 of X as follows:
Q={{z,} CX: dy <z, <|d|, n>= N}
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and an operator T on 2:

T C1 +pn$7(n) + Z f(27x0(1)) - Z qi, M = Nla
Ty = i=n i=n
TxNu N <n <Ny,

where 0 < dy < r|d|, ¢1 and Nj satisfy the following conditions: If (v) holds, di <
c1 < r|d| and Ny is sufficiently large such that 7(n) > N, o(n) > N asn > Ny > N
and

S fond)+ Y laul < minfey - dy,rld] - 1}

’I’L:Nl n:N1

> L) <

i=N,
If (vi) holds, dy + (1 —7)|d| < ¢1 < 3(d1 + (2 —r)|d|), Ny is sufficiently large such
that 7(n) > N, o(n) > N as n > Nj and

and

N3

Yol dl+ Y lanl v —di = (1= 7)d].

’I’L:Nl ’I’L:Nl

First, we claim that T2 C €.
If (v) holds, then for any = € 2, n > N; we have

Tx, =c1+ PnZr(n) + Z f(zv xa(i)) - Z qi

i=n

> — Y 1l zem) = D lail

=N, =N,
>c—(a—di)=d

and

Tan < e+ paldl+ ) 1F(2o@)l + D lail et (L=r)ld] + (rld] — 1) = [d].
i:Nl i:Nl

If (vi) holds, then for n > N7 we have

=Ny =N,

Z C1 — (1 —7")|d| — (Cl — dl — (1 —’I‘)|d|) = d1
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and

Ta, <ert Y |G+ D lal

i=N1 i=Ny
<ca+ea—d—(1-r)d
<d;+ (2—-r)ld| —di — (1 —r)|d|
= |d|.

Therefore TQ C Q.
Next, we claim that T is a compression mapping on (2. In fact, for z,y € €,
n > Ny, we have

ITxn - Tynl = |pn(xr(n) - yr(n)) + Z (f(zaxo(z)) - f(iaya(i))|
i=N;
< pal sup [z = ynl + Y L)o@ — Yoo
nz i=N1
< <|pn| + Z L(z)) sup |zn — yn|
i=N; n2N

<(1=r+3)le -yl
= (1=5)le =yl

which implies that
,
172~ Tyl < (1= 5 )=yl

By the Banach fixed point theorem, T has a fixed point = {Z,} € Q. Obviously,
Z is a bounded nonoscillatory solution of (1) with liminf |Z,| > d; > 0. The proof is

complete. O
The following lemmas show the necessity of condition (2) for the existence of a
nonoscillatory solution {z,} with liminf |z, | > 0.
Lemma 1. Assume that (i), (iii), (iv) and (vi) hold. If (1) has a nonoscillatory
solution {xy} with liminf |z,| > 0, then (2) holds.

Proof. Without loss of generality, assume that x, > d > 0, n > N. Let
Yn = T — PnTr(n) > 0. Then
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If (2) does not hold, summing the last equation we obtain

n—1 n—1 n—1 n—1
Yn — YN, S Z qi — Z f(zaxa(z))< Z |q1|_ Z f(i,d)—’—OO, n — o0.
i=N i=N i=N i=N
Then lim y, = —o0, a contradiction. The proof is complete. O
n—oo

Lemma 2. Assume that (i), (iii), (iv), (v) and 7(n) < n, n > N hold. Then the
conclusion of Lemma 1 is true.

Proof. Assume that z, > d > 0, n > N is a positive solution of (1). If (2)
does not hold, as in the proof of Lemma 1, we have lim y, = —oo. Then z, is

n—oo

unbounded. Therefore there exists a sequence {n;} with klim ng = oo such that
—00

ZTp, = Max ,. Then
n<ng

Ynp = Tny — PnpTr(ny) = (1 _pnk)$nk >0,
a contradiction. The proof is complete. O
Combining the above results we obtain
Theorem 2. Assume that (i), (ii), (iil), (iv) and (vi) hold. Then (2) is a nec-

essary and sufficient condition for (1) to have a nonoscillatory solution {x,} with

liminf |z, | > 0.
n—oo

Theorem 3. Assume that (i), (i), (iil), (iv), (v) and 7(n) < n, n > N hold. Then
(2) is a necessary and sufficient condition for (1) to have a nonoscillatory solution
{zy} with liminf |z, | > 0.

Now we consider the case that p,, is oscillatory in (1).

Theorem 4. Assume that (i), (ii), (iv), (vii) and (2) hold. Then (1) has a
bounded nonoscillatory solution {x,} with liminf |z,| > 0.

Proof. LetQ={{z,} € X: d1 <, <|d],n > N}, where0 < dy < (2r—1)|d|.
Define an operator T by (3), where ¢; satisfies dy + (1 — r)|d| < ¢1 < r|d| and N; is
sufficiently large such that when n > Ny > N,7(n) > N,o(n) > N and

DI dI+ Y lail <minfer —dy — (1= r)ld], rld| - e1}

i=N; i=N;
and -
r
Nl
Z L(i) < 9
Z:Nl
The rest of the proof is similar to that of Theorem 1. O
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Similarly to Lemma 2 we can prove the following assertion.

Lemma 3. Assume that (i), (iii), (iv), (vii) and 7(n) < n, n > N hold. Then the
conclusion of Lemma 1 is true.

Combining Theorem 4 and Lemma 3 we obtain

Theorem 5. Assume that (i), (ii), (iii), (iv), (vil) and 7(n) < n, n > N hold.

Then (2) is a necessary and sufficient condition for (1) to have a nonoscillatory
solution {x,} with liminf |z, | > 0.
n—oo

Remark 1. Theorems 1-5 are discrete analogues of the corresponding results
for the neutral differential equation [12].

Finally, we consider the case (viii).

Theorem 6. Assume that (i) and (viii) hold. Further assume that 7(n) is in-
creasing, 7(n) < n for all large n, and

Z n|f(n,d)| < oo for some d # 0
n=N
and
(3) Z nlgn| < oo.
n=N

Then (1) has a bounded nonoscillatory solution.

Let
7%(no) = ng, 7" (ng) = 7(r"(ng)), n=0,1,2,...,

" (ng) = 7711 (no)), n=0,-1,-2,.

By a known result [13, Lemma 2.3], (3) is equivalent to
Yo D madl<w
J=0n=7"9(no)

and

(4) Y > anl < o

§=0 n=r=i(no)
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Proof of Theorem 6. In view of (4), we can choose a sufficiently large ng

such that

and

Define

DN | =

Yo Y <

J=0 n=7-79(no)

N =

o0 oo

J=0n=1-9(ng)

S UG A+l >,
H, = n—T1(ng)
no — T(no)

0, n < 7(no).

H(no),  7(no) <n < no,

Clearly, H,: N — R. Define

(6)

S
Yn = Z H‘rm(n)7 n = ng.
m=0

It is easy to see that yn — yr(n) = Hp, n =7 '(ng) and

(7)

0<yn <1, n=ng.

Define a set 2 C X by

Q={{z,} CX: 0< 2, < yYn, n =np}

and an operator S on ) by

o0 (o]
Try + > fTo@m) = @i, = no,
an — i=n i=n
S
M+yn<1_£>’ T(no)gngno'
10Yng No

By (5)—(7), S C Q.
Define a sequence of sequences {x%}2 , as follows:

F—Sabl n>mng, k=1,2,....

0 _
Ty =Yn, Ty n
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By induction, we can prove that

0 1
yn:xn>‘rn>7 7’L>7’l0.

Then there exists a sequence {u,} € Q such that lim % = w, and u, > 0 for

k—oo

n = ng, Uy = Sy, i.e.,
Up = Ur(n) + Z f(zaua(n)) - ZQ1
Hence
A(un - u‘r(n)) + f(n7ua(n)) =dn.
The proof is complete.

Remark 2. We can establish a result similar to Theorem 6 for the neutral
differential equation

(@(t) — 2(r(1)) + f(t, z(o(1) = q(t).

Example 1. Consider the equation

(8) A({En - %x'r(n)) + nizxi(n) = ein7 nz=zN
where lim 7(n) = oo, lim o(n) = 00,q, =e " and f(n,z) = n" 22>,

n—oo n—o0

For z,y € L = [d1,d2] (0 < dy < d2) and d > dy we have
[f(n,2) = f(n,y)| = n72[a? + 2y + y?||a — y| <3d°n 2|z —y].

Let L(n) = 3d*n~2. Then > L(i) < oo and Y, |f(i,d)| = Y |d|*i™? < co. By
i=N i=N i=N
Theorem 1, (8) has a nonoscillatory solution {x,} with liminf |z, | > 0.

Example 2. Consider the equation

n n— 77/27 n n n
) Alwn — (=5)"wa-1) + (—3)" gp e n = 5(—3)" — ey,
where p, = (—3)" is oscillatory and satisfies (vii), f(n,z) = (—%)”*1%x
and satisfies (i) and (i), ¢, = 3(—3)" — nf&ii)g satisfies (iv), 7(n) =n—1 < n and

> > . An? —2n+1
S = St <

By Theorem 4, (9) has a bounded nonoscillatory solution {z,} with liminf |z,| > 0.

In fact, {z,} = {1+ n~2} is such a solution of (9).
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(10) Axy — Tp—3) +

Example 3. Consider the difference equation

1 - _ 6n —5
nn+)n—-3)"""" (n+Dnn—2)n-3)

It is easy to see that Eq. (10) satisfies all assumptions of Theorem 6. Therefore (10)

has a bounded nonoscillatory solution. In fact, {z,} = {1} is such a solution of
(10).
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