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1. Introduction

The aim of this paper is to prove that every finite distributive lattice is isomorphic
to the congruence lattice of a finite chain with two endomorphisms (these are algebras

with one binary and two unary operations), and to characterize those finite lattices
that are isomorphic to the congruence lattice of a finite chain with one endomorphism

(not every finite distributive lattice can be represented in this way). Moreover,
we prove general results on congruence lattices of chains with an arbitrary set of

endomorphisms. Some of these general results were obtained in cooperation with
R.Wille.

The techniques used are those of universal algebra, as explained in [2], and those

of context theory; see [3] and [4]. By a context we mean a triple (A, B, I) where
A, B are sets and I ⊆ A × B. For a subset S of A, the extent of S is the subset

{b ∈ B : (a, b) ∈ I for all a ∈ S} ofB. Similarly, for a subset T ofB, the intent of T is
the subset {a ∈ A : (a, b) ∈ I for all b ∈ T} of A. We obtain a Galois correspondence
between subsets of A and subsets of B. By a concept of (A, B, I) we mean a pair
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(S, T ) such that T is the extent of S and S is the intent of T . For a given context,

the lattice of concepts is isomorphic to the lattice of intents and antiisomorphic to
the lattice of extents.

2. Finite chains with arbitrary sets of endomorphisms

Given a finite ordered set A = (A, �), we denote by A+ 0 and A+ 1 the ordered

sets obtained from A by adding a new least element and a new greatest element,
respectively. The order relation of both A+0 and A+1 will be denoted by the same

symbol � as that of A, and the added elements by 0 and 1 if there is no confusion.
If A is a chain then both A+0 and A+1 are chains, too; in this case we will denote

the predecessor and the cover of an element a ∈ A by a − 1 and a+ 1, respectively.
Let a finite chain A = (A, �) be given. The set of endomorphisms of A + 0 (i.e.,

isotone mappings of A + 0 into itself) will be denoted by E(A, �), or simply by E.
Let us define a context (E, A × A, I) by

(f, (a, b)) ∈ I iff either f(a − 1), f(a) � b − 1 or f(a − 1), f(a) � b.

Notice that

(f, (a, b)) /∈ I iff f(a − 1) � b − 1 < b � f(a).

Theorem 1. Let a finite chain A = (A, �) be given. All subsets of A × A are

intents of the context (E, A×A, I). On the other hand, a subset F of E is an extent

iff it satisfies the following condition: if f ∈ E is an endomorphism such that, for

any a, b ∈ A, f(a − 1) � b − 1 < b � f(a) implies the existence of a g ∈ F with

g(a − 1) � b − 1 < b � g(a), then f ∈ F .

�����. Denote the intent corresponding to a subset F of E by F ′ and the
extent corresponding to a set R ⊆ A × A by R′. Let R ⊆ A × A. In order to prove
that R is an intent, we need to prove that if (a, b) ∈ R′′ then (a, b) ∈ R. Define

an endomorphism f by f(x) = b − 1 for x � a − 1 and f(x) = b for x � a. If
(a, b) /∈ R then it is easy to see that f ∈ R′; indeed, if (c, d) ∈ R then (c, d) �= (a, b)

and so either f(c− 1), f(c) � d − 1 or f(c− 1), f(c) � d; but then (a, b) ∈ R′′ yields
(f, (a, b)) ∈ I, a contradiction. The condition in the last assertion is a reformulation

of F ′′ ⊆ F . �

A subset F of E is said to be rich if it is an extent of the investigated context,

i.e., if it satisfies the condition formulated in Theorem 1. We get that the lattice of
rich subsets of E is antiisomorphic to the Boolean lattice of all subsets of A × A.

However, we shall be more interested in certain lattices that are subsets of these two
lattices.
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By a submonoid of E we mean a subset containing the identity and closed under

superposition.

Theorem 2. Let A be a finite chain. If F is a submonoid of E and R is the

corresponding intent of the context (E, A×A, I) then (A×A) \R is a quasiorder on

A. If R ⊆ A×A is a complement of a quasiorder on A then the corresponding intent

is a rich submonoid. Consequently, if (F, R) is a concept then F is a rich submonoid

iff (A × A) \ R is a quasiorder on A.

�����. Let F be a submonoid and R = {(a, b) : ∀f ∈ F (f, (a, b)) ∈ I}. We
have (a, b) ∈ (A × A) \ R iff there exists an f ∈ F with f(a− 1) � b − 1 < b � f(a).
The reflexivity of (A × A) \ R is a consequence of idA ∈ F , while the transitivity

follows from F being closed under superposition.
Now let R = (A × A)\ � for a quasiorder � on A and

F = {f ∈ E : ∀(a, b) ∈ R(f, (a, b)) ∈ I}
= {f ∈ E : ∀a, b ∈ A (f(a − 1) � b − 1 < b � f(a)→ a � b)}.

Easily, idA ∈ F . If f, g ∈ F and gf(a − 1) � b − 1 < b � gf(a) then there exists an

element c with f(a − 1) � c − 1 < c � f(a) and g(c − 1) � b − 1 < b � g(c); we get
a � c and c � b and hence a � b. �

Theorem 3. Let A be a finite chain. Then there exists an isomorphism of the

lattice of rich submonoids of E onto the lattice of quasiorders on A. If F is a sub-

monoid of E then the quasiorder � corresponding to the rich submonoid generated
by F can be defined as follows:

a � b iff there exists an f ∈ F with f(a − 1) � b − 1 < b � f(a).

If � is a quasiorder on A then the corresponding rich submonoid F can be defined

by

f ∈ F iff f(a − 1) � b − 1 < b � f(a) implies a � b for any a, b ∈ A.

�����. It is a consequence of Theorem 2. �

We are interested in the congruence lattices of (A+0, �, F ) for various subsets F of
E. By a congruence of (A+0, �) we mean a congruence of the corresponding lattice,
or an equivalence all the blocks of which are intervals; a congruence of (A+0, �, F )
must preserve, moreover, all the unary operations from F .

By an order filter of a quasiordered set (A,�) we mean a subset S ⊆ A such that
a � b and a ∈ S imply b ∈ S. Order ideals are defined dually.
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Theorem 4. Let A = (A, �) be a finite chain, F be a subset of E and � be
the quasiorder on A corresponding (under the isomorphism described in Theorem 3)
to the rich submonoid generated by F ; put A0 = A + 0. The congruence lattice of
(A+ 0, �, F ) is isomorphic to the lattice of order filters of (A,�).

�����. We can assume that F is a submonoid. Define a context (A0×A0, A, IF )

as follows: ((x, y), a) ∈ IF iff

for any f ∈ F , either f(x), f(y) � a − 1 or f(x), f(y) � a.

Clearly, a � b is equivalent with ((a − 1, a), b) /∈ IF . For S ⊆ A0 × A0 put S# =

{a ∈ A : ∀(x, y) ∈ S ((x, y), a) ∈ IF }. For T ⊆ A put T# = {(x, y) ∈ A0×A0 : ∀a ∈
T ((x, y), a) ∈ IF }.
It is easy to see that T# is a congruence of (A0, �, F ) for any T ⊆ A. If S is a

congruence of (A0, �, F ) then

S# = {a ∈ A : ∀(x, y) ∈ S x, y � a − 1 or x, y � a}

and one can easily prove S## = S.

Let us prove that if S is a congruence of (A0, �, F ) then S# is an order ideal of

(A,�). For this we need to show that if ((x, y), a) ∈ IF and b � a then ((x, y), b) ∈ IF ;
it is sufficient to consider the case x � y. As b � a, there exists an f ∈ F with

f(b − 1) � a − 1 < a � f(b). If ((x, y), b) /∈ IF then g(x − 1) � b − 1 < b � g(y) for
some g ∈ F ; but then fg(x) � f(b − 1) � a − 1 < a � f(b) � fg(y) and we get a

contradiction with fg ∈ F and ((x, y), a) ∈ IF .

Let us prove T## = T for any order ideal T of (A,�). We need to prove that if
a ∈ T## then a ∈ T . If a ∈ T## then (a − 1, a) /∈ T# (since otherwise we would

have ((a − 1, a), a) ∈ IF , which is impossible) and so there exist an element b ∈ T

and an endomorphism f ∈ F with f(a − 1) � b − 1 < b � f(a), i.e., a � b; but then

a ∈ T .

These observations show that the concept lattice of (A0×A0, A, IF ) is isomorphic

to the congruence lattice of (A0, �, F ) and at the same time antiisomorphic to the
lattice of order ideals of (A,�); consequently, it is isomorphic to the lattice of order
filters of (A,�). �
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3. Two endomorphisms

Theorem 5. Every finite distributive lattice is isomorphic to the congruence
lattice of a finite chain with two endomorphisms.

�����. As follows from Birkhoff [1], every finite distributive lattice is isomorphic
to the lattice of order filters of a finite ordered set (A,�). Denote by n the cardinality

of A and take an ordering a1, . . . , an of the elements of A. For any nonnegative
integer i put ai = ap(i) where p(i) is the number in {1, . . . , n} which is congruent
with i modulo n.
Consider the decomposition of the set of positive integers into the segments Sk =

{k + 1, . . . , k + n} (k = 0, 1, 2, . . .). We will call a segment Sk regular if either k = 0
or k = nj+nj−1+ . . .+n+ j+2 for some j � 0; all the other segments will be called
singular. So, the first segment S0 is regular, then comes one singular segment, the
next one is regular, the next n ones are singular, the next one is regular, the next n2

segments are singular, and so on.
By induction let us define a positive integer q(i) for any positive integer i in the

following way. If i belongs to a regular segment S then put q(i) = i + c where c is
the least positive multiple of n such that S+ c is again regular. Now, let i belong to

a singular segment S. Denote by R0 the last regular segment preceding S and by R1
and R2 the next two regular segments. There exists an m � 1 such that there are
exactly nm elements in the singular segments between R0 and R1 and at the same
time there are exactly nm singular segments between R1 and R2. If i stands as the
j-th among the nm elements, we will define q(i) to be an element of the j-th singular

segment T between R1 and R2. Which element? There are n elements to choose
from. Well, first of all we demand q(i) to be such that aq(i) � ai; this can be always

accomplished by taking q(i) to be the element of T with aq(i) = ai; but we will prefer
to take, whenever possible, an element giving us a new pair (aq(i), ai) in the following

sense. If there exists an element a ∈ A such that a � ai and (a, ai) �= (aq(j), aj)
for any j < i, take one such element a and define q(i) to be the element of T with

aq(i) = a; only if such an element does not exist, let q(i) be the element of T with
aq(i) = ai.

Clearly, q is an increasing mapping with the property q(i) > i for all i. Since
q(i) was defined in such a way that aq(i) � ai is a new relation whenever possible,

a positive integer must exist starting from which all the finitely many pairs (a, b) ∈
A×A with a � b were already exhausted as the new ones. So, there exists a regular

segment H such that for any (a, b) ∈ A×A with a � b there is an i with q(i) < h for
h ∈ H and (a, b) = (aq(i), ai). Denote by s the largest element of H and by C the

chain {1, 2, . . . , s} (with respect to the usual ordering of natural numbers); we have
C + 0 = {0, 1, . . . , s}.
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Define two endomorphisms f, g of C + 0 as follows: f(x) = x + n for x � s − n;

f(x) = s for x > s − n; g(x) = 0 for x < q(1) (i.e., for x � 2n); if x � q(1) then put
g(x) = i where i is the integer with q(i) � x < q(i+ 1).

Denote by F the submonoid generated by f, g and by �′ the quasiorder on C

corresponding to F under the isomorphism described in Theorem 3. Put

Rf = {(a, b) ∈ C × C : f(a − 1) � b − 1 < b � f(a)},
Rg = {(a, b) ∈ C × C : g(a − 1) � b − 1 < b � g(a)}.

It is clear that �′ is just the reflexive and transitive closure of Rf ∪ Rg.

If a ∈ C is such that a+n ∈ C then it is clear that (a, a+n) ∈ Rf . If S and S+ c

are two neighboring regular segments both contained in C then clearly (a, a−c) ∈ Rg

for any a ∈ S + c. From these two observations and from the fact that the segments

{1, . . . , n} and {s − n + 1, . . . , s} are both regular it follows that whenever i, j ∈ C

and i ≡ j mod n then i �′ j and j �′ i. Clearly, (i, j) ∈ Rg implies ai � aj ; and it

now follows from the choice of the segment H that whenever a � b then there exist
i, j ∈ C with a = ai, b = aj and (i, j) ∈ Rg. We get i �′ j iff ai � aj . But then, the

lattice of order filters of (C,�′) is isomorphic to the lattice of order filters of (A,�).
By Theorem 4, the congruence lattice of (C + 0, �, f, g) is isomorphic to the lattice
of order filters of (C,�′). �

4. One endomorphism

By a forest we will mean an ordered set, any principal ideal of which is a chain.

Theorem 6. The following three conditions are equivalent for a finite lattice L:

1. L is isomorphic to the congruence lattice of an at least two-element finite chain

with one endomorphism;

2. L is isomorphic to the lattice of order filters of a finite forest;

3. L belongs to the smallest class L of finite lattices closed under isomorphic im-
ages, containing the two-element lattice and such that whenever L1, L2 ∈ L
then L1 × L2 ∈ L and L1 + 1 ∈ L.

�����. (1) implies (2). Let A = (A, �) be a finite chain, f be an endomorphism
of A + 0 and F be the submonoid generated by f (so that F = {fk : k � 0}). By
Theorem 3 there is a quasiorder � on A corresponding to F and we need only to

prove that (A,�) is a forest. Define a relation R by (a, b) ∈ R iff a �= b and f(a−1) �
b−1 < b � f(a). Then a � b iff there exists a sequence a = a0, a1, . . . , ak = b (k � 0)
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such that (a0, a1) ∈ R, . . . , (ak−1, ak) ∈ R; it is easy to see that in the case a0 < a1

we have a0 < a1 < a2 < . . ., while in the case a0 > a1 we have a0 > a1 > a2 > . . .. It
follows that � is an order. It is a forest order, since (a, c) ∈ R and (b, c) ∈ R clearly
imply a = b.

(2) implies (1). Let (A,�) be a forest. Then A can be decomposed into the

disjoint union of its maximal subtrees T1, . . . , Tn (i.e., principal filters generated
by the minimal elements of (A,�)). We can define a linear ordering � on A in

such a way that all the components T1, . . . , Tn become segments and for any two
elements a, b of a component Ti we have a < b whenever either the principal ideal

of Ti generated by a has smaller cardinality than the one generated by b or the two
cardinalities (the heights of a and b) are the same and the predecessor of a (with

respect to �) is less (with respect to <) than the predecessor of b. For a ∈ A denote
by Sa the set of the elements covering a in (A,�); then Sa is a segment in (A, �).
Define an endomorphism f of (A + 0, �) as follows: f(0) = 0; if a ∈ A and Sa is
nonempty, let f(a) be the largest (with respect to �) element of Sa; if Sa is empty,

put f(a) = f(a − 1) (where a − 1 is the element covered by a in (A+ 0, �); so, this
definition is inductive). For any a ∈ A it is easy to see that the set of the elements

b satisfying f(a − 1) � b − 1 < b � f(a) coincides with the set of the covers of a in
(A,�). From this it follows that � coincides with the quasiorder corresponding to the
rich submonoid generated by f ; by Theorem 3, the congruence lattice of (A+0, �, f)
is isomorphic to the lattice of order filters of (A,�).
The equivalence of (2) with (3) is a consequence of the following three simple

observations:

(i) The lattice of order filters of the one-element forest is the two-element lattice.

(ii) If A is a forest with the least element 0 and A �= {0} then the lattice of order
filters of A is isomorphic to L + 1 where L is the lattice of order filters of the

forest A \ {0}.
(iii) If A is a forest which can be decomposed into the disjoint union of two proper

nonempty order filters A1 and A2 then the lattice of order filters of A is isomor-
phic to the product of the lattice of order filters of A1 and the lattice of order

filters of A2. �
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