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Abstract. We discuss how the choice of the functional setting and the definition of the
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−∆pu = f in Ω,

where Ω is a very general domain in �N , including the case Ω = �N .
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1. Introduction

The object of our study is the second order quasilinear elliptic differential operator

∆pu := div(|∇u|p−2∇u), where p > 1 is a real number. Note that we define ∆pu = 0
for ∇u = 0 and 1 < p < 2. We concentrate on the following basic question: “How

the choice of an appropriate function space affects the existence and uniqueness of
the weak solution to the equation

(1.1) −∆pu = f in Ω,

where Ω ⊂ �
N ?” Let us point out that Ω is considered to be a bounded, an (un-

bounded) exterior domain or, possibly, Ω = �
N . The choice of an appropriate

1 The first author was partially supported by the Grant Agency of the Czech Republic,
grant # 201/00/0376 and by the Ministry of Education of the Czech Republic, grant
# VS97156.
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function space and the relation between p and the dimension N then play the es-

sential role in the questions of existence, nonexistence or uniqueness of the weak
solution to Eq. (1.1). While for Ω a bounded domain the situation seems to be more
or less clear and often treated in literature, for Ω = �

N or Ω an exterior domain

in �N we can observe some phenomena which may seem to be surprising without
deeper insight of the problem and a careful definition of the notion of a weak solution

(cf. [7]). We start our exposition with very general existence and uniqueness results
in abstract Banach spaces. Then we consider the typical situations: Ω a bounded

domain, an (unbounded) exterior domain and the whole of �N , and point out some
differences between these cases. Let us remind the reader that problems of this type

were treated e.g. in [1], [2], [3] or [5].

2. Some general existence and uniqueness results

Let Ω ⊂ �
N be a domain and let L1,p(Ω) := {u ∈ L1loc(Ω); ∇u ∈ [Lp(Ω)]N}.

Here ∇u = (∂u/∂x1, . . . , ∂u/∂xN), where ∂iu := ∂u/∂xi (i = 1, . . . , N) is the weak
(distributional) derivative of u.

Let X be a linear function space with the following properties:

X ⊂ L1,p(Ω).(X1)

By ‖u‖X := ‖∇u‖p;Ω for u ∈ X a norm is defined on X(X2)

so that X equipped with this norm is a reflexive Banach space

where ‖ · ‖p;Ω is the usual L
p-norm of |∇u| :=

( N∑
i=1

|∂iu|2
)1/2

.

Let us denote by X∗ the dual space, by ‖.‖X∗ the norm on X∗ and by 〈·, ·〉X the
duality pairing between X∗ and X . We define the operator J : X → X∗ by

〈J(u), v〉X =
∫
Ω
|∇u|p−2∇u · ∇v

for any u, v ∈ X . Then the operator J has the following properties:

〈J(u), u〉X = ‖u‖p
X for any u ∈ X ;(J1)

〈J(u)− J(v), u − v〉X > 0 for any u, v ∈ X,u �= v;(J2)

J and J−1 are continuous operators.(J3)

Indeed, the properties (J1) and (J2) as well as the continuity of J are obvious. It
then follows from the theory of monotone operators (see e.g. [4]) that J is surjective.
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To prove the continuity of J−1 we use the inequality

(2.1) 〈J(u)− J(v), u − v〉X � (‖u‖p−1
X − ‖v‖p−1

X )(‖u‖X − ‖v‖X)

which is an immediate consequence of the Hölder inequality. Let us suppose that
J−1 : X∗ → X is not continuous. Then there exists a sequence (fn) ⊂ X∗, fn → f ,

i.e. strongly, in X∗ and

‖J−1(fn)− J−1(f)‖X � δ

for some δ > 0. Denote un = J−1(fn), u = J−1(f). It follows from (J1) that

‖fn‖X∗‖un‖X � 〈fn, un〉X = 〈J(un), un〉X = ‖un‖p
X ,

i.e. (un) ⊂ X is a bounded sequence. Due to (X2) we can assume (after passing to a
subsequence, if necessary) that there exists ũ ∈ X such that un ⇀ ũ, i.e. weakly, in

X . Hence we have

(2.2) 〈J(un)−J(ũ), un−ũ〉X = 〈J(un)−J(u), un−ũ〉X+〈J(u)−J(ũ), un−ũ〉X → 0

since J(un) = fn → f = J(u) in X∗. If we set u = un and v = ũ in (2.1) then (2.2)
implies ‖un‖X → ‖ũ‖X . Then (X2) yields un → ũ in X and so by (J2) we get u = ũ,

a contradiction. Actually, we have proved

Theorem 2.1. The operator J is a homeomorphism between X and X∗. In
particular, given f ∈ X∗, the equation J(u) = f has a unique solution uf ∈ X and

‖uf‖X � ‖f‖1/(p−1)X∗ .

