ESSENTIAL NORMS OF THE NEUMANN OPERATOR OF THE ARITHMETICAL MEAN

JOSEF KRÁL, DAGMAR MEDKOVÁ, Praha

(Received October 6, 1999)

Abstract. Let $K \subset \mathbb{R}^m$ $(m \ge 2)$ be a compact set; assume that each ball centered on the boundary B of K meets K in a set of positive Lebesgue measure. Let $\mathcal{C}_0^{(1)}$ be the class of all continuously differentiable real-valued functions with compact support in \mathbb{R}^m and denote by σ_m the area of the unit sphere in \mathbb{R}^m . With each $\varphi \in \mathcal{C}_0^{(1)}$ we associate the function

$$W_K \varphi(z) = \frac{1}{\sigma_m} \int_{\mathbb{R}^m \setminus K} \operatorname{grad} \varphi(x) \cdot \frac{z - x}{|z - x|^m} \, \mathrm{d}x$$

of the variable $z \in K$ (which is continuous in K and harmonic in $K \setminus B$). $W_K \varphi$ depends only on the restriction $\varphi|_B$ of φ to the boundary B of K. This gives rise to a linear operator W_K acting from the space $\mathcal{C}^{(1)}(B) = \{\varphi|_B; \varphi \in \mathcal{C}_0^{(1)}\}$ to the space $\mathcal{C}(B)$ of all continuous functions on B. The operator \mathcal{T}_K sending each $f \in \mathcal{C}^{(1)}(B)$ to $\mathcal{T}_K f = 2W_K f - f \in \mathcal{C}(B)$ is called the Neumann operator of the arithmetical mean; it plays a significant role in connection with boundary value problems for harmonic functions. If p is a norm on $\mathcal{C}(B) \supset$ $\mathcal{C}^{(1)}(B)$ inducing the topology of uniform convergence and \mathcal{G} is the space of all compact linear operators acting on $\mathcal{C}(B)$, then the associated p-essential norm of \mathcal{T}_K is given by

$$\omega_p \mathcal{T}_K = \inf_{Q \in \mathcal{G}} \sup \left\{ p[(\mathcal{T}_K - Q)f]; \ f \in \mathcal{C}^{(1)}(B), \ p(f) \leq 1 \right\}$$

In the present paper estimates (from above and from below) of $\omega_p \mathcal{T}_K$ are obtained resulting in precise evaluation of $\omega_p \mathcal{T}_K$ in geometric terms connected only with K.

 $\mathit{Keywords}:$ double layer potential, Neumann's operator of the arithmetical mean, essential norm

MSC 2000: 31B10, 45P05, 47A30

NOTATION AND INTRODUCTORY COMMENTS

In what follows \mathbb{R}^m will be the Euclidean space of dimension $m \ge 2$. The Euclidean norm of a vector $x = (x_1, \ldots, x_m) \in \mathbb{R}^m$ will be denoted by |x|. If $M \subset \mathbb{R}^m$, then the symbols \overline{M} , M° and ∂M will denote the closure, the interior and the boundary of M, respectively. $B_r(z) := \{x \in \mathbb{R}^m; |x - z| < r\}$ is the open ball of radius r > 0centered at $z \in \mathbb{R}^m$. The symbol λ_k will denote the outer k-dimensional Hausdorff measure with the usual normalization (so that λ_m coincides with the outer Lebesgue measure in \mathbb{R}^m). We put

$$\sigma_m \colon = \lambda_{m-1}(\partial B_1(0)) = \frac{2\pi^{m/2}}{\Gamma(m/2)},$$

where Γ is the Euler gamma function. For fixed $z \in \mathbb{R}^m$ the symbol h_z will denote the fundamental harmonic function with a pole at z, whose values at any $x \in \mathbb{R}^m \setminus \{z\}$ are given by

$$h_z(x) := \begin{cases} \frac{1}{2\pi} \ln \frac{1}{|x-z|} & \text{if } m = 2, \\ \frac{1}{(m-2)\sigma_m} |x-z|^{2-m} & \text{if } m > 2; \end{cases}$$

we put $h_z(z) = +\infty$. Let $\mathcal{C}_0^{(1)}$ be the space of all continuously differentiable compactly supported real-valued functions on \mathbb{R}^m . We fix a compact set $K \subset \mathbb{R}^m$ and put $G = \mathbb{R}^m \setminus K, B = \partial K$. With any $\varphi \in \mathcal{C}_0^{(1)}$ we associate the function $W_K \varphi \equiv W \varphi$ on K defined by

$$W\varphi(z) = \int_G \operatorname{grad} \varphi(x) \cdot \operatorname{grad} h_z(x) \, \mathrm{d}\lambda_m(x), \ z \in K.$$

It is not difficult to verify that $W\varphi$ is continuous in K and harmonic in K° ; besides, $W\varphi$ depends only on the restriction $\varphi|_B$ of $\varphi \in \mathcal{C}_0^{(1)}$ to B (cf. §2 in [9]). Denote by

$$\mathcal{C}^{(1)}(B) \colon = \{\varphi|_B; \ \varphi \in \mathcal{C}^{(1)}_0\}$$

the vectorspace (over the reals) of all restrictions to B of functions in $\mathcal{C}_0^{(1)}$ and let $\mathcal{C}(K)$ be the vectorspace of all finite continuous real-valued functions in K; then W gives rise to a linear operator acting from $\mathcal{C}^{(1)}(B)$ to $\mathcal{C}(K)$. In connection with boundary value problems it is natural to inquire about conditions on K guaranteeing the continuity of the operator W with respect to the topologies of uniform convergence in $\mathcal{C}^{(1)}(B)$ and in $\mathcal{C}(K)$ (compare [3], [15], [8], [9]). For simplicity, we will always assume that K is massive in the sense that

(1)
$$\lambda_m(B_r(z) \cap K) > 0$$
 for each $z \in K, r > 0$,

which does not cause any lack of generality (cf. the observation on p. 27 in [9]). Geometric conditions, which enable us to extend W to a bounded linear operator from $\mathcal{C}(B) \supset \mathcal{C}^{(1)}(B)$ to $\mathcal{C}(K)$ (equipped with the sup-norm), can be conveniently described in terms of the so-called essential boundary $\partial_e K \equiv B_e$ defined by

$$B_e \colon = \left\{ x \in \mathbb{R}^m; \ \limsup_{r \searrow 0} \lambda_m(B_r(x) \cap K) r^{-m} > 0, \limsup_{r \searrow 0} \lambda_m(B_r(x) \cap G) r^{-m} > 0 \right\}$$

(cf. [4]). For any $z \in \mathbb{R}^m$ and $\theta \in \partial B_1(0)$ consider the half-line

$$H_z(\theta) \colon = \{z + t\theta; \ t > 0\}$$

and denote by $n(z,\theta)$ $(0 \leq n(z,\theta) \leq +\infty)$ the total number of points in

$$H_z(\theta) \cap B_e.$$

It appears that, for fixed $z \in \mathbb{R}^m$, the function

$$\theta \mapsto n(z,\theta)$$

is λ_{m-1} -measurable on $\partial B_1(0)$ so that we may introduce the integral

$$v(z)$$
: = $\frac{1}{\sigma_m} \int_{\partial B_1(0)} n(z,\theta) \, \mathrm{d}\lambda_{m-1}(\theta)$

(compare §2 in [9], Lemma 3 in [11] and [4]). With this notation

(2)
$$\sup_{z \in B} v(z) < +\infty$$

is a necessary and sufficient condition guaranteeing that for any uniformly convergent (on B) sequence $\varphi_n \in \mathcal{C}^{(1)}(B)$, the correspondig sequence $W\varphi_n \in \mathcal{C}(K)$ is uniformly convergent on K (which is equivalent to continuous extendability of W, defined so far only on $\mathcal{C}^{(1)}(B)$, to a bounded linear operator acting from $\mathcal{C}(B) \supset \mathcal{C}^{(1)}(B)$ to $\mathcal{C}(K)$, where $\mathcal{C}(B)$ and $\mathcal{C}(K)$ are equipped with the usual maximum norm). In what follows we always assume (2), which implies that

$$\sup_{z\in\mathbb{R}^m}v(z)<+\infty$$

(cf. Theorem 2.16 in [9]) and guarantees the existence of a well-defined density

$$d_K(z) \colon = \lim_{r \searrow 0} \frac{\lambda_m(B_r(z) \cap K)}{\lambda_m(B_r(z))}$$
671

for any $z \in \mathbb{R}^m$ (cf. Lemma 2.1 in [9]). For any $f \in \mathcal{C}(B)$ the corresponding $Wf \in \mathcal{C}(K)$ is harmonic in K° and admits an integral representation reminding one of the classical double layer potential with momentum density f. For this purpose let us recall that a unit vector $n \in \partial B_1(0)$ is termed the exterior normal of K at $y \in \mathbb{R}^m$ in the sense of Federer provided

(3)
$$\lim_{r \searrow 0} r^{-m} \lambda_m (\{x \in B_r(y) \cap K; \ (x-y) \cdot n > 0\}) = 0, \\ \lim_{r \searrow 0} r^{-m} \lambda_m (\{x \in B_r(y) \cap G; \ (x-y) \cdot n < 0\}) = 0.$$

For any fixed $y \in \mathbb{R}^m$ there exists at most one vector $n \in \partial B_1(0)$ with the property (3) and it will be denoted by $n^K(y) \equiv n$ provided it is available; if there is no such $n \in \partial B_1(0)$ with (3), then we put $n^K(y) = 0 \ (\in \mathbb{R}^m)$. The vector-valued function $y \mapsto n^K(y)$ is Borel measurable and

$$\widehat{B} \equiv \widehat{\partial K} := \{ y \in \mathbb{R}^m ; |n^K(y)| > 0 \}$$

is a Borel set which is termed the reduced boundary of K (cf. [6]). Clearly,

$$\widehat{B} \subset \{y \in \mathbb{R}^m; d_K(y) = \frac{1}{2}\} \subset B_e$$

and under our assumption (2) we have

$$\lambda_{m-1}(B_e) < +\infty$$

and

$$\lambda_{m-1}(B_e \setminus \widehat{B}) = 0$$

(cf. Section 4.5 in [5], 5.6 in [17] and 2.12 in [9]). If $f \in \mathcal{C}(B)$, then Wf can be represented by

$$Wf(z) = \begin{cases} d_G(z)f(z) + \int f(y)n^K(y) \cdot \operatorname{grad} h_z(y) \, \mathrm{d}\lambda_{m-1}(y) & \text{for } z \in B\\ \int f(y)n^K(y) \cdot \operatorname{grad} h_z(y) \, \mathrm{d}\lambda_{m-1}(y) & \text{for } z \in K^\circ \end{cases}$$

where, of course, $d_G(z) = 1 - d_K(z)$ is the density of $G = \mathbb{R}^m \setminus K$ at z (cf. [9], Proposition 2.8 and Lemmas 2.9, 2.15).

For $\alpha \in \mathbb{R}$ we denote by W^{α} the operator on $\mathcal{C}(B)$ sending $f \in \mathcal{C}(B)$ to $W^{\alpha}f \in \mathcal{C}(B)$ attaining the value $W^{\alpha}f(y) := Wf(y) - \alpha f(y)$ at any $y \in B$. Given a boundary condition $g \in \mathcal{C}(B)$ then an attempt to solve the corresponding Dirichlet problem for

 K° (at least in the case $B \subset \overline{K^{\circ}}$) in the form of a Wf with an unknown $f \in \mathcal{C}(B)$ leads to the equation

(4)
$$(\alpha I + W^{\alpha})f = g,$$

where I denotes the identity operator on $\mathcal{C}(B)$.

The space $\mathcal{C}'(B)$ dual to $\mathcal{C}(B)$ can be identified with the space of all finite signed Borel measures with support contained in B. For any $\nu \in \mathcal{C}'(B)$ the potential

(5)
$$\mathcal{U}\nu(y) = \int_B h_y(x) \,\mathrm{d}\nu(x), \ y \in G$$

represents a harmonic function in G whose weak normal derivative can be properly interpreted (cf. §1 in [9], [15]). Given a $\mu \in \mathcal{C}'(B)$ then an attempt to solve the corresponding Neumann problem for G (with the Neumann boundary condition given by μ) in the form of a potential (5) with an unknown $\nu \in \mathcal{C}'(B)$ leads to the equation

(6)
$$(\alpha I + W^{\alpha})'\nu = \mu$$

which is dual to (4).

Let us agree to denote by \mathcal{G} the space of all compact linear operators acting on $\mathcal{C}(B)$. If p is a norm on $\mathcal{C}(B)$ and T is a bounded linear operator acting on $\mathcal{C}(B)$ then its norm p(T) is defined in the usual way and the *p*-essential norm $\omega_p T$ is given by

$$\omega_p T \colon = \inf\{p(T-Q); \ Q \in \mathcal{G}\}.$$

In connection with the applicability of the Fredholm-Radon theory to the pair of dual equations (4), (6) it is important to have estimates of the essential spectral radius of the operator W^{α} . According to the theorem of Gohberg and Markus (cf. [7]), this radius coincides with

$$\inf_p \omega_p W^{\alpha},$$

where p ranges over all equivalent norms on $\mathcal{C}(B)$ inducing the topology of uniform convergence in $\mathcal{C}(B)$. Let us recall that simple examples are known showing that for the usual maximum norm p_1 , where $p_1(f) = \sup\{|f(y)|; y \in B\}, f \in \mathcal{C}(B)$, it may occur that

$$\omega_{p_1} W^{\alpha} > |\alpha| \quad \text{for all } \alpha \neq 0,$$

while

$$\omega_p W^{\frac{1}{2}} < \frac{1}{2}$$

for a suitable norm p on $\mathcal{C}(B)$ topologically equivalent to p_1 (cf. [13], [1]; note that $2W^{\frac{1}{2}}$ is the so-called Neumann operator of the arithmetical mean as mentioned on

p. 72 in [9]). Accordingly, it is useful to investigate estimates of $\omega_p W^{\alpha}$ for general norms p topologically equivalent to p_1 , which is the subject of the present paper. Given such a norm p on $\mathcal{C}(B)$ inducing the topology of uniform convergence in $\mathcal{C}(B)$ we put

(7)
$$\overline{p}(y) = \sup\{g(y); \ g \in \mathcal{C}(B), \ p(g) \leq 1\}$$

for $y \in B$. The function

$$\overline{p}: y \mapsto \overline{p}(y)$$

defined by (7) is lower-semicontinuous on B.

Given a bounded non-negative lower-semicontinuous function ψ on B we put for $z \in \mathbb{R}^m$, r > 0 and $\theta \in \partial B_1(0)$

(8)
$$n_r^{\psi}(z,\theta) = \sum_{\xi} \psi(\xi), \quad \xi \in H_z(\theta) \cap B_e \cap B_r(z),$$

the sum on the right-hand side of (8) counting, with the weight $\psi(\xi)$, all points ξ in $B_e \cap \{z + \varrho\theta; 0 < \varrho < r\}$ $(0 \leq n_r^{\psi}(z,\theta) \leq +\infty)$. We shall see that, for fixed $z \in \mathbb{R}^m$ and r > 0, the function $\theta \mapsto n_r^{\psi}(z,\theta)$ is λ_{m-1} -measurable on $\partial B_1(0)$, which justifies the definition

(9)
$$v_r^{\psi}(z) = \frac{1}{\sigma_m} \int_{\partial B_1(0)} n_r^{\psi}(z,\theta) \, \mathrm{d}\lambda_{m-1}(\theta), \quad z \in \mathbb{R}^m, \ 0 < r \leqslant \infty.$$

(Observe that this quantity reduces to v(z) in the case $r = \infty$ and $\psi \equiv 1$.) We are going to establish upper and lower estimates of $\omega_p W^{\alpha}$ with help of the functions

$$y \mapsto v_r^{\overline{p}}(y), \quad y \in B.$$

In particular, for suitable weighted norms p on $\mathcal{C}(B)$ these estimates permit to prove the equality

$$\omega_p W^{\alpha} = |\frac{1}{2} - \alpha| + \inf_{r>0} \sup_{y \in B} \frac{v_r^{\overline{p}}(y)}{\overline{p}(y)},$$

extending Theorem 4.1 in [9].

1. Lemma. Let p be a norm on C(B) inducing the topology of uniform convergence and define the function $\overline{p}: B \to \mathbb{R}$ by (7). Then \overline{p} is lower-semicontinuous on B and there are constants $0 < k_p \leq K_p < \infty$ such that

(10)
$$k_p \leqslant \overline{p} \leqslant K_p$$

 $on \; B.$

Proof. The definition (7) shows that \overline{p} is a (pointwise) supremum of a class of continuous functions on B; hence \overline{p} is lower-semicontinuous in B. Since the identity operator acting from $\mathcal{C}(B)$ normed by p to $\mathcal{C}(B)$ normed by the maximum norm p_1 is bounded, there is a $K_p \in (0,\infty)$ such that $\overline{p} \leq K_p$ on B. Since also the identity operator acting inversely from $(\mathcal{C}(B), p_1)$ into $(\mathcal{C}(B), p)$ is bounded, there is a $c \in (0, +\infty)$ such that the implication

$$(g \in \mathcal{C}(B), |g| \leq 1) \Longrightarrow p\left(\frac{g}{c}\right) \leq 1$$

is valid. This together with the definition of \overline{p} shows that

$$\overline{p}(y) \geqslant \frac{1}{c}$$

for any $y \in B$, so that (10) holds with $k_p = \frac{1}{c}$.

2. R e m a r k. As a consequence of our assumption (1) we have

$$\lambda_{m-1}(B_r(y) \cap B) > 0, \quad \forall y \in B, \ \forall r > 0.$$

This follows from the relative isoperimetric inequality concerning sets of locally finite perimeter (cf. Section 4.5 in [5] and p. 50 in [9]).

3. Lemma. If ψ is a non-negative λ_{m-1} -measurable function defined λ_{m-1} -a.e. on \widehat{B} we denote by

$$\widehat{\psi}(y) \colon = \lambda_{m-1} \operatorname{ess\,lim\,inf}_{x \to y, x \in \widehat{B}} \psi(x)$$

the λ_{m-1} -essential lower limit of ψ at $y \in B$ which is defined as the least upper bound of all $\gamma \in \mathbb{R}$ for which there is an r > 0 such that

(11)
$$\lambda_{m-1}(\{x \in B_r(y) \cap \widehat{B}; \ \psi(x) < \gamma\}) = 0.$$

Then the function $\widehat{\psi}: y \mapsto \widehat{\psi}(y)$ is lower-semicontinuous on B and

$$\lambda_{m-1}(\{y\in\widehat{B};\ \psi(y)<\widehat{\psi}(y)\})=0$$

Proof. For the sake of completeness we include the following argument occurring in [12] in connection with Lemma 8. Consider an arbitrary $y \in B$ and $c < \widehat{\psi}(y)$. Then there are $\gamma \in (c, \widehat{\psi}(y)]$ and r > 0 such that (11) holds. If $z \in B \cap B_{r/2}(y)$ then $B_{r/2}(z) \subset B_r(y)$ and, consequently,

$$\lambda_{m-1}(\{x \in B_{r/2}(z) \cap \widehat{B}; \ \gamma(x) < \gamma\}) = 0,$$

675

which shows that $\widehat{\psi}(z) \ge \gamma > c$. We have thus shown that, given $c < \widehat{\psi}(y)$, the inequality $c < \widehat{\psi}(z)$ holds for all $z \in B$ sufficiently close to y and the lower-semicontinuity of $\widehat{\psi}$ at y is established. Admitting

$$\lambda_{m-1}(\{y \in \widehat{B}; \ \psi(y) < \widehat{\psi}(y)\}) > 0$$

we get, by Lusin's theorem, that there is a compact set $C \subset \{y \in \widehat{B}; \psi(y) < \widehat{\psi}(y)\}$ with $\lambda_{m-1}(C) > 0$ such that the restriction $\psi|_C$ is continuous. There is a $z \in C$ such that

(12)
$$\lambda_{m-1}(B_{\varrho}(z) \cap C) > 0, \quad \forall \varrho > 0.$$

Since $\psi(z) < \widehat{\psi}(z)$, there are $\gamma \in (\psi(z), \widehat{\psi}(z)]$ and r > 0 such that

(13)
$$\lambda_{m-1}(\{y \in B_r(z) \cap \widehat{B}; \ \psi(y) < \gamma\}) = 0$$

Continuity of $\psi|_C$ guarantees the validity of the implication

$$y \in B_{\rho}(z) \cap C \Longrightarrow \psi(y) < \gamma$$

for sufficiently small $\rho \in (0, r)$ which, in view of the inclusion $B_{\rho}(z) \cap C \subset B_r(z) \cap \widehat{B}$, together with (12) contradicts (13). This completes the proof. \Box

4. Lemma. If $\psi \ge 0$ is a lower-semicontinuous function on B, then $\widehat{\psi}$ (defined as in Lemma 3) satisfies $\widehat{\psi} \ge \psi$ on B; moreover, $\widehat{\psi}$ is the greatest lower-semicontinuous majorant of ψ on B coinciding with ψ almost everywhere (λ_{m-1}) on \widehat{B} .

Proof. Let $\tilde{\psi}$ be a lower-semicontinuous majorant of ψ coinciding with ψ almost everywhere (λ_{m-1}) on \hat{B} . We are going to verify that $\hat{\psi} \ge \tilde{\psi}$ on B. Admit that there is a $y \in B$ with $\hat{\psi}(y) < \tilde{\psi}(y)$ and fix a $c \in \mathbb{R}$ such that

(14)
$$\widehat{\psi}(y) < c < \widetilde{\psi}(y)$$

Since $\widetilde{\psi}$ is lower-semicontinuous, we have

$$z \in B_r(y) \cap B \Longrightarrow \psi(z) > c$$

for sufficiently small r > 0, whence

$$\lambda_{m-1}(\{z \in B_r(y) \cap \widehat{B}; \ \psi(z) \leqslant c\}) = 0,$$

because $\psi = \tilde{\psi}$ almost everywhere (λ_{m-1}) on \hat{B} . We conclude that $\hat{\psi}(y) \ge c$, which contradicts (14). Letting $\tilde{\psi} = \psi$ we get from Lemma 3 that $\hat{\psi} = \psi$ almost everywhere (λ_{m-1}) on \hat{B} and the proof is complete.

5. Lemma. Let $C_+(B)$ denote the class of all non-negative functions in C(B) and let $C^{\uparrow}_+(B)$ denote the class of all non-negative lower-semicontinuous functions on B. Let $f \in C_+(B)$, $\psi \in C^{\uparrow}_+(B)$ and put $\varphi = f + \psi$. Then $\widehat{\varphi} = f + \widehat{\psi}$. In particular, $\widehat{f} = f$ for each $f \in C_+(B)$.

Proof. Observe that $f + \hat{\psi}$ is a lower-semicontinuous majorant of φ on B such that $f + \hat{\psi} = \varphi$ holds λ_{m-1} -a.e. in \hat{B} . By Lemma 4 we get $\hat{\varphi} \ge f + \hat{\psi}$. We see that $\hat{\varphi} - f \in \mathcal{C}^{\uparrow}_{+}(B)$ is a majorant of ψ on B coinciding with ψ almost everywhere (λ_{m-1}) on \hat{B} . Using Lemma 4 again we arrive at the inequality $\hat{\varphi} - f \le \hat{\psi}$, so that $\hat{\varphi} = f + \hat{\psi}$. Taking $\psi \equiv 0$ we get $\hat{f} = f, \forall f \in \mathcal{C}_{+}(B)$.

6. Lemma. Let p be a norm on $\mathcal{C}(B)$ inducing the topology of uniform convergence in $\mathcal{C}(B)$ such that the implication

(15)
$$|f| \leq |g| \implies p(f) \leq p(g)$$

holds for any $f, g \in \mathcal{C}(B)$. Then we have

(16)
$$p(h) = \sup\{p(f); f \in \mathcal{C}(B), |f| \leq h\}$$

whenever $h \in C_+(B)$, and (16) can be used to define p(h) for any $h \in C^{\uparrow}_+(B)$. Having extended p from $C_+(B)$ to $C^{\uparrow}_+(B)$ in this way we get for any $\alpha \in [0, +\infty)$ and $\psi_j \in C^{\uparrow}_+(B)$ (j = 0, 1, 2)

(17)
$$p(\alpha\psi_0) = \alpha p(\psi_0),$$

(18)
$$p(\psi_1 + \psi_2) \leq p(\psi_1) + p(\psi_2).$$

Proof. The implication $(15) \Rightarrow (16)$ is evident and if (15) is used to define p(h) for any $h \in \mathcal{C}^{\uparrow}_{+}(B)$ then (17) obviously holds for $\alpha \in [0, +\infty)$ and $\psi_0 \in \mathcal{C}^{\uparrow}_{+}(B)$. It is easy to verify (18) assuming first that $\psi_1, \psi_2 \in \mathcal{C}^{\uparrow}_{+}(B)$ satisfy

(19)
$$\psi_1 + \psi_2 > 0$$
 on *B*.

We then have

$$p(\psi_1 + \psi_2) = \sup\{p(f); f \in \mathcal{C}(B), |f(y)| < \psi_1(y) + \psi_2(y), \forall y \in B\}.$$

Choose non-decreasing sequences $\{g_j^n\}_{n=1}^{\infty}$ in $\mathcal{C}_+(B)$ such that $g_j^n \nearrow \psi_j$ as $n \to \infty$ (j = 1, 2). Fix $f \in \mathcal{C}(B)$ such that $|f| < \psi_1 + \psi_2$. If the compact sets

 $K_n = \{x \in B; |f(x)| \ge g_1^n(x) + g_2^n(x)\}$ are nonempty then there is an $x \in \bigcap K_n$ and therefore $\psi_1(x) + \psi_2(x) \le |f(x)|$, which is a contradiction. So, we have

$$|f| < g_1^n + g_2^n$$

for all sufficiently large $n \in N$. Defining for such n

$$f_j = f \frac{g_j^n}{g_1^n + g_2^n} \quad (j = 1, 2)$$

we get

$$|f_j| \leq |f| \frac{g_j^n}{g_1^n + g_2^n} < g_j^n \quad (j = 1, 2), \quad f_1 + f_2 = f_2$$

whence

$$p(f) \leqslant p(f_1) + p(f_2) \leqslant p(\psi_1) + p(\psi_2)$$

Since $f \in \mathcal{C}(B)$ with $|f| < \psi_1 + \psi_2$ has been chosen arbitrarily, we get (18). It remains to observe that the additional assumption (19) can be omitted. Denote by $1_B \in \mathcal{C}(B)$ the constant function attaining the value 1 at any point in B. For any $\psi \in \mathcal{C}^+_+(B)$ and $\varepsilon > 0$ we then have

$$p(\psi) \leq p(\psi + \varepsilon \mathbf{1}_B) \leq p(\psi) + \varepsilon p(\mathbf{1}_B),$$

so that

$$p(\psi + \varepsilon \mathbf{1}_B) \to p(\psi) \quad \text{as } \varepsilon \downarrow 0.$$

Consequently, for any $\psi_j \in \mathcal{C}^{\uparrow}_+(B)$ (j = 1, 2) we get

$$p(\psi_1 + \psi_2) \leq p(\psi_1) + p(\psi_2 + \varepsilon \mathbf{1}_B) \to p(\psi_1) + p(\psi_2)$$
 as $\varepsilon \downarrow 0$

and (18) follows.

7. Lemma. Let $\psi \ge 0$ be a bounded lower-semicontinuous function on B and define for fixed $z \in \mathbb{R}^m$ and $r \in (0, \infty]$ the function $n_r^{\psi}(z, \theta)$ of the variable $\theta \in \partial B_1(0)$ by (8). This function is λ_{m-1} -integrable in $\partial B_1(0)$ and

$$\int_{\partial B_1(0)} n_r^{\psi}(z,\theta) \, \mathrm{d}\lambda_{m-1}(\theta) = \int_{B \cap B_r(z)} \psi(x) |n^K(x) \cdot \operatorname{grad} h_z(x)| \, \mathrm{d}\lambda_{m-1}(x).$$

The function v_r^{ψ} : $z \mapsto v_r^{\psi}(z)$ defined by (9) is bounded and lower-semicontinuous on \mathbb{R}^m .

Proof. This is a consequence of Lemma 3 in [12]. $\hfill \Box$

678

8. Lemma. If

$$(x,y) \mapsto g_y(x)$$

is a continuous (real-valued) function on $B \times B$ then, for each $f \in \mathcal{C}(B)$,

$$W(fg_y)(y) := f(y)g_y(y)d_G(y) + \int_B f(x)g_y(x)n^K(x) \cdot \operatorname{grad} h_y(x) \, \mathrm{d}\lambda_{m-1}(x)$$

represents a continuous function of the variable $y \in B$.

Proof. As mentioned above, our assumption (2) guarantees that the operator W sending each $f \in \mathcal{C}(B)$ to

(20)
$$Wf: y \mapsto f(y)d_G(y) + \int_B f(x)n^K(x) \cdot \operatorname{grad} h_y(x) \, \mathrm{d}\lambda_{m-1}(x), \quad y \in B$$

is continuous on $\mathcal{C}(B)$ with respect to the topology of the uniform convergence (cf. Proposition 2.8 and Lemmas 2.9, 2.15 in [9]). Let now $\{y_n\}_{n=1}^{\infty}$ be an arbitrary convergent sequence of points in B, $\lim_{n\to\infty} y_n = y_0$. Then, for each $f \in \mathcal{C}(B)$, the sequence of functions $\{fg_{y_n}\}_{n=1}^{\infty}$ converges uniformly on B to $fg_{y_0} \in \mathcal{C}(B)$ and $\{W(fg_{y_n})\}_{n=1}^{\infty}$ converges uniformly on B to $W(fg_{y_0})$ as $n \to \infty$, whence

$$\lim_{n \to \infty} W(fg_{y_n})(y_n) = W(fg_{y_0})(y_0)$$

and the continuity of $y \mapsto W(fg_y)(y)$ is established.

9. Lemma. Let $\psi \ge 0$ be a bounded lower-semicontinuous function on B and let

$$(x,y) \mapsto g_y(x)$$

be a continuous function on $B \times B$ such that $0 \leq g_y(x) \leq 1$. Then

$$F_{g}^{\psi}(y) := \psi(y)g_{y}(y) \left| d_{G}(y) - \frac{1}{2} \right| + \int_{B} \psi(x)g_{y}(x) |n^{K}(x) \cdot \operatorname{grad} h_{y}(x)| \, \mathrm{d}\lambda_{m-1}(x)$$

is a lower-semicontinuous function of the variable y on B.

Proof. It follows from Lemma 8 that

$$H_{g}^{f}(y) := \left(W - \frac{1}{2}I\right)(fg_{y})(y) = f(y)g_{y}(y)[d_{G}(y) - \frac{1}{2}] + \int_{B} f(x)g_{y}(x)n^{K}(x) \cdot \operatorname{grad} h_{y}(x) \, d\lambda_{m-1}(x)$$

679

is a continuous function of the variable y on B for each $f \in C(B)$. It is therefore sufficient to verify that F_g^{ψ} is the (pointwise) supremum of the class

$$\mathcal{F} \colon = \{ H_g^f; \ f \in \mathcal{C}(B), \ |f| \leq \psi \} \subset \mathcal{C}(B).$$

Clearly, any function in $\mathcal F$ is majorized by $F_g^\psi.$ Fix now an arbitrary $\xi\in B$ and $\varepsilon>0.$ Since

$$\sup\left\{\int_{B} f(x)g_{\xi}(x)n^{K}(x) \cdot \operatorname{grad} h_{\xi}(x) \, \mathrm{d}\lambda_{m-1}(x); \ f \in \mathcal{C}(B), \ |f| \leq \psi, \ \operatorname{spt} f \subset B \setminus \{\xi\}\right\}$$
$$= \int_{B} \psi(x)g_{\xi}(x)|n^{K}(x) \cdot \operatorname{grad} h_{\xi}(x)| \, \mathrm{d}\lambda_{m-1}(x)$$

there is an $f_0 \in \mathcal{C}(B)$ such that $|f_0| \leq \psi$, $f_0 = 0$ on $B_{\varrho}(\xi) \cap B$ for sufficiently small $\varrho > 0$ and

(21)
$$\int_{B} f_{0}(x)g_{\xi}(x)n^{K}(x) \cdot \operatorname{grad} h_{\xi}(x) d\lambda_{m-1}(x) \\ > \int_{B} \psi(x)g_{\xi}(x)|n^{K}(x) \cdot \operatorname{grad} h_{\xi}(x)| d\lambda_{m-1}(x) - \varepsilon.$$

Since

$$\int_{B} \psi(x) g_{\xi}(x) | n^{K}(x) \cdot \operatorname{grad} h_{\xi}(x) | d\lambda_{m-1}(x) \leq v_{\infty}^{\psi}(\xi) < \infty,$$

we can assume that $\varrho>0$ has been chosen small enough to have

(22)
$$\int_{B \cap B_{\varrho}(\xi)} \psi(x) g_{\xi}(x) | n^{K}(x) \cdot \operatorname{grad} h_{\xi}(x) | d\lambda_{m-1}(x) < \varepsilon.$$

Consider first the case when

$$\psi(\xi)g_{\xi}(\xi)|d_G(\xi) - \frac{1}{2}| > 0$$

Clearly, we can assume that $0 < \varepsilon < \psi(\xi)$. Choose $f_1 \in \mathcal{C}(B)$ with spt $f_1 \subset B_{\varrho}(\xi) \cap B$ such that $|f_1| \leq \psi$ and

$$|f_1(\xi)| > \psi(\xi) - \varepsilon$$
, sign $f_1(\xi) = \operatorname{sign}[d_G(\xi) - \frac{1}{2}]$.

Letting $f = f_0 + f_1$ we have $|f| \leq \psi$,

$$\begin{split} H_g^f(\xi) &= f_1(\xi)g_{\xi}(\xi)[d_G(\xi) - \frac{1}{2}] + \int_{B_{\varrho}(\xi)\cap B} f_1(x)g_{\xi}(x)n^K(x) \cdot \operatorname{grad} h_{\xi}(x) \, \mathrm{d}\lambda_{m-1}(x) \\ &+ \int_{B\setminus B_{\varrho}(\xi)} f_0(x)g_{\xi}(x)n^K(x) \cdot \operatorname{grad} h_{\xi}(x) \, \mathrm{d}\lambda_{m-1}(x) \\ &\geqslant \psi(\xi)g_{\xi}(\xi)|d_G(\xi) - \frac{1}{2}| - \varepsilon \\ &- \int_{B\cap B_{\varrho}(\xi)} \psi g_{\xi}|n^K \cdot \operatorname{grad} h_{\xi}| \, \mathrm{d}\lambda_{m-1} + \int_B \psi g_{\xi}|n^K \cdot \operatorname{grad} h_{\xi}| \, \mathrm{d}\lambda_{m-1} - \varepsilon \\ &> \psi(\xi)g_{\xi}(\xi)|d_G(\xi) - \frac{1}{2}| + \int_B \psi g_{\xi}|n^K \cdot \operatorname{grad} h_{\xi}| \, \mathrm{d}\lambda_{m-1} - 3\varepsilon \end{split}$$

by (21), (22). The inequality

$$H_q^f(\xi) > F_q^\psi(\xi) - 3\varepsilon$$

with arbitrarily small $\varepsilon>0$ shows that

(23)
$$F_g^{\psi}(\xi) = \sup\{h(\xi); \ h \in \mathcal{F}\}.$$

If

$$\psi(\xi)g_{\xi}(\xi)|d_G(\xi) - \frac{1}{2}| = 0,$$

then (21) yields

$$H_g^{f_0}(\xi) > F_g^{\psi}(\xi) - \varepsilon$$

and (23) holds again. Since $\xi \in B$ was arbitrary, the proof is complete.

10. Corollary. Let $\psi \ge 0$ be a bounded lower-semicontinuous function on B, $r \in (0, \infty]$ and define

$$V_r^{\psi}(y) := \psi(y) |d_G(y) - \frac{1}{2}| + v_r^{\psi}(y), \quad y \in B.$$

Then

$$V_r^{\psi} \colon y \mapsto V_r^{\psi}(y)$$

is lower-semicontinuous on B.

Proof. Let $h^n \ge 0$ be a nondecreasing sequence of continuous functions on $[0,\infty)$ such that

$$\lim_{n \to \infty} h^n(t) = \begin{cases} 1 & \text{for } t \in [0, r), \\ 0 & \text{elsewhere on } [0, \infty) \end{cases}$$

681

and put

$$g_x^n(y) = h^n(|x - y|), \quad x, y \in B.$$

Then

$$F_{g^n}^{\psi}(y) \nearrow \psi(y) | d_G(y) - \frac{1}{2} | + \int_{B \cap B_r(y)} \psi(x) | n^K(x) \cdot \operatorname{grad} h_y(x) | d\lambda_{m-1}(x) = V_r^{\psi}(y)$$

as $n \to \infty$. Since the functions $F_{g^n}^{\psi}$ are all lower-semicontinuous on B, the same holds of V_r^{ψ} .

11. Definition. Let p be a norm on $\mathcal{C}(B)$ with the property (15), inducing the topology of uniform convergence; extend p to $\mathcal{C}^{\uparrow}_{+}(B)$ by (16) and for any $h \in \mathcal{C}^{\uparrow}_{+}(B)$ put

$$\widehat{p}(h)$$
: = $p(\widehat{h})$, $h \in \mathcal{C}^{\uparrow}_{+}(B)$,

where \hat{h} is defined by Lemma 3.

Combining this definition with Lemmas 5 and 6 we arrive at

12. Remark. If $\varphi = f + \psi$, where $f \in \mathcal{C}_+(B)$ and $\psi \in \mathcal{C}_+^{\uparrow}(B)$, then $\widehat{p}(\varphi) \leq p(f) + \widehat{p}(\psi)$. In particular, $\widehat{p}(f) = p(f)$ whenever $f \in \mathcal{C}_+(B)$.

13. Theorem. Let p be a norm on $\mathcal{C}(B)$ with (15) inducing the topology of uniform convergence, define $\overline{p}: y \mapsto \overline{p}(y)$ by (7) and for $r \in (0, \infty)$ put

$$v_r^{\overline{p}}: y \mapsto v_r^{\overline{p}}(y), \quad y \in B, V_r^{\overline{p}}: y \mapsto \overline{p}(y)|\frac{1}{2} - d_G(y)| + v_r^{\overline{p}}(y), \quad y \in B.$$

Then for each $\alpha \in \mathbb{R}$

(24)
$$\omega_p(W^{\alpha}) \leqslant |\alpha - \frac{1}{2}| + \inf_{r>0} \widehat{p}(v_r^{\overline{p}}) = |\alpha - \frac{1}{2}| + \inf_{r>0} \widehat{p}(V_r^{\overline{p}}).$$

 $\mathrm{P\,r\,o\,o\,f.}$ $\ \, \mathrm{Fix}\ r>0$ and construct a function g^r on \mathbb{R}^m satisfying the Lipschitz condition

$$x^1, x^2 \in \mathbb{R}^m \Longrightarrow |g^r(x^1) - g^r(x^2)| \leqslant \frac{1}{r} |x^1 - x^2|$$

and such that

$$0 \leq g^r \leq 1, \ g^r(B_r(0)) = \{1\}, \ g^r(\mathbb{R}^m \setminus B_{2r}(0)) = \{0\}.$$

Put

$$g_y(x) = g^r(x-y), \quad x, y \in \mathbb{R}^m$$

and define an operator V on $\mathcal{C}(B)$ sending each $f \in \mathcal{C}(B)$ to Vf given by

$$Vf(y) = \int_B f(x)[1 - g_y(x)]n^K(x) \cdot \operatorname{grad} h_y(x) \, \mathrm{d}\lambda_{m-1}(x), \quad y \in B.$$

Elementary reasoning (described in detail in the proof of Theorem 4.1 in [9], pp. 104– 111) shows that V is a compact linear operator acting in $\mathcal{C}(B)$. We are going to estimate $p(W^{\alpha} - V)$. Let $f \in \mathcal{C}(B)$, $p(f) \leq 1$. Consequently, $|f| \leq \overline{p}$ on B. By Proposition 2.8 and Lemmas 2.9 and 2.15 in [9] we have

$$(W^{\alpha}-V)f(y) = f(y)\left[d_G(y)-\alpha\right] + \int_B f(x)g_y(x)n^K(x)\cdot\operatorname{grad} h_y(x)\,\mathrm{d}\lambda_{m-1}(x), \quad y \in B.$$

Hence

$$\begin{aligned} |(W^{\alpha} - V)f(y)| &\leq |(\frac{1}{2} - \alpha)f(y)| + \overline{p}(y)|d_{G}(y) - \frac{1}{2}| \\ &+ \int_{B} \overline{p}(x)g^{r}(x - y)|n^{K}(x) \cdot \operatorname{grad} h_{y}(x)| \,\mathrm{d}\lambda_{m-1}(x) \\ &= |(\frac{1}{2} - \alpha)f(y)| + F_{g}^{\overline{p}}(y), \end{aligned}$$

where $F_g^{\overline{p}}$ is the lower-semicontinuous function on *B* defined in Lemma 9. Since $p(f) \leq 1$ implies $p(|f|) \leq 1$, in view of Remark 12 we get

$$p[(W^{\alpha} - V)f] \leq |\frac{1}{2} - \alpha|p(|f|) + \widehat{p}(F_g^{\overline{p}}) \leq |\frac{1}{2} - \alpha| + \widehat{p}(F_g^{\overline{p}}).$$

Observe that $F_g^{\overline{p}} \leq V_{2r}^{\overline{p}}$, where $V_{2r}^{\overline{p}}$ is a lower-semicontinuous function on *B* coinciding with $v_{2r}^{\overline{p}}$ on \widehat{B} , so that $\widehat{p}(V_{2r}^{\overline{p}}) = \widehat{p}(v_{2r}^{\overline{p}})$. Since r > 0 was arbitrary, we arrive at

$$p(W^{\alpha} - V) \leq |\frac{1}{2} - \alpha| + \widehat{p}(V_{2r}^{\overline{p}}),$$

$$\omega_p(W^{\alpha}) \leq |\frac{1}{2} - \alpha| + \inf_{r>0} \widehat{p}(V_{2r}^{\overline{p}}) = |\frac{1}{2} - \alpha| + \inf_{r>0} \widehat{p}(v_{2r}^{\overline{p}})$$

and (24) is established.

14. Corollary. Let q > 0 be a bounded lower-semicontinuous function on B such that

(25)
$$q(y) \ge \lambda_{m-1} \operatorname{ess\,lim\,inf}_{x \in \widehat{B}, x \to y} q(x), \quad \forall y \in B.$$

For $f \in \mathcal{C}(B)$ define

(26)
$$p_q(f): = \sup_{y \in B} \frac{|f(y)|}{q(y)}.$$

683

Then p_q is a norm on $\mathcal{C}(B)$ inducing the topology of uniform convergence and for each $\alpha \in \mathbb{R}$ we have

$$\omega_{p_q} W^{\alpha} \leqslant |\alpha - \frac{1}{2}| + \inf_{r > 0} \sup_{y \in \widehat{B}} \frac{v_r^q(y)}{q(y)}.$$

Proof. Let \overline{p}_q correspond to p_q in the sense of Lemma 1. It is easy to see from (26) that $\overline{p}_q = q$ on B. In view of Theorem 13 it suffices to verify

(27)
$$\widehat{p}_q(v_r^q) = \sup_{x \in \widehat{B}} \frac{v_r^q(x)}{q(x)}$$

for any r > 0. Recalling Definition 11 we get

$$\widehat{p_q}(v_r^q) = \sup\{p_q(f); \ f \in \mathcal{C}(B), \ |f| \leq \widehat{v}_r^q\} = \sup_{y \in B} \frac{\widehat{v}_r^q(y)}{q(y)} \geqslant \sup_{x \in \widehat{B}} \frac{v_r^q(x)}{q(x)}.$$

In order to obtain the desired inequality

(28)
$$\sup_{y \in B} \frac{\widehat{v}_r^q(y)}{q(y)} \leqslant \sup_{x \in \widehat{B}} \frac{v_r^q(x)}{q(x)},$$

consider an arbitrary $y \in B$ with $\hat{v}_r^q(y) > 0$ and choose $\varepsilon \in (0, \hat{v}_r^q(y))$. There is a $\varrho > 0$ such that

$$v_r^q(x) \ge \hat{v}_r^q(y) - \varepsilon$$
 for λ_{m-1} -a.e. $x \in B_\varrho(y) \cap \widehat{B}$.

Our assumption (25) guarantees that

$$\lambda_{m-1}(\{x \in B_{\rho}(y) \cap \widehat{B}; q(y) + \varepsilon > q(x)\}) > 0$$

(for otherwise we would have λ_{m-1} - $\underset{x\in \widehat{B}, x\to y}{\operatorname{ess} \lim\inf_{x\in \widehat{B}, x\to y}} q(x) \geq q(y) + \varepsilon > q(y)$). As $\lambda_{m-1}(B_{\varrho}(y)\cap \widehat{B}) > 0$ (cf. Remark 2), there are $x \in B_{\varrho}(y)\cap \widehat{B}$ for which we have, simultaneously,

$$v_r^q(x) \ge \hat{v}_r^q(y) - \varepsilon, \ q(x) < q(y) + \varepsilon,$$

so that

$$\frac{\widehat{v}_r^q(y) - \varepsilon}{q(y) + \varepsilon} \leqslant \frac{v_r^q(x)}{q(x)} \leqslant \sup_{x \in \widehat{B}} \frac{v_r^q(x)}{q(x)}.$$

Making $\varepsilon \downarrow 0$ we get (28), which completes the proof.

15. Remark . Since q is lower-semicontinuous, we have

$$\lambda_{m-1} - \mathop{\mathrm{ess\,lim\,inf}}_{x \in \hat{B}, x \to y} q(x) \geqslant \liminf_{x \in \hat{B}, x \to y} q(x) \geqslant q(y),$$

which combined with (25) yields

$$q(y) = \lambda_{m-1} \operatorname{ess} \liminf_{x \in \widehat{B}, x \to y} q(x) = \liminf_{x \in \widehat{B}, x \to y} q(x), \quad y \in B.$$

16. Lemma. Let p be a norm defining the topology of uniform convergence in $\mathcal{C}(B)$ and define \overline{p} by (7). Suppose that $q \ge 0$ is a bounded lower-semicontinuous function on B such that for each $\mu \in \mathcal{C}'(B)$,

(29)
$$\sup\left\{\int_{B} f \,\mathrm{d}\mu; \ f \in \mathcal{C}(B), \ p(f) \leq 1\right\} \geqslant \int_{B} q \,\mathrm{d}|\mu|,$$

where $|\mu|$ is the indefinite total variation of μ . Then

(30)
$$\omega_p W^{\alpha} \ge \inf_{r>0} \sup_{y \in B} \left[\left| \frac{1}{2} - \alpha \right| \widehat{q}(y) + v_r^{\widehat{q}}(y) \right] / \widehat{\overline{p}}(y) \quad \text{for } \alpha \in \mathbb{R}.$$

If

(31)
$$\overline{p}(y) = \liminf_{x \in \widehat{B} \setminus \{y\}, x \to y} \overline{p}(x) \quad \text{for each } y \in \widehat{B},$$

then

(32)
$$\omega_p W^{\alpha} \ge \inf_{r>0} \sup_{y \in \widehat{B}} \left[\left| \frac{1}{2} - \alpha | q(y) + v_r^q(y) \right] / \overline{p}(y).$$

Proof. Fix an $\varepsilon > 0$ and denote by $\langle f, \nu \rangle \ (\equiv \int_B f \, d\nu)$ the pairing between $f \in \mathcal{C}(B)$ and $\nu \in \mathcal{C}'(B)$. As explained in [9], pp.107–108, there are $\varphi_1, \ldots, \varphi_n \in \mathcal{C}(B)$ and $\nu_1, \ldots, \nu_n \in \mathcal{C}'(B)$ such that

$$D: = \left\{ y \in B; \sum_{k=1}^{n} |\nu_k|(y) > 0 \right\}$$

is finite and the finite-dimensional operator V sending $f \in \mathcal{C}(B)$ to

$$Vf\colon =\sum_{k=1}^n \langle f,
u_k
angle arphi_k$$

satisfies

$$p(W^{\alpha} - V) \leqslant \omega_p W^{\alpha} + \varepsilon.$$

For any $y \in B$ denote by $\delta_y \in \mathcal{C}'(B)$ the Dirac measure concentrated at y and by $\lambda_y \in \mathcal{C}'(B)$ the representing measure of the functional

$$f \mapsto Wf(y) = \int_B f(x) \, \mathrm{d}\lambda_y(x).$$

According to (20)

(33)
$$d\lambda_y(x) = d_G(y) d\delta_y(x) + n^K(x) \cdot \operatorname{grad} h_y(x) d\lambda_{m-1}(x).$$

Observing that

$$p(g) \geqslant \sup_{y \in B} |g(y)|/\overline{p}(y), \quad \forall g \in \mathcal{C}(B),$$

we get

(34)
$$p(W^{\alpha} - V) = \sup_{p(f) \leq 1, f \in \mathcal{C}(B)} p((W^{\alpha} - V)f)$$
$$\geq \sup_{p(f) \leq 1} \sup_{y \in B \setminus D} \frac{1}{\overline{p}(y)} \left| \int_{B} f d\left(\lambda_{y} - \alpha \delta_{y} - \sum_{k=1}^{n} \varphi_{k}(y)\nu_{k}\right) \right|.$$

Now we decompose each ν_k into a continuous part ν_k^1 (not charging singletons) and a finite combination of the Dirac measures; we thus have $\nu_k = \nu_k^1 + \nu_k^2$ and

$$\nu_k^1(M) = \nu_k(M \setminus D), \nu_k^2(M) = \nu_k(M \cap D)$$

for each Borel set M. By virtue of (34) we obtain

$$\begin{split} \omega_{p}(W^{\alpha}) + \varepsilon &\geq \sup_{y \in B \setminus D} \frac{1}{\overline{p}(y)} \sup_{p(f) \leqslant 1} \left| \int_{B} f \, \mathrm{d} \left(\lambda_{y} - \alpha \delta_{y} - \sum_{k=1}^{n} \varphi_{k}(y) \nu_{k} \right) \right| \\ &\geq \sup_{y \in B \setminus D} \frac{1}{\overline{p}(y)} \int_{B} q \, \mathrm{d} \left| \lambda_{y} - \alpha \delta_{y} - \sum_{k=1}^{n} \varphi_{k}(y) \nu_{k} \right| \\ &= \sup_{y \in B \setminus D} \frac{1}{\overline{p}(y)} \left[\int_{B} q \, \mathrm{d} \left| \lambda_{y} - \alpha \delta_{y} - \sum_{k=1}^{n} \varphi_{k}(y) \nu_{k}^{1} \right| + \int_{B} q \, \mathrm{d} \left| \sum_{k=1}^{n} \varphi_{k}(y) \nu_{k}^{2} \right| \right] \\ &\geq \sup_{y \in B \setminus D} \frac{1}{\overline{p}(y)} \int_{B} q \, \mathrm{d} \left| \lambda_{y} - \alpha \delta_{y} - \sum_{k=1}^{n} \varphi_{k}(y) \nu_{k}^{1} \right| \\ &\geq \sup_{y \in B \setminus D} \frac{1}{\overline{p}(y)} \left[\int_{B \cap B_{r}(y)} q \, \mathrm{d} |\lambda_{y} - \alpha \delta_{y}| \\ &- \sum_{k=1}^{n} \max_{x \in B} |\varphi_{k}(x)| \sup_{z \in B} q(z)| \nu_{k}^{1} | (B \cap B_{r}(y)) \right] \end{split}$$

for any r > 0. Since $|\nu_k^1|$ does not charge singletons, we have

 $\lim_{r \downarrow 0} |\nu_k^1| (B_r(y) \cap B) = 0 \quad \text{uniformly with respect to } y \in B.$

We can thus choose an $r_0 > 0$ small enough to ensure the validity of the implication

$$0 < r < r_0 \Longrightarrow \sum_{k=1}^n \max |\varphi_k|(B) \sup q(B)|\nu_k^1|(B_r(y) \cap B) < \varepsilon, \ \forall y \in B.$$

Hence we get

$$\omega_p(W^{\alpha}) + 2\varepsilon \geqslant \sup_{y \in B \setminus D} \frac{1}{\overline{p}(y)} \int_{B \cap B_r(y)} q \, \mathrm{d} \big| \lambda_y - \alpha \delta_y \big| \geqslant \sup_{y \in \widehat{B} \setminus D} \frac{1}{\overline{p}(y)} \big[q(y) \big| \frac{1}{2} - \alpha \big| + v_r^q(y) \big]$$

for any $r \in (0, r_0)$ by Lemma 3 in [12]. Recall that

$$H\colon=\{x\in B;\ \widehat{q}(x)\neq q(x)\}\cup D$$

has vanishing λ_{m-1} -measure. By Remark 2 we get for each $x \in B$ a sequence $x_n \in \widehat{B} \setminus H$ such that

$$x_n \to x \text{ and } \overline{p}(x_n) \to \widehat{\overline{p}}(x) \text{ as } n \to \infty$$

Noting that the functions $v^{\widehat{q}}_r=v^q_r$ (cf. Remark 4 in [12]) and \widehat{q} are lower-semicontinuous, we obtain

$$\frac{1}{\overline{p}(x)} \left[\widehat{q}(x) | \frac{1}{2} - \alpha| + v_r^{\widehat{q}}(x) \right] \leqslant \liminf_{n \to \infty} \frac{1}{\overline{p}(x_n)} \left[q(x_n) | \frac{1}{2} - \alpha| + v_r^q(x_n) \right] \leqslant \omega_p W^{\alpha} + 2\varepsilon.$$

We have thus shown

$$\omega_p W^{\alpha} + 2\varepsilon \ge \sup_{x \in B} \frac{1}{\widehat{p}(x)} \left[\widehat{q}(x) | \frac{1}{2} - \alpha| + v_r^{\widehat{q}}(x) \right]$$

for any $r \in (0, r_0)$, which proves (30), because $\varepsilon > 0$ was arbitrary. Assuming (31) and noting that D is finite we get for any $x \in \widehat{B}$ a sequence $x_n \in \widehat{B} \setminus D$ such that

$$x_n \to x \text{ and } \overline{p}(x_n) \to \overline{p}(x) \text{ as } n \to \infty$$

Hence

$$\frac{1}{\overline{p}(x)} \left[q(x) | \frac{1}{2} - \alpha | + v_r^q(x) \right] \leq \liminf_{n \to \infty} \frac{1}{\overline{p}(x_n)} \left[q(x_n) | \frac{1}{2} - \alpha | + v_r^q(x_n) \right] \leq \omega_p W^\alpha + 2\varepsilon,$$

so that

$$\sup_{x\in\widehat{B}}\frac{1}{\overline{p}(x)}\left[q(x)|\frac{1}{2}-\alpha|+v_r^q(x)\right]\leqslant\omega_pW^\alpha+2\varepsilon$$

and (32) follows.

17. Lemma. Let μ be a finite signed Borel measure with support in B. Let q > 0 be a bounded lower-semicontinuous function on B and define the norm p_q on $\mathcal{C}(B)$ by (26). Then

$$\sup\left\{\int_B f \,\mathrm{d}\mu; \ f \in \mathcal{C}(B), \ p_q(f) \leqslant 1\right\} = \int_B q \,\mathrm{d}|\mu|.$$

Proof. If $f \in \mathcal{C}(B)$, then $p_q(f) \leq 1$ means that $|f| \leq q$ on B, so that

$$\int_{B} f \,\mathrm{d}\mu \leqslant \int_{B} q \,\mathrm{d}|\mu| \text{ and } \sup\left\{\int_{B} f \,\mathrm{d}\mu; \ f \in \mathcal{C}(B), \ p_{q}(f) \leqslant 1\right\} \leqslant \int_{B} q \,\mathrm{d}|\mu|.$$

In order to prove the converse inequality we fix an arbitrary $\varepsilon > 0$ and consider a nondecreasing sequence $f_n \in \mathcal{C}_+(B)$ such that $f_n \nearrow q$ as $n \to \infty$. Since

$$\lim_{n \to \infty} \int_B f_n \, \mathrm{d}|\mu| = \int_B q \, \mathrm{d}|\mu|$$

we can fix $n \in N$ large enough to have

(35)
$$\int_{B} f_{n} \,\mathrm{d}|\mu| > \int_{B} q \,\mathrm{d}|\mu| - \varepsilon.$$

Consider the Hahn decomposition (cf. [14])

$$B = B_+ \cup B_-$$

corresponding to the signed measure μ formed by disjoint Borel sets $B_+,\,B_-$ such that

$$\mu(B_{+} \cap M) = |\mu|(B_{+} \cap M), \mu(B_{-} \cap M) = -|\mu|(B_{-} \cap M)$$

for each Borel set M. Choose compact sets $Q_+ \subset B_+$ and $Q_- \subset B_-$ such that

(36)
$$\int_{S} q \,\mathrm{d}|\mu| < \varepsilon,$$

where $S = (B_+ \setminus Q_+) \cup (B_- \setminus Q_-)$. Construct a $\varphi \in \mathcal{C}(B)$ satisfying the conditions

$$\varphi(Q_+)=\{1\},\ \varphi(Q_-)=\{-1\},\ |\varphi|\leqslant 1$$

and put $f = \varphi f_n$, so that

$$f \in \mathcal{C}(B), \ p_q(f) \leq 1.$$

We then have

$$\int_B f \,\mathrm{d}\mu = \int_{Q_+} f_n \,\mathrm{d}|\mu| + \int_{Q_-} f_n \,\mathrm{d}|\mu| + \int_S \varphi f_n \,\mathrm{d}\mu = \int_B f_n \,\mathrm{d}|\mu| - \int_S f_n \,\mathrm{d}|\mu| + \int_S \varphi f_n \,\mathrm{d}\mu.$$

Noting that

$$\left| \int_{S} f_{n} \, \mathrm{d}|\mu| \right| \leqslant \int_{S} q \, \mathrm{d}|\mu|$$
$$\left| \int_{S} \varphi f_{n} \, \mathrm{d}\mu \right| \leqslant \int_{S} q \, \mathrm{d}\mu$$

and

we conclude from (36), (35) that

$$\int_B f \,\mathrm{d}\mu > \int_B q \,\mathrm{d}|\mu| - 3\varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, we arrive at

$$\sup\left\{\int_B f \,\mathrm{d}\mu; \ f \in \mathcal{C}(B), \ p_q(f) \leqslant 1\right\} \geqslant \int_B q \,\mathrm{d}|\mu|,$$

which completes the proof.

18. Theorem. Let q > 0 be a bounded lower-semicontinuous function on B satisfying (25) and define the norm p_q on C(B) by (26). Then p_q induces the topology of uniform convergence in C(B) and, for each $\alpha \in \mathbb{R}$,

$$\omega_{p_q} W^{\alpha} = |\alpha - \frac{1}{2}| + \inf_{r>0} \sup_{y \in \widehat{B}} \frac{v_r^q(y)}{q(y)}.$$

Proof. This follows from Corollary 14 and Lemma 16 combined with (27) together with Lemma 17. $\hfill \Box$

19. Remark. Theorem 18 shows that, for the norm p_q defined on $\mathcal{C}(B)$ by (26), the optimal choice of the parameter α in the equation (4) is $\alpha = \frac{1}{2}$ (compare also 4.2 in [9]), which leads to the Neumann operator $\mathcal{T} = 2W^{1/2}$. Simple examples of domains "built of bricks" in \mathbb{R}^3 demonstrate that $\omega_{p_1}\mathcal{T} > 1$ may occur for the maximum norm p_1 while, as shown in [1], [13], for such domains an elementary construction of another norm p topologically equivalent to p_1 such that $\omega_p\mathcal{T} < 1$ is always possible.

689

References

- T. S. Angell, R. E. Kleinman, J. Král: Layer potentials on boundaries with corners and edges. Čas. Pěst. Mat. 113 (1988), 387–402.
- [2] M. Balavadze, I. Kiguradze, V. Kokilashvili (eds.): Continuum Mechanics and Related Problems of Analysis. Proceedings of the Internat. Symposium Dedicated to the Centenary of Academician N. Muskhelishvili. Tbilisi, 1991.
- [3] Yu. D. Burago, V. G. Maz' ya: Potential theory and function theory for irregular regions. Zapiski Naučnyh Seminarov LOMI 3 (1967), 1–152 (In Russian.); Seminars in mathematics V. A. Steklov Mathematical Institute, Leningrad (1969), 1–86. (In English.)
- [4] M. Chlebik: Tricomi potentials. Thesis. Mathematical Institute of the Czechoslovak Academy of Sciences. Praha, 1988. (In Slovak.)
- [5] H. Federer: Geometric Measure Theory. Springer, Berlin, 1969.
- [6] H. Federer: The Gauss-Green theorem. Trans. Amer. Math. Soc. 58 (1945), 44–76.
- [7] I. Gohberg, A. Marcus: Some remarks on topologically equivalent norms. Izvestija Mold. Fil. Akad. Nauk SSSR 10 (1960), 91–95. (In Russian.)
- [8] J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511–547.
- [9] J. Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics 823. Springer, Berlin, 1980.
- [10] J. Král: The Fredholm-Radon method in potential theory. Continuum Mechanics and Related Problems of Analysis. Proceedings of the Internat. Symposium Dedicated to the Centenary of Academician N. Muskhelishvili. Tbilisi, 1991, pp. 390–397.
- [11] J. Král, D. Medková: Angular limits of double layer potentials. Czechoslovak Math. J. 45 (1995), 267–291.
- [12] J. Král, D. Medková: Essential norms of a potential theoretic boundary integral operator in L¹. Math. Bohem. 123 (1998), 419–436.
- [13] J. Král, W. L. Wendland: Some examples concerning applicability of the Fredholm -Radon method in potential theory. Aplikace matematiky 31 (1986), 293–308.
- [14] J. Lukeš, J. Malý: Measure and Integral. Matfyzpress, 1994.
- [15] V. G Maz'ya: Boundary Integral Equations. Encyclopaedia of Mathematical Sciences vol. 27, Analysis IV. Springer, 1991.
- [16] L. C. Young: A theory of boundary values. Proc. London Math. Soc. 14A (1965), 300–314.
- [17] W. P. Ziemer: Weakly Differentiable Functions. Springer, 1989.

Authors' addresses: Josef Král, Mathematical Institute, Czech Academy of Sciences, Žitná 25, 11567 Praha 1, Czech Republic, *Dagmar Medková*, Mathematical Institute, Czech Academy of Sciences, Žitná 25, 11567 Praha 1, Czech Republic, e-mail: medkova @math.cas.cz.