PURE SUBGROUPS

LADISLAV BICAN, Praha

(Received September 2, 1999)

Abstract. Let λ be an infinite cardinal. Set $\lambda_0 = \lambda$, define $\lambda_{i+1} = 2^{\lambda_i}$ for every $i = 0, 1, \ldots$, take μ as the first cardinal with $\lambda_i < \mu$, $i = 0, 1, \ldots$ and put $\kappa = (\mu^{\aleph_0})^+$. If F is a torsion-free group of cardinality at least κ and K is its subgroup such that F/K is torsion and $|F/K| \leq \lambda$, then K contains a non-zero subgroup pure in F. This generalizes the result from a previous paper dealing with F/K p-primary.

Keywords: torsion-free abelian groups, pure subgroup, P-pure subgroup

MSC 2000: 20K20

By the word "module" we mean a unital left R-module over an associative ring R with an identity element. Dualizing the notion of the injective envelope of a module [4] H. Bass [1] investigated the projective cover of a module and characterized the class of rings R over which every module has a projective cover. By a projective cover of a module M we mean an epimorphism $\varphi \colon F \to M$ with F projective and such that the kernel K of φ is superfluous in F in the sense that K + L = F implies L = F whenever L is a submodule of F. Recently, the general theory of covers has been studied intensively. If \mathcal{G} is an abstract class of modules (i.e. \mathcal{G} is called a \mathcal{G} -precover of the module M if for each homomorphism $f \colon F \to M$ with $F \in \mathcal{G}$ there is $g \colon F \to G$ such that $\varphi g = f$. A \mathcal{G} -precover of M is said to be a \mathcal{G} -cover if every endomorphism f of G with $\varphi f = \varphi$ is an automorphism of G. It is well-known (see e.g. [8]) that an epimorphism $\varphi \colon F \to M$, where \mathcal{P} denotes the class of all

649

The research has been partially supported by the Grant Agency of the Czech Republic, grant #GAČR 201/98/0527 and also by the institutional grant MSM 113 200 007.

projective modules. Denoting by \mathcal{F} the class of all flat modules, Enochs' conjecture [5] whether every module over any associative ring has an \mathcal{F} -cover remains still open.

In the general theory of precovers several types of purities have been used. In some cases (see e.g. [8], [7]) the existence of pure submodules in the kernels of some homomorphisms plays an important role. Using the general theory of covers, in [3] the main result of this note appears as a corollary. However, the direct proof presented here is of some interest because the existence of non-zero pure submodules of "large" flat modules contained in submodules with "small" factors is sufficient for the existence of flat covers (see [3]). The purity here is meant in the sense of P. M. Cohn.

All groups are additively written abelian groups. If P is any set of primes then the P-purity of a subgroup S of a group F means its p-purity for each prime $p \in P$. Other notation and terminology are essentially the same as in [6].

We start with three preliminary statements, the first extending the result of [2].

Lemma 1. Let λ be an infinite cardinal. If F is a torsion-free group of cardinality greater than 2^{λ} and K is its subgroup such that the factor-group F/K is p-primary for some prime p and $|F/K| \leq \lambda$, then K contains a subgroup S pure in F such that $|F/S| \leq 2^{\lambda}$.

Proof. By [2; Theorem 1] K contains a non-zero subgroup pure in F. Since pure subgroups are closed under unions of ascending chains, there is a maximal subgroup S of K pure in F. If $|F/S| > 2^{\lambda}$ then $F/S/K/S \cong F/K$ is p-primary and so K/S contains a non-zero subgroup T/S pure in F/S. Thus $T \subseteq K$ is pure in F, and so the proper inclusion $S \subset T$ contradicts the maximality of S.

Lemma 2. If K is a subgroup of a torsion-free group F, then for any prime p the subgroup F(p) consisting of all elements $x \in F$ such that $p^k x \in K$ for some non-negative integer k is p-pure in F.

Proof. Obvious.

Lemma 3. Let λ be an infinite cardinal and let $P \subseteq \Pi$ be any subset of the set Π of all primes. Further, let F be a torsion-free group of cardinality greater than 2^{λ} and K its subgroup such that K is P-pure in F and $|F/K| \leq \lambda$. Then for each prime $p \in \Pi \setminus P$ there is a subgroup S of K such that S is \overline{P} -pure in $F, \overline{P} = P \cup \{p\}$, and $|F/S| \leq 2^{\lambda}$.

Proof. If $(F/K)_p = 0$, then it clearly suffices to take S = K. In the opposite case we set $F(p) = \{x \in F \mid p^k x \in K \text{ for a non-negative integer } k\}$ and we obviously have $2^{\lambda} < |K| \leq |F(p)| \leq |F|, F(p)/K$ is p-primary and $|F(p)/K| \leq \lambda$. By Lemma 1,

650

K contains a subgroup S pure in F(p) such that $|F(p)/S| \leq 2^{\lambda}$. The transitivity of p-purity and Lemma 2 now yield that S is p-pure in F. Morever, S is pure in F(p), hence in K and consequently it is P-pure in F by the hypothesis and the transitivity of P-purity. Finally, F/S is an extension of F(p)/S by F/F(p), where $|F(p)/S| \leq 2^{\lambda}$, $|F/F(p)| \leq |F/K| \leq \lambda < 2^{\lambda}$, which yields $|F/S| \leq 2^{\lambda}$.

Let λ be an infinite cardinal. Set $\lambda_0 = \lambda$, define $\lambda_{i+1} = 2^{\lambda_i}$ for every $i = 0, 1, \ldots$, take μ as the first cardinal with $\lambda_i < \mu$, $i = 0, 1, \ldots$, and put $\kappa = (\mu^{\aleph_0})^+$. Now we are ready to prove our main result.

Theorem. Let λ be an infinite cardinal. If F is a torsion-free group of cardinality at least κ and K is its subgroup such that the factor-group F/K is a torsion group of cardinality at most λ , then K contains a non-zero subgroup pure in F.

Proof. Let $\Pi = \{p_1, p_2, ...\}$ be any list of elements of the set Π of all primes and for every i = 1, 2, ... let $P_i = \{p_1, p_2, ..., p_i\}$. By Lemma 3 there is a subgroup S_1 of K P_1 -pure in F such that $|F/S_1| \leq 2^{\lambda_0} = \lambda_1$. Continuing by induction let us suppose that the subgroups $S_1, S_2, ..., S_k$ of K have been already constructed in such a way that

$$S_{i+1} \leqslant S_i, \ i = 1, \dots, k-1,$$

$$S_i \text{ is } P_i \text{-pure in } F, \ i = 1, 2, \dots, k,$$

$$|F/S_i| \leqslant \lambda_i, \ i = 1, 2, \dots, k.$$

An application of Lemma 3 yields the existence of $S_{k+1} \subseteq S_k$ such that S_{k+1} is P_{k+1} -pure in F and $|F/S_{k+1}| \leq 2^{\lambda_k} = \lambda_{k+1}$. Setting $S = \bigcap_{i=1}^{\infty} S_i$ and assuming that the equation $p_j^l x = s, s \in S, p_j \in \Pi$ is solvable in F we see that $s \in S_k$ for all $k \geq j$. However, S_k is p_j -pure in F, which means that $x \in \bigcap_{k=j}^{\infty} S_k = \bigcap_{i=1}^{\infty} S_i = S$, showing the purity of S in F. It remains now to show that S in non-zero. However, there is a natural embedding $\varphi \colon F/S \to \prod_{i=1}^{\infty} F/S_i$ given by the formula $\varphi(x+S) = (x+S_1, x+S_2, \ldots)$. Now the inequalities $|F/S_i| \leq \lambda_i < \mu$ yield $|F/S| \leq \mu^{\aleph_0} < \kappa$, hence $|S| = |F| \geq \kappa$ and the proof is complete. \Box

Corollary 1. Under the same hypotheses as in Theorem, K contains a subgroup S pure in F such that $|F/S| \leq \mu^{\aleph_0}$.

Proof. It runs along the same lines as that of Lemma 1. $\hfill \Box$

651

Corollary 2. If F is a torsion-free group of cardinality at least κ and K is a subgroup of F such that $|F/K| \leq \lambda$ then K contains a non-zero subgroup S pure in F.

Proof. Let L/K be the torsion part of F/K. Since $|L| \ge |K| = |F| \ge \kappa$ and $|L/K| \le |F/K| \le \lambda$, K contains a non-zero subgroup S pure in L by Theorem. Hence S is pure in F, L being so by its choice.

References

- H. Bass: Finitistic dimension and a homological characterization of semi-primary rings. Trans. Amer. Math. Soc. 95 (1960), 466–488.
- [2] L. Bican: A note on pure subgroups. To appear.
- [3] L. Bican, B. Torrecillas: On covers. To appear.
- [4] B. Eckmann, A. Schopf: Über injektive Moduln. Arch. Math. 4 (1953), 75-78.
- [5] E. Enochs: Injective and flat covers, envelopes and resolvents. Israel J. Math. 39 (1981), 189–209.
- [6] L. Fuchs: Infinite Abelian Groups, vol. I and II. Academic Press, New York, 1973 and 1977.
- [7] M. L. Teply: Torsion-free covers II. Israel J. Math. 23 (1976), 132–136.
- [8] J. Xu: Flat Covers of Modules. Lecture Notes in Mathematics 1634, Springer, Berlin, 1996.

Author's address: Ladislav Bican, KA MFF UK, Sokolovská 83, 18675 Praha 8, Czech Republic, e-mail: bican@karlin.mff.cuni.cz.