Note that the equation J(u) = f can be interpreted also as an Euler equation of
the functional

Φf (u) =
1
p
‖u‖p

X − 〈f, u〉X , u ∈ X,

and its solution as a minimizer of Φf . Indeed, it is easy to verify that Φf : X → �

is a coercive, strictly convex and weakly lower semicontinuous functional. So for

arbitrary f ∈ X∗, there exists a unique minimizer uf ∈ X of Φf which is also its
unique critical point.
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3. The case of a bounded domain

Let Ω ⊂ �
N be a bounded domain and consider the Dirichlet problem

(3.1)

{
−∆pu = f in Ω,

u = 0 on ∂Ω.

Define X := C∞
0 (Ω)

‖∇·‖p;Ω = W 1,p
0 (Ω) and let f ∈ X∗. It is well known that the

space X equipped with the norm ‖∇ · ‖p;Ω satisfies (X1) and (X2). We then define
a weak solution of (3.1) as a function u ∈ X for which the identity

(3.2)
∫
Ω
|∇u|p−2∇u · ∇v = 〈f, v〉X

holds for every v ∈ X . It follows from Theorem 2.1 that (3.2) is uniquely solvable
for any f ∈ X∗.
In what follows, for 1 < p < N we set

p∗ =
Np

N − p
(the critical Sobolev exponent), p∗′ =

p∗

p∗ − 1 =
Np

Np−N + p
.

In the case p > N we set p∗ = ∞, p∗′ = 1, and finally for p = N we put p∗ =
q , p∗′ = q

q−1 , where q ∈ (1,∞) is an arbitrarily chosen number. It follows from the
Sobolev imbedding theorem that any f ∈ Lp∗′

(Ω) can be identified with an f ∈ X∗

and 〈f, v〉X =
∫
Ω fv for any v ∈ X . The above considerations immediately imply

Theorem 3.1. Let f ∈ Lp∗′
(Ω). Then the Dirichlet problem (3.1) has a unique

weak solution uf ∈ X , i.e. ∫
Ω
|∇uf |p−2∇uf · ∇v =

∫
Ω
fv

for any v ∈ X (or equivalently for any v ∈ C∞
0 (Ω)).

For the Neumann problem

(3.3)

{
−∆pu = f in Ω,

|∇u|p−2∂u/∂ν = 0 on ∂Ω

(here ∂
∂ν denotes the derivative with respect to the exterior normal) the situation is

different. A weak solution of (3.3) is usually defined by the same integral identity as
(3.2) but now with the test space X replaced by X̃ := W 1,p(Ω), where W 1,p(Ω) =
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{
u ∈ Lp(Ω); ∇u ∈ [Lp(Ω)]N

}
. Since ‖∇ · ‖p;Ω is only a seminorm on X̃, we cannot

apply Theorem 2.1 as in the case of the Dirichlet problem. Roughly speaking, we
have to rule out the constants from X̃. One possibility is to restrict ourselves (since
Ω is bounded) to the subspace X := {u ∈ X̃ ;

∫
Ω u = 0}.

Now, ‖∇ · ‖p;Ω defines a norm on X but additional information about Ω is needed

in order to guarantee that (X, ‖∇ · ‖p;Ω) is complete. It is proved in [11] that this is
the case if and only if the Poincaré inequality

(3.4) ‖u‖p;Ω � c‖∇u‖p;Ω ∀ u ∈ X

holds. One of the sufficient conditions for (3.4) to hold is ∂Ω ∈ C0 (i.e. for any

x0 ∈ ∂Ω there is a neighbourhood U(x0) ⊂ �
N such that U(x0) ∩ ∂Ω is a C0

manifold in �N—see [11]). So, assuming ∂Ω ∈ C0, we verify (X1), (X2), and for any

f ∈ X∗ there exists a unique uf ∈ X satisfying (3.2) with this choice of X .

In order to apply Sobolev’s imbedding theorems forX we need now ∂Ω ∈ C0,1 (the
boundary is locally Lipschitzian—this property is defined analogously as ∂Ω ∈ C0).

Remark also that the norm ‖∇ · ‖p;Ω on X is equivalent to the usual Sobolev norm
‖ · ‖W 1,p(Ω) in this case. If this is the case, any f ∈ Lp∗′

(Ω) defines f ∈ X∗ satisfying
〈f, v〉X =

∫
Ω fv for any v ∈ X . But now any constant function on Ω is identified

with the zero element of X(X∗) and by the same argument any u ∈ X (f ∈ Lp∗′
(Ω))

is identified with ũ = u−
∫
Ω u (f̃ = f −

∫
Ω f). Thus we have

Theorem 3.2. Let ∂Ω ∈ C0,1, f ∈ Lp∗′
(Ω). Then the Neumann problem (3.3)

has a unique family of weak solutions uf,c = uf + c, c ∈ �, where
∫
Ω uf = 0 (i.e.

∫
Ω
|∇uf,c|p−2∇uf,c · ∇v =

∫
Ω
fv

for any v ∈ W 1,p(Ω)) if and only if

∫
Ω
f = 0.
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4. The case Ω = �N

In this section we discuss the existence of a weak solution of the equation

(4.1) −∆pu = f in �
N .

For 1 < p < N set Ĥ1,p0 (�
N ) := {u ∈ L1,p(�N ) ; u ∈ Lp∗

(�N )} where p∗ :=
Np

N−p . Let us recall some facts from [3], [9], [11] and [12]. In the sense of a direct

decomposition we have

(4.2)


L1,p(�N ) = Ĥ1,p0 (�

N )⊕ �,

u = (u− cu) + cu,

where (u− cu) ∈ Ĥ1,p0 (�
N ) and

cu = lim
R→∞

1
|BR|

∫
BR

u, where BR := {x ∈ �
N ; |x| < R}.

Here, |BR| denotes the Lebesgue measure of BR. Moreover, we have

(4.3) Ĥ1,p0 (�
N ) = C∞

0 (�N )‖∇·‖
p;�N

by the Sobolev imbedding, and ‖∇.‖p;�N is a norm on X := Ĥ1,p0 (�
N ) so that X

is complete. Thus (X1) and (X2) are verified and we can apply Theorem 2.1. In

particular, we have

Theorem 4.1. Let f ∈ Lp∗′
(�N ). Then there is a unique uf ∈ X such that the

integral identity

(4.4)
∫
�N

|∇uf |p−2∇uf · ∇v =
∫
�N

fv

holds for any v ∈ X (or equivalently for any v ∈ C∞
0 (�

N )).

Let us now consider the case p � N � 2. As is shown in [7], if f ∈ L1(�N ),∫
�N f �= 0 then there is no u ∈ L1,p(�N ) satisfying∫

�N

|∇u|p−2∇u · ∇v =
∫
�N

fv

for arbitrary v ∈ C∞
0 (�

N ).

A natural question arises: “Does this result contradict Theorem 2.1?” The answer
is NO and in the remaining part of this section we will justify it.
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Let us recall again some facts from [3], [9], [11] and [12]. For ∅ �= M ⊂⊂ �
N

(i.e.M is an open nonempty and bounded set) define

L1,pM (�
N ) :=

{
u ∈ L1,p(�N ) ;

∫
M

u = 0

}
.

Then in the sense of a direct decomposition

(4.5)


L1,p(�N ) = L1,pM (�

N )⊕ �,

u = (u −mu) +mu,

mu := 1
|M|

∫
M
u.

Moreover, in the case N � p <∞ we have

(4.6) L1,pM (�
N ) = C∞

0,M (�
N )‖∇.‖p;�N ,

where C∞
0,M (�

N ) :=
{
u ∈ C∞

0 (�
N ) ;

∫
M
u = 0

}
.

Set X := L1,pM (�
N ) and let R > 0 be such that M ⊂ B2R and f ∈ Lp′

(�N ) satisfy∫
�N\B2R

|f(x)|p
′
|x|p

′
dx <∞ if p > N,(4.7) ∫

�N\B2R

|f(x)| N
N−1 |x| N

N−1
(
ln

|x|
R

) N
N−1
dx <∞ if p = N.(4.8)

Lemma 4.1. The assumptions of Theorem 2.1 are satisfied with X and f given
above.

�����. Let ϕ ∈ C∞
0 (�

N ), supp ϕ ⊂ �
N \ B2R. The following auxiliary

estimates were proved in [12], Lemma II.9.2, p. 95:

(4.9)

( ∫
RN

|ϕ(x)|p
|x|p dx

) 1
p

� p

|N − p| ‖∇ϕ‖p;�N

if p > 1, p �= N and

(4.10)

( ∫
RN

|ϕ(x)|N

|x|N (ln |x|
R )

N
dx

) 1
N

� N

|N − 1| ‖∇ϕ‖N ;�N.

Let us also recall the (extended) Poincaré inequality (see [3], estimate (2.12)):

(4.11) ‖u‖p,BR′ � c(R,M)‖∇u‖p,BR′
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for all u ∈ L1,pM (�
N ), valid even for 1 � p <∞ and all R′ such that M ⊂ BR′ .

We prove that f defines a continuous linear functional on X . Indeed, let η ∈
C∞
0 (�

N ), 0 � η(x) � 1,

η(x) =

{
1 for |x| � 2R,
0 for |x| � 4R.

For ϕ ∈ X we consider

〈f, ϕ〉X = 〈f, ηϕ〉X + 〈f, (1− η)ϕ〉X .

Set ϕ1 := ηϕ, ϕ2 := (1− η)ϕ. Then

|〈f, ϕ1〉X | � ‖f‖p′;�N‖ϕ1‖p;�N

and since
∫

M
ϕ1 = 0, we have

‖ϕ1‖p;�N � c(R,M)‖∇ϕ1|‖p;�N � c(R,M)(‖ | η∇ϕ| ‖p;�N + ‖ϕ∇η‖p;�N).

On the other hand, since supp η ⊂ B4R, |∇η| � CR, we get by (4.11)

‖ϕ∇η‖p;�N � CR‖ϕ‖p,B4R � CRc(R,M)‖∇ϕ‖p,B4R

and
‖ϕ1‖p;�N � c(R,M)(1 + CRc(R,M))‖∇ϕ‖p,B4R .

For ϕ2 we get

|〈f, ϕ2〉X | �
∫
�N

|f(x)||ϕ2(x)| dx �
∫
�N

(|f(x)||x|)(|x|−1 |ϕ2(x)|) dx

�
( ∫

�N\B2R

|f(x)|p′ |x|p′
dx

) 1
p′ ( ∫

�N

|ϕ2(x)|p
|x|p dx

) 1
p

�
( ∫

�N\B2R

|f(x)|p
′
|x|p

′
dx

) 1
p′ p

|N − p| ‖∇ϕ2‖p;�N

by (4.9) and (4.7) if p > N .

Similarly, we get

|〈f, ϕ2〉X | �
∫
�N

(
|f(x)| |x|

∣∣∣ ln |x|
R

∣∣∣)( |ϕ2(x)|
|x| ln( |x|R )

)
dx

�
( ∫

�N\B2R

|f(x)| N
N−1

∣∣∣|x| ln |x|
R

∣∣∣ N
N−1
dx

)N−1
N

( ∫
�N

|ϕ2(x)|N

|x|N
∣∣ ln( |x|R )

∣∣N dx
) 1

N

�
( ∫

�N\B2R

|f(x)| N
N−1

∣∣∣|x| ln |x|
R

∣∣∣ N
N−1
dx

)N−1
N N

N − 1‖∇ϕ2‖N ;�N
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by (4.10) and (4.8). Now, by (4.11) again

‖∇ϕ2‖p;�N � ‖∇ϕ‖p,�N\B2R
+ CR‖ϕ‖p,B4R

� ‖∇ϕ‖p,�N\B2R
+ CRc(R,M)‖∇ϕ‖p,B4R � C1(R,M)‖∇ϕ‖p;�N .

Thus we have an estimate

|〈f, ϕ〉X | � c‖∇ϕ‖p;�N

for any ϕ ∈ X , where the constant depends only on R > 0, i.e. f ∈ X∗. Since (X1)
and (X2) are satisfied, the proof of the lemma is complete. �

������ 4.1. It follows from Lemma 4.1 and Theorem 2.1 that for any f ∈
Lp′
(�N ) satisfying (4.7) (if p > N) and (4.8) (if p = N) there exists a unique

uf ∈ X such that ∫
�N

|∇uf |p−2∇uf · ∇ϕ =
∫
�N

fϕ

holds for any ϕ ∈ X .

Theorem 4.2. LetX and f be as in Lemma 4.1. Then f ∈ L1(�N ) and moreover,

there is a unique family uf,c = uf + c, c ∈ �, uf,c ∈ L1,p(�N ) satisfying

(4.12)
∫
�N

|∇uf,c|p−2∇uf,c · ∇ϕ =
∫
�

fϕ

for any ϕ ∈ C∞
0 (�

N ) if and only if ∫
�N

f = 0.

�����. Let p > N . Then it follows from Hölder’s inequality that for any

T > 2R we have∫
{2R�|x|�T}

|f(x)| dx =
∫
{2R�|x|�T}

|f(x)||x| |x|−1 dx

�
( ∫

�N\B2R

|f(x)|p
′
|x|p

′
dx

) 1
p′ (∫

�N\B2R

|x|−p dx

) 1
p

,∫
{2R�|x|�T}

|x|−p dx = ωN

∫ T

2R
rN−1−p dr � ωN

p−N
(2R)N−p.

(Here ωN is the measure of the unit sphere in �N .)
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Let p = N . Then from Hölder’s inequality we have for any T > 2R

∫
{2R�|x|�T}

|f(x)| dx �
( ∫

RN\B2R

|f(x)| N
N−1 |x| N

N−1
(
ln

|x|
R

) N
N−1
dx

)N−1
N

×
( ∫

RN\B2R

|x|−N
(
ln

|x|
R

)−N

dx

) 1
N

,∫
{2R�|x|�T}

|x|−N
(
ln

|x|
R

)−N

dx

= ωN

∫ T

2R
r−1

(
ln

|r|
R

)−N

dr � ωN

R(N − 1)(ln 2)
1−N .

Hence from f ∈ Lp′
(�N ), (4.7) (if p > N) and (4.8) (if p = N) we get that f ∈

L1(�N ).
Assume now

∫
�N f = 0. As mentioned above any ϕ ∈ L1,p(�N ) splits as

ϕ = (ϕ−mϕ) +mϕ,

where mϕ = 1
|M|

∫
M ϕ. Then∫

�N

fmϕ = 0 =
∫
�N

|∇u|p−2∇u · ∇mϕ,

which together with the fact that (4.11) holds for any ϕ ∈ X (cf. Remark 4.1) yields

(4.13)
∫
�N

|∇u|p−2∇u · ∇ϕ =
∫
�N

fϕ

for any ϕ ∈ L1,p(�N ) and, in particular, for any ϕ ∈ C∞
0 (�

N ).

If conversely, (4.13) holds for all ϕ ∈ C∞
0 (�

N ) then we can choose ϕ = gk, where
gk ∈ C∞

0 (�
N ), 0 � gk � 1, gk(x) = 1 for |x| � k and ‖∇gk‖p;�N → 0 as k → ∞

(cf. [3]). Then

(4.14)
∫
�N

|∇u|p−2∇u · ∇gk → 0

and since fgk → f a.e. in �N , |fgk| � |f |, by Lebesgue’s theorem we conclude∫
�N

fgk →
∫
�N

f.

On the other hand, by (4.13), (4.14)
∫
�N fgk → 0, i.e.

∫
�N f = 0. �
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Let us assume that p > N . Then due to the Morrey estimate (see [6], Theo-

rem 7.17) the space L1,pM (�
N ) is isometrically isomorphic to

(4.15)
Ĥ1,p• (�

N ) := {u ∈ L1,p(�N ) : |u(x)− u(y)|

� C(N, p)‖∇u‖p;�N |x− y|1−N
p ∀x, y ∈ �

N , u(0) = 0}.

The corresponding isometric isomorphism Jp : L
1,p
M (�

N )→ Ĥ1,p• (�N ) is defined by

(Jpũ)(x) := ũ(x)− ũ(0),

where ũ denotes the unique continuous respresentative belonging to the equivalence
class u ∈ L1,pM (�

N ).

Hence for p > N we can alternatively set X = Ĥ1,p• (�N ) and (X, ‖∇ · ‖p;�N)
satisfies (X1) and (X2).

Let �N
+ := {x ∈ �

N ; |x| > 0} and

(4.16) DN,p(�N ) :=
{
f ∈ L1loc(�

N
+ ) ;

∫
�N

|f(x)| |x|1− N
p dx <∞

}
.

Then by

‖f‖DN,p(�N) :=
∫
�N

|f(x)| |x|1−N
p dx

a norm is defined and
(
DN,p(�N ), ‖ · ‖DN,p(�N)

)
is a Banach space.

Let u ∈ X and f ∈ DN,p(�N ). It follows from (4.15) and (4.16) that∣∣∣∣ ∫
�N

f(x)u(x) dx

∣∣∣∣ � C(N, p)‖∇u‖p;�N

∫
�N

|f(x)| |x|1−N
p dx

= C(N, p)‖f‖DN,p(�N)‖∇u‖p;�N,

i.e.DN,p(�N ) ⊂ X∗.

Theorem 4.3. Let p > N and X be as above. Let f ∈ L1loc(�
N ) and assume

that for some q > p the inequality∫
�N\B1

|f(x)|q′ |x|q′
dx <∞

holds. Then there exists a unique family uf,c = uf + c, c ∈ �, uf ∈ X , X =
Ĥ1,p• (�N ), uf,c ∈ L1,p(�N ), satisfying∫

�N

|∇uf,c|p−2∇uf,c · ∇ϕ =
∫
�N

fϕ
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for any ϕ ∈ C∞
0 (�

N ) if and only if ∫
�N

f = 0.

�����. We prove that f ∈ DN,p(�N ). Indeed, by Hölder’s inequality we obtain∫
�N

|f(x)||x|1− N
p dx �

∫
B1

|f(x)| dx+
∫
�N\B1

|f(x)| |x|1− N
p dx

� ‖f‖1,B1 +
( ∫

�N\B1

|f(x)|q′ |x|q′
dx

) 1
q′

( ∫
�N\B1

|x|−N q
p dx

) 1
p

.

The rest of the proof follows the lines of the proof of Theorem 4.2. �

������ 4.2. Our Theorems 4.2 and 4.3 generalize a necessary condition given

in [7]. In particular, we get from here that any constant is a weak solution of

−∆pu = 0 in �
N .

5. The case of an exterior domain

Let G := �
N \ K, where ∅ �= K ⊂⊂ �

N , 0 ∈ K. Let us consider the Dirichlet

problem

(5.1)

{
−∆pu = f in G,

u = 0 on ∂G.

We want to prove existence and uniqueness of a weak solution of (5.1). Define the
space

Ĥ1,p0 (G) := C
∞
0 (G)

‖∇.‖p;G .

Let 1 < p < N . Then due to the Sobolev imbedding we have Ĥ1,p0 (G) ↪→ Lp∗
(G) and

therefore X := Ĥ1,p0 (G) verifies (X1) and (X2). We can apply the abstract Theorem
2.1 and, in particular, we have the following result.

Theorem 5.1. Let f ∈ Lp∗′
(G) be given. Then there is a unique uf ∈ X such

that

(5.2)
∫

G

|∇uf |p−2∇uf · ∇ϕ =
∫

G

fϕ

holds for any ϕ ∈ X (or equivalently, for any ϕ ∈ C∞
0 (G)).
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Let p � N . Then Ĥ1,p0 (G) coincides with the space

Ĥ1,p• (G) := {u ∈ L1,p(G) ; u ∈ Lp(GR) for every R > 0 and

ηu ∈ W 1,p
0 (G) for any η ∈ C∞

0 (�
N )},

where GR = G∩BR (see [12], Theorems I. 2.7, I. 2.16). Now, we can literally follow
the approach from Section 4, case p � N , to get the following result.

Theorem 5.2. Let f ∈ Lp′
(G), let f satisfy (4.7) for p > N and (4.8) for

p = N . Then there exists a unique uf ∈ X such that (5.2) holds for any ϕ ∈ X (or

equivalently, for any ϕ ∈ C∞
0 (G)).

������ 5.1. Let us point out that contrary to the case of the whole of �N we
do not need any additional condition of the type “

∫
f = 0” because the constants

are ruled out due to the homogeneous Dirichlet boundary conditions.

Let us consider the Neumann problem{
−∆pu = f in G,

|∇u|p−2 ∂u
∂ν = 0 on ∂G.

Choose M such that ∅ �=M ⊂⊂ G. Then a subspace of L1,p(G) is given by

(5.3) L1,pM (G) :=
{
u0 ∈ L1,p(G) ;

∫
M

u0 = 0
}

and in the sense of a direct sum

(5.4)
L1,p(G) = L1,pM (G)⊕ �,

u = u0 +mu

where

(5.5) mu := |M |−1
∫

M

u, u0 := u−mu.

By

(5.6) |u|1,p;G;M := ‖∇u‖p;G +

∣∣∣∣∫
M

u

∣∣∣∣
a norm is defined on L1,p(G) (see [9], Lemma 4.1) such that L1,p(G) equipped with
this norm is a reflexive Banach space (see [9], Theorem 4.5).
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Clearly, for u0 ∈ L1,pM (G) we have

(5.7) |u0|1,p;G;M = ‖∇u0‖p;G.

We assume now that ∂G ∈ C0 and choose R0 = R0(M,K) > 0 so that M ⊂ BR0

and K ