ON A MODIFICATION OF AXIOMS OF GENERAL RELATIONS

Jiěí Karásek, Brno

(Received July 3, 1999)

Abstract

Basic concepts concerning binary and ternary relations are extended to relations of arbitrary arities and then investigated.

Keywords: relation, n-decomposition, diagonal, (\mathcal{K}, ψ)-modification, composition, m-th power, m-th cyclic transposition, (p)-hull

MSC 2000: 03E20, 08A02

0. Introduction

The relations dealt with in the paper are considered in the general sense as systems of maps. More precisely, by a relation we understand a subset $R \subseteq G^{H}$, where G, H are sets and G^{H} denotes the set of all maps of H into $G . G$ and H are called the carrier and the index set of R, respectively. Relations with well-ordered index sets, the so-called relations of type α, are studied in [8], while relations with general index sets are studied in [9], [10], [5], [6] and [11]. In this paper, the fundamental concepts concerning binary and ternary relations are extended to general relations and discussed.

We denote by \mathbb{N} the set of all positive integers, for any $n \in \mathbb{N}$ we denote $(n]=$ $\{m \in \mathbb{N} ; m \leqslant n\}$. In the case of a finite set H of cardinality k we will not distinguish between maps of the set H into the set G and k-tuples of elements of the set G. For any $n \in \mathbb{N}$ we denote by S_{n} the set of all permutations of the set (n]; id denotes the identical permutation of the set $(n]$.

For any map $f: H \rightarrow G$ and any subset $K \subseteq H$, we denote by $\left.f\right|_{K}$ the restriction of f to K. The abbreviation w.r.t. will be written instead of the phrase "with respect to".

1. Operations with relations

1.1. Definition. Let $n \in \mathbb{N}$, let H be a set. Then the pair $\mathcal{K}=\left(\left\{K_{i}\right\}_{i=1}^{n+1}\right.$, $\left\{\varphi_{i}\right\}_{i=1}^{n-1}$) is called an n-decomposition of the set H if $\left\{K_{i}\right\}_{i=1}^{n+1}$ is a sequence of $n+1$ sets satisfying
(1) $\bigcup_{i=1}^{n+1} K_{i}=H$,
(2) $K_{i} \cap K_{j}=\emptyset$ for all $i, j \in(n+1], i \neq j$,
(3) card $K_{i}=$ card K_{j} for all $i, j \in(n]$, and $\left\{\varphi_{i}\right\}_{i=1}^{n-1}$ is a sequence of $n-1$ bijections such that $\varphi_{i}: K_{i} \rightarrow K_{i+1}$ for all $i \in(n-1]$.
1.2. Remark. The concept of an n-decomposition is used here and in [5] in different meanings.
1.3. Definition. Let G, H be sets, let $\mathcal{K}=\left(\left\{K_{i}\right\}_{i=1}^{n+1},\left\{\varphi_{i}\right\}_{i=1}^{n-1}\right)$ be an n decomposition of the set H. Then the relation

$$
E_{\mathcal{K}}=\left\{f \in G^{H} ;\left.f\right|_{K_{i}}=\left.f\right|_{K_{i+1}} \circ \varphi_{i} \quad \text { for all } i \in(n-1]\right\}
$$

is called the diagonal w.r.t. \mathcal{K}.
1.4. Remark. Let $\mathcal{K}=\left(\left\{K_{i}\right\}_{i=1}^{n+1},\left\{\varphi_{i}\right\}_{i=1}^{n-1}\right)$ be an n-decomposition of the set H. If $K_{n+1}=H$ or $n=1$, then, obviously, $E_{\mathcal{K}}=G^{H}$.
1.5. Definition. Let $R \subseteq G^{H}$ be a relation, let $\mathcal{K}=\left(\left\{K_{i}\right\}_{i=1}^{n+1},\left\{\varphi_{i}\right\}_{i=1}^{n-1}\right)$ be an n-decomposition of the set $H, \psi \in S_{n}$. Then we define the relation $R_{\mathcal{K}, \psi} \subseteq G^{H}$ by $R_{\mathcal{K}, \psi}=\left\{f \in G^{H} ; \exists g \in R:\right.$

$$
\begin{aligned}
\left.f\right|_{K_{i}} & =\left.g\right|_{K_{i}} \text { if } i \in(n], i=\psi(i) \text { or } i=n+1, \\
\left.f\right|_{K_{i}} & =\left.g\right|_{K_{\psi(i)}} \circ \varphi_{\psi(i)-1} \circ \ldots \circ \varphi_{i}, \\
\left.g\right|_{K_{i}} & =\left.f\right|_{K_{\psi(i)}} \circ \varphi_{\psi(i)-1} \circ \ldots \circ \varphi_{i} \quad \text { if } \quad i \in(n], i<\psi(i), \\
\left.f\right|_{K_{\psi(i)}} & =\left.g\right|_{K_{i}} \circ \varphi_{i-1} \circ \ldots \circ \varphi_{\psi(i)}, \\
\left.g\right|_{K_{\psi(i)}} & \left.=\left.f\right|_{K_{i}} \circ \varphi_{i-1} \circ \ldots \circ \varphi_{\psi(i)} \quad \text { if } \quad i \in(n], i>\psi(i)\right\} .
\end{aligned}
$$

Then $R_{\mathcal{K}, \psi}$ is called the (\mathcal{K}, ψ)-modification of the relation R.
1.6. Remark. Let $R \subseteq G^{H}$ be a relation, let $\mathcal{K}=\left(\left\{K_{i}\right\}_{i=1}^{n+1},\left\{\varphi_{i}\right\}_{i=1}^{n-1}\right)$ be an n-decomposition of the set $H, \psi \in S_{n}$. Clearly, then
(1) $R_{\mathcal{K}, \mathrm{id}}=R$,
(2) $\emptyset_{\mathcal{K}, \psi}=\emptyset$.
1.7. Example. Let $R \subseteq G^{H}$ be a relation, $H=\{1,2\}$ (i.e. R is binary), $\mathcal{K}=\left(\left\{K_{i}\right\}_{i=1}^{3},\left\{\varphi_{1}\right\}\right), K_{1}=\{1\}, K_{2}=\{2\}$, let ψ be the permutation of the set (2] defined by $\psi(1)=2, \psi(2)=1$. Then $R_{\mathcal{K}, \psi}=R^{-1}$. Hence, in this case, the (\mathcal{K}, ψ)-modification of a binary relation coincides with its standard inverse.
1.8. Definition. Let $R_{1}, \ldots, R_{n} \subseteq G^{H}$ be relations, $\mathcal{K}=\left(\left\{K_{i}\right\}_{i=1}^{n+1},\left\{\varphi_{i}\right\}_{i=1}^{n-1}\right)$ be an n-decomposition of the set H. Then we define the relation $\left(R_{1} \ldots R_{n}\right)_{\mathcal{K}} \subseteq G^{H}$ by $\left(R_{1} \ldots R_{n}\right)_{\mathcal{K}}=\left\{f \in G^{H} ; \exists f_{i} \in R_{i} \quad\right.$ for all $\quad i \in(n]$ such that

$$
\begin{aligned}
& \left.f\right|_{K_{i}}=\left.f_{i}\right|_{K_{i}} \text { for all } i \in(n], \\
& \left.f\right|_{K_{n+1}}=\left.f_{i}\right|_{K_{n+1}} \quad \text { for all } \quad i \in(n], \\
& \left.\left.f_{i}\right|_{K_{j}} \circ \varphi_{j-1} \circ \ldots \circ \varphi_{i}=\left.f_{j}\right|_{K_{i}} \text { for all } i, j \in(n], i<j\right\} .
\end{aligned}
$$

$\left(R_{1} \ldots R_{n}\right)_{\mathcal{K}}$ is called the composition of R_{1}, \ldots, R_{n} w.r.t. \mathcal{K}.
1.9. Definition. Let $R \subseteq G^{H}$ be a relation, let \mathcal{K} be an n-decomposition of the set H. Then we put $R_{\mathcal{K}}{ }^{1}=R, R_{\mathcal{K}}{ }^{2}=(R \ldots R)_{\mathcal{K}}, R_{\mathcal{K}}{ }^{m}=\left(R_{\mathcal{K}}{ }^{m-1} R \ldots R\right)_{\mathcal{K}} \cup$ $\left(R R_{\mathcal{K}}{ }^{m-1} R \ldots R\right)_{\mathcal{K}} \cup \ldots \cup\left(R \ldots R R_{\mathcal{K}}{ }^{m-1}\right)_{\mathcal{K}}$ for any $m \in \mathbb{N}, m \geqslant 3 . R_{\mathcal{K}}^{m}$ is called the m-th power of R w.r.t. \mathcal{K}.
1.10. Example. Let $R_{1}, R_{2} \subseteq G^{H}$ be relations, $H=\{1,2\}$ (i.e. R_{1}, R_{2} are binary $), \mathcal{K}=\left(\left\{K_{i}\right\}_{i=1}^{3},\left\{\varphi_{1}\right\}\right), K_{1}=\{1\}, K_{2}=\{2\}$. Then $\left(R_{1} R_{2}\right)_{\mathcal{K}}=R_{1} R_{2}$. Hence, in this case, the composition w.r.t. \mathcal{K} coincides with the standard composition of binary relations.
1.11. Remark. Let $R_{1}, \ldots, R_{n} \subseteq G^{H}$ be relations, let $\mathcal{K}=\left(\left\{K_{i}\right\}_{i=1}^{n+1},\{\varphi\}_{i=1}^{n-1}\right)$ be an n-decomposition of the set H. If $K_{n+1}=H,\left(R_{1} \ldots R_{n}\right)_{\mathcal{K}} \neq \emptyset$, then, evidently, there exists an $f \in \bigcap_{i=1}^{n} R_{i}$.
1.12. Notation. Let H be a set, let $\mathcal{K}=\left(\left\{K_{i}\right\}_{i=1}^{n+1},\left\{\varphi_{i}\right\}_{i=1}^{n-1}\right)$ be an n decomposition of the set H. Then $\mathcal{K}^{*}=\left(\left\{K_{i}^{*}\right\}_{i=1}^{n+1},\left\{\varphi_{i}^{*}\right\}_{i=1}^{n-1}\right)$ is the n-decomposition of the set H defined by

$$
\begin{gathered}
K_{i}^{*}= \begin{cases}K_{i+1} & \text { for all } i \in(n-1] \\
K_{1} & \text { for } i=n, \\
K_{n+1} & \text { for } i=n+1,\end{cases} \\
\varphi_{i}^{*}= \begin{cases}\varphi_{i+1} & \text { for all } i \in(n-2], \\
\varphi_{1}^{-1} \circ \ldots \circ \varphi_{n-1}^{-1} & \text { for } i=n-1 .\end{cases}
\end{gathered}
$$

Further, for any $\psi \in S_{n}, \psi^{*}$ denotes the permutation of (n] defined by

$$
\psi^{*}(i)= \begin{cases}\psi(i+1)-1 & \text { if } \quad i \in(n-1], \psi(i+1) \neq 1 \\ \psi(1)-1 & \text { if } \quad i=n, \psi(1) \neq 1 \\ n & \text { otherwise }\end{cases}
$$

1.13. Proposition. Let $R, R_{1}, \ldots, R_{n} \subseteq G^{H}$ be relations, \mathcal{K} an n-decomposition of H, let $\psi \in S_{n}, m \in \mathbb{N}$. Then
(1) $\mathcal{K} \underbrace{* \ldots *}=\mathcal{K}$.
n times
(2) $E_{\mathcal{K}}=E_{\mathcal{K}^{*}}$.
(3) $R_{\mathcal{K}, \psi}=R_{\mathcal{K}^{*}, \psi^{*}}$.
(4) $\left(R_{1} \ldots R_{n}\right)_{\mathcal{K}}=\left(R_{2} \ldots R_{n} R_{1}\right)_{\mathcal{K}^{*}}$.
(5) $R_{\mathcal{K}}^{m}=R_{\mathcal{K}^{*}}^{m}$.

Proof is obvious.
1.14. Definition. Let $R \subseteq G^{H}$ be a relation, let \mathcal{K} be an n-decomposition of the set $H, \psi \in S_{n}$. Then we put $R_{\mathcal{K}, \psi}^{1}=R_{\mathcal{K}, \psi}, R_{\mathcal{K}, \psi}^{m}=\left(R_{\mathcal{K}, \psi}^{m-1}\right)_{\mathcal{K}, \psi}$ for any $m \in \mathbb{N}, m \geqslant 2$.
1.15. Remark. If $R \subseteq G^{H}$ is a relation, $\mathcal{K}=\left(\left\{\mathcal{K}_{i}\right\}_{i=1}^{n+1},\left\{\varphi_{i}\right\}_{i=1}^{n-1}\right)$ an n decomposition of the set $H, \psi, \chi \in S_{n}$, then $\left(R_{\mathcal{K}, \psi}\right)_{\mathcal{K}, \chi}=R_{\mathcal{K}, \psi^{\circ} \chi}$ need not hold in general.

If, for example, $n=3, K_{1}=\{1,2\}, K_{2}=\{3,4\}, K_{3}=\{5,6\}, K_{4}=\emptyset, G=$ $\{x, y, z\}, \varphi_{1}(1)=3, \varphi_{1}(2)=4, \varphi_{2}(3)=5, \varphi_{2}(4)=6, \psi(1)=1, \psi(2)=3$, $\psi(3)=2, \chi(1)=2, \chi(2)=3, \chi(3)=1, R=\{(x, y, z, x, y, z)\}$, then $R_{\mathcal{K}, \psi}=$ $\{(x, y, y, z, z, x)\},\left(R_{\mathcal{K}, \psi}\right)_{\mathcal{K}, \chi}=\emptyset$, while $R_{\mathcal{K}, \psi \circ \chi}=\{(y, z, z, x, x, y)\}$.
1.16. Proposition. Let J be a nonempty set, let $R, R_{1}, \ldots, R_{1}, R_{n}^{\prime}, \ldots, R_{n}^{\prime}, T, T_{j}$ for all $j \in J$ be relations with the carrier G and the index set H. Let \mathcal{K} be an n decomposition of the set $H, \psi \in S_{n}$. Let $k \in(n], m \in \mathbb{N}$. Then
(1) $E_{\mathcal{K}}=\left(E_{\mathcal{K}}\right)_{\mathcal{K}, \psi}=\left(E_{\mathcal{K}}\right)_{\mathcal{K}}^{2}$.
(2) $\left(E_{\mathcal{K}} \ldots E_{\mathcal{K}} R E_{\mathcal{K}} \ldots E_{\mathcal{K}}\right)_{\mathcal{K}} \subseteq R$.
$\uparrow k$-th place
(3) If $R \subseteq E_{\mathcal{K}}$, then (2) becomes the equality.
(4) $R \subseteq T$ implies $R_{\mathcal{K}, \psi} \subseteq T_{\mathcal{K}, \psi}$.
(5) $\left(\bigcup_{j \in J} T_{j}\right)_{\mathcal{K}, \psi}=\bigcup_{j \in J}\left(T_{j}\right)_{\mathcal{K}, \psi}$.
(6) $\left(\bigcap_{j \in J}^{j \in J} T_{j}\right)_{\mathcal{K}, \psi}=\bigcap_{j \in J}^{j \in J}\left(T_{j}\right)_{\mathcal{K}, \psi}$.
(7) $R_{i} \subseteq R_{i}^{\prime}$ for all $i \in(n]$ imply $\left(R_{1} \ldots R_{n}\right)_{\mathcal{K}} \subseteq\left(R_{1}^{\prime} \ldots R_{n}^{\prime}\right)_{\mathcal{K}}$.
(8) $R \subseteq T$ implies $R_{\mathcal{K}}^{m} \subseteq T_{\mathcal{K}}^{m}$.

Proof. The assertions follow directly from the definitions of the operations. For example, let us prove (2) and (3). Suppose that $\mathcal{K}=\left(\left\{\mathcal{K}_{i}\right\}_{i=1}^{n+1},\left\{\varphi_{i}\right\}_{i=1}^{n-1}\right)$.
(2) Let $f \in\left(E_{\mathcal{K}} \ldots E_{\mathcal{K}} R E_{\mathcal{K}} \ldots E_{\mathcal{K}}\right)_{\mathcal{K}}$. Then there exist $f_{i} \in E_{\mathcal{K}}$ for all $i \in(n], i \neq$ $\uparrow k$-th place
k, and an $f_{k} \in R$ such that

$$
\begin{aligned}
& \left.f\right|_{K_{i}}=\left.f_{i}\right|_{K_{i}} \text { for all } \quad i \in(n], \\
& \left.f\right|_{K_{n+1}}=\left.f_{i}\right|_{K_{n+1}} \quad \text { for all } \quad i \in(n], \\
& \left.f_{i}\right|_{K_{j}} \circ \varphi_{j-1} \circ \ldots \circ \varphi_{i}=\left.f_{j}\right|_{K_{i}} \quad \text { for all } \quad i, j \in(n], i<j .
\end{aligned}
$$

We have $\left.f\right|_{K_{k}}=\left.f_{k}\right|_{K_{k}},\left.f\right|_{K_{n+1}}=\left.f_{k}\right|_{K_{n+1}}$. Let $i \in(n], i<k$. Then $\left.f\right|_{K_{i}}=\left.f_{i}\right|_{K_{i}}=$ $\left.f_{i}\right|_{K_{k}} \circ \varphi_{k-1} \circ \ldots \circ \varphi_{i}=\left.f_{k}\right|_{K_{i}}$. Let $i \in(n], i>k$. Then $\left.f\right|_{K_{i}}=\left.f_{i}\right|_{K_{i}}$, hence $\left.f\right|_{K_{i}} \circ \varphi_{i-1} \circ \ldots \circ \varphi_{k}=\left.f_{i}\right|_{K_{i}} \circ \varphi_{i-1} \circ \ldots \circ \varphi_{k}=\left.f_{i}\right|_{K_{k}}=\left.f_{k}\right|_{K_{i}} \circ \varphi_{i-1} \circ \ldots \circ \varphi_{k}$. Thus, again, $\left.f\right|_{K_{i}}=\left.f_{k}\right|_{K_{i}}$. We obtain $f=f_{k} \in R$.
(3) Let $f \in R \subseteq E_{\mathcal{K}}$. Put $f_{k}=f,\left.f_{i}\right|_{K_{i}}=\left.f\right|_{K_{i}},\left.f_{i}\right|_{K_{n+1}}=\left.f\right|_{K_{n+1}}$ for all $i \in(n]$. Further, put

$$
\left.f_{i}\right|_{K_{j}}= \begin{cases}\left.f\right|_{K_{i}} \circ \varphi_{i-1} \circ \ldots \circ \varphi_{j} & \text { for all } \quad i, j \in(n], i>j \\ \left.f\right|_{K_{i}} \circ \varphi_{i}^{-1} \circ \ldots \circ \varphi_{j-1}^{-1} & \text { for all } \quad i, j \in(n], i<j\end{cases}
$$

Then $f_{i} \in E_{\mathcal{K}}$ for all $i \in(n]$ and $f_{k} \in R$. For any $i, j \in(n], i<j$, we have

$$
\left.f_{i}\right|_{K_{j}} \circ \varphi_{j-1} \circ \ldots \circ \varphi_{i}=\left.f\right|_{K_{i}}=\left.f\right|_{K_{j}} \circ \varphi_{j-1} \circ \ldots \circ \varphi_{i}=\left.f_{j}\right|_{K_{i}}
$$

so that

$$
f \in\left(E_{\mathcal{K}} \ldots E_{\mathcal{K}} R E_{\mathcal{K}} \ldots E_{\mathcal{K}}\right)_{\mathcal{K}}
$$

1.17. Remark. In 1.16, part (2), the inclusion cannot be replaced by the equality unless $R \subseteq E_{\mathcal{K}}$. If, for example, $n=3, K_{1}=\{1,2\}, K_{2}=\{3,4\}, K_{3}=\{5,6\}, K_{4}=$ $\emptyset, G=\{x, y\}, \varphi_{1}(1)=3, \varphi_{1}(2)=4, \varphi_{2}(3)=5, \varphi_{2}(4)=6, R=\{(x, x, x, x, y, x)\}$, then $(x, x, x, x, y, x) \notin\left(E_{\mathcal{K}} R E_{\mathcal{K}}\right)_{\mathcal{K}}$.
1.18. Definition. Let $R \subseteq G^{H}$ be a relation, \mathcal{K} an n-decomposition of the set H, let $\psi \in S_{n}$ be the permutation defined by

$$
\pi(i)= \begin{cases}i+1 & \text { for all } \quad i \in(n-1] \\ 1 & \text { for } \quad i=n\end{cases}
$$

Then we define ${ }^{1} R_{\mathcal{K}}=R_{\mathcal{K}, \pi},{ }^{m} R_{\mathcal{K}}={ }^{1}\left({ }^{m-1} R_{\mathcal{K}}\right)_{\mathcal{K}}$ for any $m \in \mathbb{N}, m \geqslant 2 .{ }^{m} R_{\mathcal{K}}$ is called the m-th cyclic transposition of R w.r.t. \mathcal{K}.
1.19. Proposition. Let $R \subseteq G^{H}$ be a relation, \mathcal{K} an n-decomposition of the set H. Then
(1) ${ }^{1} R_{\mathcal{K}}={ }^{1} R_{\mathcal{K}^{*}}$.
(2) $E_{\mathcal{K}}={ }^{1}\left(E_{\mathcal{K}}\right)_{\mathcal{K}}$.

Proof. (1) follows from the fact that $\pi^{*}=\pi$. (2) follows from 1.16 (1).
1.20. Proposition. Let J be a nonempty set, R, T, T_{j} for all $j \in J$ relations with the carrier G and the index set H. Let \mathcal{K} be an n-decomposition of the set H. Then
(1) $R \subseteq T$ implies ${ }^{1} R_{\mathcal{K}} \subseteq{ }^{1} T_{\mathcal{K}}$.
(2) ${ }^{1}\left(\bigcup_{j \in J} T_{j}\right)_{\mathcal{K}}=\bigcup_{j \in J}^{1}\left(T_{j}\right)_{\mathcal{K}}$.
(3) ${ }^{1}\left(\bigcap_{j \in J} T_{j}\right)_{\mathcal{K}}=\bigcap_{j \in J}^{1}\left(T_{j}\right)_{\mathcal{K}}$.

Proof. The assertions follow from 1.16 (4), (5), and (6).

2. Properties of relations

2.1. Definition. Let $R \subseteq G^{H}$ be a relation, $\mathcal{K}=\left(\left\{K_{i}\right\}_{i=1}^{n+1},\left\{\varphi_{i}\right\}_{i=1}^{n-1}\right)$ an n decomposition of the set $H, \psi \in S_{n}$. Then R is called
(1) reflexive (irreflexive) w.r.t. \mathcal{K} if $E_{\mathcal{K}} \subseteq R\left(R \cap E_{\mathcal{K}}=\emptyset\right)$,
(2) symmetric (assymmetric, antisymmetric) w.r.t. \mathcal{K} and ψ if $R_{\mathcal{K}, \psi} \subseteq R(R \cap$ $\left.R_{\mathcal{K}, \psi}=\emptyset, R \cap R_{\mathcal{K}, \psi} \subseteq E_{\mathcal{K}}\right)$,
(3) transitive (atransitive) w.r.t. \mathcal{K} if $R_{\mathcal{K}}^{2} \subseteq R\left(R \cap R_{\mathcal{K}}^{m}=\emptyset\right.$ for any $\left.m \in \mathbb{N}, m \geqslant 2\right)$,
(4) complete w.r.t. \mathcal{K} if $f \in G^{H},\left.f\right|_{K_{i}} \neq\left. f\right|_{K_{j}} \circ \varphi_{j-1} \circ \ldots \circ \varphi_{i}$ for all $i, j \in(n], i<j$ imply the existence of a $\chi \in S_{n}$ such that $f \in R_{\mathcal{K}, \chi}$.
2.2. Proposition. Let J be a nonempty set, $j_{0} \in J$. Let $R, R_{1}, \ldots, R_{n}, T_{j}$ for all $j \in J$ be relations with the carrier G and the index set H. Let \mathcal{K} be an n-decomposition of the set $H, \psi \in S_{n}$. Then
(1) If $T_{j_{0}}$ is reflexive w.r.t. \mathcal{K}, then $\bigcup_{j \in J} T_{j}$ is reflexive w.r.t. \mathcal{K}.
(2) If R, R_{1}, \ldots, R_{n} and T_{j} for all $j \in J$ are reflexive w.r.t. \mathcal{K}, then $\bigcap_{j \in J} T_{j}, R_{\mathcal{K}, \psi}$ and $\left(R_{1} \ldots R_{n}\right)_{\mathcal{K}}$ are reflexive w.r.t. \mathcal{K}.
(3) If R and T_{j} for all $j \in J$ are irreflexive (symmetric) w.r.t. \mathcal{K} (and ψ), then $\bigcup_{j \in J} T_{j}, \bigcap_{j \in J} T_{j}$ and $R_{\mathcal{K}, \psi}$ have the same property.
(4) If T_{j} for all $j \in J$ are transitive w.r.t. \mathcal{K}, then $\bigcap_{j \in J} T_{j}$ is transitive w.r.t. \mathcal{K}.
(5) If $T_{j_{0}}$ is atransitive (assymmetric, antisymmetric) w.r.t. \mathcal{K} (and ψ), then $\bigcap_{j \in J} T_{j}$ has the same property.
(6) If R is asymmetric (antisymmetric) w.r.t. \mathcal{K} and ψ, then $R_{\mathcal{K}, \psi}$ has the same property.
(7) If $T_{j_{0}}$ is complete w.r.t. \mathcal{K}, then $\bigcup_{j \in J} T_{j}$ is complete w.r.t. \mathcal{K}.

Proof. The assertion (1) is evident, the others follow from 1.6 (2), 1.16 (1), (4)-(6), and (8).
2.3. Remark. Let $R \subseteq G^{H}$ be a relation, \mathcal{K} an n-decomposition of H, let $\psi \in S_{n}$. It can be easily obtained from 2.2 (3) by induction that if R is symmetric w.r.t. \mathcal{K} and ψ, then $R_{\mathcal{K}, \psi}^{m+1} \subseteq R_{\mathcal{K}, \psi}^{m}$ for any $m \in \mathbb{N}$.
2.4. Proposition. Let $R \subseteq G^{H}$ be a relation, \mathcal{K} an n-decomposition of the set H, let $\psi \in S_{n}$. Then:
(1) If R is reflexive (irreflexive, transitive, atransitive, complete) w.r.t. \mathcal{K}, then it has the same property w.r.t. \mathcal{K}^{*}.
(2) If R is symmetric (asymmetric, antisymmetric) w.r.t. \mathcal{K} and ψ, then it has the same property w.r.t. \mathcal{K}^{*} and ψ^{*}.
Proof. The assertions follow from 1.13 (2), (3), and (5).
2.5. Definition. Let $R \subseteq G^{H}$ be a relation, \mathcal{K} an n-decomposition of the set H.

Then R is called
(1) cyclic (acyclic, anticyclic) w.r.t. \mathcal{K} if it is symmetric (asymmetric, antisymmetric) w.r.t. \mathcal{K} and π,
(2) symmetric (asymmetric, antisymmetric) w.r.t. \mathcal{K} if it is symmetric w.r.t. \mathcal{K} and ψ for any $\psi \in S_{n}$ (asymmetric, antisymmetric w.r.t. \mathcal{K} and ψ for any odd permutation $\psi \in S_{n}$).
2.6. Proposition. Let J be a nonempty set, $j_{0} \in J$. Let R, T_{j} for all $j \in J$ be relations with the carrier G and the index set H. Let \mathcal{K} be an n-decomposition of the set $H, \psi \in S_{n}$. Then:
(1) If R and T_{j} for all $j \in J$ are cyclic w.r.t. \mathcal{K}, then $\bigcup_{j \in J} T_{j}, \bigcap_{j \in J} T_{j}$ and ${ }^{1} R_{\mathcal{K}}$ are cyclic w.r.t. \mathcal{K}.
(2) If T_{j} for all $j \in J$ are symmetric w.r.t. \mathcal{K}, then $\bigcup_{j \in J} T_{j}$ and $\bigcap_{j \in J} T_{j}$ are symmetric w.r.t. \mathcal{K}.
(3) If R and $T_{j_{0}}$ are acyclic (anticyclic) w.r.t. \mathcal{K}, then $\bigcap_{j \in J} T_{j}$ and ${ }^{1} R_{\mathcal{K}}$ have the same property.
(4) If $T_{j_{0}}$ is asymmetric (antisymmetric) w.r.t. \mathcal{K}, then $\bigcap_{j \in J} T_{j}$ has the same property.
(5) If R is complete w.r.t. \mathcal{K}, then ${ }^{1} R_{\mathcal{K}}$ is complete w.r.t. \mathcal{K}.

Proof. The assertions follow from 2.2 (3), (5), and (6).
2.7. Remark. Let $R \subseteq G^{H}$ be a relation, \mathcal{K} an n-decomposition of the set H. Putting $\psi=\pi$ in 2.3, we obtain that if R is cyclic w.r.t. \mathcal{K}, then ${ }^{m+1} R_{\mathcal{K}} \subseteq{ }^{m} R_{\mathcal{K}}$ for any $m \in \mathbb{N}$.
2.8. Proposition. Let $R \subseteq G^{H}$ be a relation, \mathcal{K} an n-decomposition of the set H. If R has any of the properties defined in 2.5 w.r.t. \mathcal{K}, then it has the same property w.r.t. \mathcal{K}^{*}.

Proof. The proposition follows from 2.4 (2) and from the facts that $\pi^{*}=\pi$ and $\left\{\psi^{*} ; \psi \in S_{n}\right\}=S_{n}$.

3. Hulls of relations

3.1. Definition. Let $R \subseteq G^{H}$ be a relation, \mathcal{K} an n-decomposition of the set H, $\psi \in S_{n}$. Let (p) be any of the properties defined in 2.1 or 2.5 . A relation $Q \subseteq G^{H}$ is called the (p)-hull of R w.r.t. $\mathcal{K}($ and $\psi)$ if
(1) $R \subseteq Q$,
(2) Q has the property (p),
(3) if $T \subseteq G^{H}$ is any relation having the property (p) and such that $R \subseteq T$, then $Q \subseteq T$.
3.2. Remark. Let $R \subseteq G^{H}$ be a relation, \mathcal{K} an n-decomposition of the set H, $\psi \in S_{n}$. Let (p) be any of the properties defined in 2.1 or 2.5 . Obviously, then R has the property (p) w.r.t. $\mathcal{K}($ and $\psi)$ if and only if the (p)-hull Q of R w.r.t. \mathcal{K} (and ψ) exists and $R=Q$.
3.3. Proposition. Let $R, T \subseteq G^{H}$ be relations, \mathcal{K} an n-decomposition of the set $H, \psi \in S_{n}$. Let (p) be any of the properties defined in 2.1 or $2.5, R_{\mathcal{K}(, \psi)}^{(p)}\left(T_{\mathcal{K}(, \psi)}^{(p)}\right)$ the (p)-hull of $R(T)$ w.r.t. \mathcal{K} (and ψ). Then $R \subseteq T$ implies $R_{\mathcal{K}(, \psi)}^{(p)} \subseteq T_{\mathcal{K}(, \psi)}^{(p)}$.

Proof. Let $R \subseteq T$. We have $T \subseteq T_{\mathcal{K}(, \psi)}^{(p)}$. Thus $R \subseteq T_{\mathcal{K}(, \psi)}^{(p)}$. As $T_{\mathcal{K}(, \psi)}^{(p)}$ has the property (p), we obtain $R_{\mathcal{K}(, \psi)}^{(p)} \subseteq T_{\mathcal{K}(, \psi)}^{(p)}$.
3.4. Definition. Let $R \subseteq G^{H}$ be a relation, \mathcal{K} an n-decomposition of the set H. Then we define ${ }_{1} R_{\mathcal{K}}=R,{ }_{m} R_{\mathcal{K}}={ }_{m-1} R_{\mathcal{K}} \cup\left({ }_{m-1} R_{\mathcal{K}}\right)_{\mathcal{K}}$ for any $m \in \mathbb{N}, m \geqslant 2$.
3.5. Rem ark. Let $R \subseteq G^{H}$ be a relation, \mathcal{K} an n-decomposition of the set H. Clearly, then ${ }_{m} R_{\mathcal{K}} \subseteq{ }_{m+1} R_{\mathcal{K}}$ for any $m \in \mathbb{N}$.
3.6. Proposition. Let $R \subseteq G^{H}$ be a relation, \mathcal{K} an n-decomposition of the set H. Let $\psi \in S_{n}$. Then the following relations exist:
(1) the reflexive hull $R_{\mathcal{K}}^{(r)}$ of R w.r.t. \mathcal{K} and we have $R_{\mathcal{K}}^{(r)}=R \cup E_{\mathcal{K}}$,
(2) the symmetric hull $R_{\mathcal{K}, \psi}^{(s)}$ of R w.r.t. \mathcal{K} and ψ and we have $R_{\mathcal{K}, \psi}^{(s)}=R \cup \bigcup_{i=1}^{\infty} R_{\mathcal{K}, \psi}^{i}$,
(3) the transitive hull $R^{(t)}$ of R w.r.t. \mathcal{K} and we have $R_{\mathcal{K}}^{(t)}=\bigcup_{i=1}^{\infty}{ }_{i} R_{\mathcal{K}}$.

Proof. (1) is evident.
(2) Put $Q=R \cup \bigcup_{i=1}^{\infty} R_{\mathcal{K}, \psi}^{i}$. Clearly, then $R \subseteq Q$. We have $Q_{\mathcal{K}, \psi}=(R \cup$ $\left.\bigcup_{i=1}^{\infty} R_{\mathcal{K}, \psi}^{i}\right)_{\mathcal{K}, \psi}=R_{\mathcal{K}, \psi} \cup \bigcup_{i=1}^{\infty} R_{\mathcal{K}, \psi}^{i+1}=\bigcup_{i=1}^{\infty} R_{\mathcal{K}, \psi}^{i} \subseteq Q$ by 1.16 (5) and Q is symmetric w.r.t. \mathcal{K} and ψ. Further, let $T \subseteq G^{H}$ be symmetric w.r.t. \mathcal{K} and ψ and let $R \subseteq T$. By virtue of 1.16 (4) and using induction we obtain $Q=R \cup \bigcup_{i=1}^{\infty} R_{\mathcal{K}, \psi}^{i} \subseteq T \cup \bigcup_{i=1}^{\infty} T_{\mathcal{K}, \psi}^{i} \subseteq T$ due to 2.3.
(3) Put $Q=\bigcup_{i=1}^{\infty}{ }_{i} R_{\mathcal{K}}$. Clearly $R={ }_{1} R_{\mathcal{K}} \subseteq Q$. Let $f \in Q_{\mathcal{K}}^{2}$. Then there exists an $f_{i} \in Q$ for each $i \in(n]$ such that $\left.f\right|_{K_{i}}=\left.f_{i}\right|_{K_{i}}$ for each $i \in(n],\left.f\right|_{K_{n+1}}=\left.f_{i}\right|_{K_{n+1}}$ for each $i \in(n],\left.f_{i}\right|_{K_{j}} \circ \varphi_{j-1} \circ \ldots \circ \varphi_{i}=\left.f_{j}\right|_{K_{i}}$ for each $i, j \in(n], i<j$. For each $i \in(n]$ there exists a $j_{i} \in \mathbb{N}$ such that $f_{i} \in{ }_{j_{i}} R_{\mathcal{K}}$. Hence it follows that $f \in\left({ }_{j_{1}} R_{\mathcal{K}} \cdots j_{n} R_{\mathcal{K}}\right)_{\mathcal{K}}$. Denote $j_{0}=\max \left\{j_{1}, \ldots, j_{n}\right\}$. By 3.5, we have $j_{i} R_{\mathcal{K}} \subseteq_{j_{0}} R_{\mathcal{K}}$ for all $i \in(n]$. By 1.16 (7), $f \in\left({ }_{j_{0}} R_{\mathcal{K}} \cdots j_{0} R_{\mathcal{K}}\right)_{\mathcal{K}}={ }_{j_{0}} R_{\mathcal{K}}^{2} \subseteq{ }_{j_{0}+1} R_{\mathcal{K}} \subseteq \bigcup_{i=1}^{\infty}{ }_{i} R_{\mathcal{K}}=Q$. Thus $Q_{\mathcal{K}}^{2} \subseteq Q$ and Q is transitive w.r.t. \mathcal{K}. Let $T \subseteq G^{H}$ be transitive w.r.t. \mathcal{K} and such that $R \subseteq T$. It is easy to prove by induction that ${ }_{i} R_{\mathcal{K}} \subseteq T$ for any $i \in \mathbb{N}$. Hence $Q=\bigcup_{i=1}^{\infty}{ }_{i} R_{\mathcal{K}} \subseteq \bigcup_{i=1}^{\infty} T=T$ and we have $R_{\mathcal{K}}^{(t)}=Q$.
3.7. Proposition. Let $R \subseteq G^{H}$ be a relation, \mathcal{K} an n-decomposition of the set $H, \psi \in S_{n}$. Then:
(1) If R is complete (symmetric, antisymmetric) w.r.t. \mathcal{K} (and ψ), then $R_{\mathcal{K}}^{(r)}$ has the same property.
(2) If $n \leqslant 2$ and R is transitive w.r.t. \mathcal{K}, then $R_{\mathcal{K}}^{(r)}$ is transitive w.r.t. \mathcal{K}.
(3) If R is reflexive (irreflexive, complete) w.r.t. \mathcal{K}, then $R_{\mathcal{K}, \psi}^{(s)}$ has the same property.
(4) If R is reflexive (complete) w.r.t. \mathcal{K}, then $R_{\mathcal{K}}^{(t)}$ has the same property.

Proof. (1) follows from 1.16 (1), (5), 2.2 (3), (7), and 3.6 (1).
(2) Let $n \leqslant 2$ and let R be transitive w.r.t. \mathcal{K}. Then $R_{\mathcal{K}}^{2} \subseteq R$. The case of $n=1$ is trivial. Let $n=2$. Let $f \in\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{2}=\left(R \cup E_{\mathcal{K}}\right)_{\mathcal{K}}^{2}($ by $3.6(1))$. Then there exist
$f_{1}, f_{2} \in R \cup E_{\mathcal{K}}$ such that $\left.f\right|_{K_{1}}=\left.f_{1}\right|_{K_{1}},\left.f\right|_{K_{2}}=\left.f_{2}\right|_{K_{2}},\left.f\right|_{K_{3}}=\left.f_{1}\right|_{K_{3}}=\left.f_{2}\right|_{K_{3}},\left.f_{1}\right|_{K_{2}} \circ$ $\varphi_{1}=\left.f_{2}\right|_{K_{1}}$. If $f_{1}, f_{2} \in R$, then $f \in(R R)_{\mathcal{K}}=R_{\mathcal{K}}^{2} \subseteq R \subseteq R_{\mathcal{K}}^{(r)}$. If $f_{1}, f_{2} \in E_{\mathcal{K}}$, then, by 1.16 (1), $f \in\left(E_{\mathcal{K}} E_{\mathcal{K}}\right)_{\mathcal{K}}=\left(E_{\mathcal{K}}\right)_{\mathcal{K}}^{2}=E_{\mathcal{K}} \subseteq R_{\mathcal{K}}^{(r)}$. If $f_{1} \in R, f_{2} \in E_{\mathcal{K}}$, then $\left.f\right|_{K_{1}}=\left.f_{1}\right|_{K_{1}},\left.f\right|_{K_{2}}=\left.f_{2}\right|_{K_{2}}=\left.f_{2}\right|_{K_{1}} \circ \varphi_{1}^{-1}=\left.f_{1}\right|_{K_{2}},\left.f\right|_{K_{3}}=\left.f_{1}\right|_{K_{3}}$. Hence $f=f_{1} \in R \subseteq R_{\mathcal{K}}^{(r)}$. The case of $f_{1} \in E_{\mathcal{K}}, f_{2} \in R$ is analogous. Thus $\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{2} \subseteq R_{\mathcal{K}}^{(r)}$ and $R_{\mathcal{K}}^{(r)}$ is transitive w.r.t. \mathcal{K}.
(3) and (4) follow from $1.14,1.16(1),(2),(4),(6), 3.1(1), 3.4$, and $3.6(2),(3)$.
3.8. Corollary. Let $R \subseteq G^{H}$ be a relation, \mathcal{K} an n-decomposition of the set H, $\psi \in S_{n}$. Then
(1) $\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}, \psi}^{(s)}=\left(R_{\mathcal{K}, \psi}^{(s)}\right)_{\mathcal{K}}^{(r)}$.
(2) $\left(R_{\mathcal{K}}^{(t)}\right)_{\mathcal{K}}^{(r)} \subseteq\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{(t)}$.
(3) If $n \leqslant 2$, then $\left(R_{\mathcal{K}}^{(t)}\right)_{\mathcal{K}}^{(r)}=\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{(t)}$.

Proof. (1) As $R \subseteq R_{\mathcal{K}, \psi}^{(s)}$, we have, by $3.3, R_{\mathcal{K}}^{(r)} \subseteq\left(R_{\mathcal{K}, \psi}^{(s)}\right)_{\mathcal{K}}^{(r)}$, and again by 3.3, $\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}, \psi}^{(s)} \subseteq\left(\left(R_{\mathcal{K}, \psi}^{(s)}\right)_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}, \psi}^{(s)}$. By $3.7(1),\left(R_{\mathcal{K}, \psi}^{(s)}\right)_{\mathcal{K}}^{(r)}$ is symmetric w.r.t. \mathcal{K} and ψ, consequently, by $3.2,\left(\left(R_{\mathcal{K}, \psi}^{(s)}\right)_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}, \psi}^{(s)}=\left(R_{\mathcal{K}, \psi}^{(s)}\right)_{\mathcal{K}}^{(r)}$. Thus $\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}, \psi}^{(s)} \subseteq\left(R_{\mathcal{K}, \psi}^{(s)}\right)_{\mathcal{K}}^{(r)}$. As $R \subseteq R_{\mathcal{K}}^{(r)}$, we have, by $3.3, R_{\mathcal{K}, \psi}^{(s)} \subseteq\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}, \psi}^{(s)}$, and again by $3.3,\left(R_{\mathcal{K}, \psi}^{(s)}\right)_{\mathcal{K}}^{(r)} \subseteq$ $\left(\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}, \psi}^{(s)}\right)_{\mathcal{K}}^{(r)}$. By $3.7(3),\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}, \psi}^{(s)}$ is reflexive w.r.t. \mathcal{K}, consequently, by 3.2, $\left(\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}, \psi}^{(s)}\right)_{\mathcal{K}}^{(r)}=\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}, \psi}^{(s)}$. Thus $\left(R_{\mathcal{K}, \psi}^{(s)}\right)_{\mathcal{K}}^{(r)} \subseteq\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}, \psi}^{(s)}$. Combining the two results, we obtain $\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}, \psi}^{(s)}=\left(R_{\mathcal{K}, \psi}^{(s)}\right)_{\mathcal{K}}^{(r)}$.
(2) and (3) follow analogously from 3.3, 3.7 (4), (2), and 3.2.
3.9. Remark. The inclusion in 3.8 (2) cannot, in general, be replaced by equality. If, for example, $n=3, K_{1}=\{1,2\}, K_{2}=\{3,4\}, K_{3}=\{5,6\}, K_{4}=\emptyset$, $G=\{x, y\}, \varphi_{1}(1)=3, \varphi_{1}(2)=4, \varphi_{2}(3)=5, \varphi_{2}(4)=6, R=\{(x, y, x, x, x, y)$, $(x, y, x, y, y, x)\}$, then $(x, y, x, y, x, y) \in E_{\mathcal{K}} \subseteq R_{\mathcal{K}}^{(r)},(x, y, x, x, x, y) \in R \subseteq R_{\mathcal{K}}^{(r)}$, $(x, y, x, y, y, x) \in R \subseteq R_{\mathcal{K}}^{(r)}$, hence $(x, y, x, x, y, x) \in\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{2} \subseteq\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{(t)}$, but $R_{\mathcal{K}}^{2}=\emptyset$, consequently $R_{\mathcal{K}}^{(t)}=R$, and $(x, y, x, x, y, x) \notin R \cup E_{\mathcal{K}}=R_{\mathcal{K}}^{(r)}=\left(R_{\mathcal{K}}^{(t)}\right)_{\mathcal{K}}^{(r)}$.
3.10. Corollary. Let $R \subseteq G^{H}$ be a relation, \mathcal{K} an n-decomposition of the set H. Then $\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{(t)}=\left(\left(R_{\mathcal{K}}^{(t)}\right)_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{(t)}$.

Proof. Similarly as in the proof of 3.8 (1) we get $\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{(t)} \subseteq\left(\left(R_{\mathcal{K}}^{(t)}\right)_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{(t)}$. By $3.8(2),\left(R_{\mathcal{K}}^{(t)}\right)_{\mathcal{K}}^{(r)} \subseteq\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{(t)}$, consequently, by 3.3 and $3.2,\left(\left(R_{\mathcal{K}}^{(t)}\right)_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{(t)} \subseteq$ $\left(\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{(t)}\right)_{\mathcal{K}}^{(t)}=\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{(t)}$. Thus, $\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{(t)}=\left(\left(R_{\mathcal{K}}^{(t)}\right)_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{(t)}$.
3.11. Proposition. Let $R \subseteq G^{H}$ be a relation, \mathcal{K} an n-decomposition of the set H. Then the following relations exist:
(1) the cyclic hull $R_{\mathcal{K}}^{(c)}$ of R w.r.t. \mathcal{K} and we have $R_{\mathcal{K}}^{(c)}=R \cup \bigcup_{i=1}^{\infty}{ }^{i} R_{\mathcal{K}}$,
(2) the symmetric hull $R_{\mathcal{K}}^{(d)}$ of R w.r.t. \mathcal{K} and we have

$$
R_{\mathcal{K}}^{(d)}=\bigcup_{i=1}^{\infty} \bigcup_{\psi_{1}, \psi_{2}, \ldots, \psi_{i} \in S_{n}}\left(\ldots\left(R_{\mathcal{K}, \psi_{1}}\right)_{\mathcal{K}, \psi_{2}} \ldots\right)_{\mathcal{K}, \psi_{i}}
$$

Proof. (1) As $R_{\mathcal{K}}^{(c)}=R_{\mathcal{K}, \pi}^{(s)}$, we have, by $3.6(2), R_{\mathcal{K}}^{(c)}=R \cup \bigcup_{i=1}^{\infty} R_{\mathcal{K}, \pi}^{i}=$ $R \cup \bigcup_{i=1}^{\infty}{ }^{i} R_{\mathcal{K}}$.
(2) Put $Q=\bigcup_{i=1}^{\infty} \bigcup_{\psi_{1}, \psi_{2}, \ldots, \psi_{i} \in S_{n}}\left(\ldots\left(R_{\mathcal{K}, \psi_{1}}\right)_{\mathcal{K}, \psi_{2}} \ldots\right)_{\mathcal{K}, \psi_{i}}$. By 1.6 (1), we have $R=R_{\mathcal{K}, \text { id }} \subseteq Q$. Let $\xi \in S_{n}$.

By Proposition $1.16(5), Q_{\mathcal{K}, \xi}=\left(\bigcup_{i=1}^{\infty} \bigcup_{\psi_{1}, \psi_{2}, \ldots, \psi_{i} \in S_{n}}\left(\ldots\left(R_{\mathcal{K}, \psi_{1}}\right)_{\mathcal{K}, \psi_{2}} \ldots\right)_{\mathcal{K}, \psi_{i}}\right)_{\mathcal{K}, \xi}=$ $\bigcup_{i=1}^{\infty} \bigcup_{\psi_{1}, \psi_{2}, \ldots, \psi_{i} \in S_{n}}\left(\left(\ldots\left(R_{\mathcal{K}, \psi_{1}}\right)_{\mathcal{K}, \psi_{2}} \ldots\right)_{\mathcal{K}, \psi_{i}}\right)_{\mathcal{K}, \xi} \subseteq Q$, and Q is symmetric w.r.t. \mathcal{K}. Now, let $R \subseteq T$ where T is symmetric w.r.t. \mathcal{K}. Then, by 1.16 (4),

$$
\begin{aligned}
Q & =\bigcup_{i=1}^{\infty} \bigcup_{\psi_{1}, \psi_{2}, \ldots, \psi_{i} \in S_{n}}\left(\ldots\left(R_{\mathcal{K}, \psi_{1}}\right)_{\mathcal{K}, \psi_{2}} \ldots\right)_{\mathcal{K}, \psi_{i}} \\
& \subseteq \bigcup_{i=1}^{\infty} \quad \bigcup_{\psi_{1}, \psi_{2}, \ldots, \psi_{i} \in S_{n}}\left(\ldots\left(T_{\mathcal{K}, \psi_{1}}\right)_{\mathcal{K}, \psi_{2}} \ldots\right)_{\mathcal{K}, \psi_{i}} \subseteq T .
\end{aligned}
$$

Hence Q is the symmetric hull of R w.r.t. \mathcal{K}.
3.12. Proposition. Let $R \subseteq G^{H}$ be a relation, let \mathcal{K} be an n-decomposition of the set H.
(1) If R is reflexive (irreflexive, complete) w.r.t. \mathcal{K}, then $R_{\mathcal{K}}^{(c)}$ and $R_{\mathcal{K}}^{(d)}$ have the same property.
(2) If R is symmetric (antisymmetric) w.r.t. \mathcal{K}, then $R_{\mathcal{K}}^{(r)}$ has the same property.

Proof. Let R be reflexive w.r.t. \mathcal{K}. Then $E_{\mathcal{K}} \subseteq R$. But $R \subseteq R_{\mathcal{K}}^{(c)}, R \subseteq R_{\mathcal{K}}^{(d)}$, hence $E_{\mathcal{K}} \subseteq R^{(c)}, E_{\mathcal{K}} \subseteq R_{\mathcal{K}}^{(d)}$, and both $R_{\mathcal{K}}^{(c)}$ and $R_{\mathcal{K}}^{(d)}$ are reflexive w.r.t. \mathcal{K}. Let R be irreflexive w.r.t. \mathcal{K}. By $2.2(3),{ }^{1} R_{\mathcal{K}}=R_{\mathcal{K}, \pi}$ is irreflexive w.r.t. \mathcal{K}. It follows by induction that ${ }^{i} R_{\mathcal{K}}$ is irreflexive w.r.t. \mathcal{K} for all $i \in \mathbb{N}$. By $3.11(1), R_{\mathcal{K}}^{(c)}=\bigcup_{i=1}^{\infty}{ }^{i} R_{\mathcal{K}}$. Hence, again by $2.2(3), R_{\mathcal{K}}^{(c)}$ is irreflexive w.r.t. \mathcal{K}. The other properties can be easily verified with the aid of 2.2 (3), 3.11 (2),3.3 (1), and 3.7 (1).
3.13. Corollary. Let $R \subseteq G^{H}$ be a relation, \mathcal{K} an n-decomposition of the set H, $\psi \in S_{n}$. Then
(1) $\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{(c)}=\left(R_{\mathcal{K}}^{(c)}\right)_{\mathcal{K}}^{(r)}$.
(2) $\left(R_{\mathcal{K}}^{(d)}\right)_{\mathcal{K}}^{(r)}=\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{(d)}$.
(3) $\left(R_{\mathcal{K}}^{(d)}\right)_{\mathcal{K}, \psi}^{(s)}=\left(R_{\mathcal{K}, \psi}^{(s)}\right)_{\mathcal{K}}^{(d)}=R_{\mathcal{K}}^{(d)}$.
(4) $\left(R_{\mathcal{K}}^{(d)}\right)_{\mathcal{K}}^{(c)}=\left(R_{\mathcal{K}}^{(c)}\right)_{\mathcal{K}}^{(d)}=R_{\mathcal{K}}^{(d)}$.

Proof. (1) follows from 3.8 (1) for $\psi=\pi$.
(2) As $R \subseteq R_{\mathcal{K}}^{(r)}$, we have, by $3.3, R_{\mathcal{K}}^{(d)} \subseteq\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{(d)}$, and again by $3.3,\left(R_{\mathcal{K}}^{(d)}\right)_{\mathcal{K}}^{(r)} \subseteq$ $\left(\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{(d)}\right)_{\mathcal{K}}^{(r)}$. By $\left.3.12(1), R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{(d)}$ is reflexive w.r.t. \mathcal{K}, consequently, by 3.2 , $\left(\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{(d)}\right)_{\mathcal{K}}^{(r)}=\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{(d)} . \operatorname{Thus}\left(R_{\mathcal{K}}^{(d)}\right)_{\mathcal{K}}^{(r)} \subseteq\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{(d)}$. Similarly, using 3.3, 3.12(2) and 3.2, we obtain $\left(R_{\mathcal{K}}^{(r)}\right)_{\mathcal{K}}^{(d)} \subseteq\left(R_{\mathcal{K}}^{(d)}\right)_{\mathcal{K}}^{(r)}$, which proves the assertion.
(3) follows from 3.3 and 3.2.
(4) is a special case of (3).

References

[1] G. Birkhoff: Lattice Theory (3rd edition). Amer. Math. Soc. Coll. Publ., Providence, R. I., 1967.
[2] E. Čech: Point Sets. Academia, Praha, 1966. (In Czech.)
[3] F. Hausdorff: Grundzüge der Mengenlehre. Veith \& Co., Leipzig, 1914.
[4] I. Chajda, V. Novák: On extension of cyclic orders. Časopis Pěst. Mat. 110 (1985), 116-121.
[5] J. Karásek: On a modification of relational exioms. Arch. Math. 28 (1992), 95-111.
[6] J. Karásek: Projections of relations. Math. Bohem. 120 (1995), 283-291.
[7] V. Novák: Cyclically ordered sets. Czechoslovak Math. J. 32 (1982), 460-473.
[8] J. Šlapal: Relations of type α. Z. Math. Logik Grundl. Math. 34 (1988), 563-573.
[9] J. Šlapal: On relations. Czechoslovak Math. J. 39 (1989), 198-214.
[10] J. Slapal: On the direct power of relational systems. Math. Slovaca 39 (1989), 251-255.
[11] J. Šlapal: A note on general relations. Math. Slovaca 45 (1995), 1-8.
Author's address: Jiř̌ Karásek, Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, CZ-616 69 Brno, Czech Republic, e-mail: karasek@mat.fme.vutbr.cz.

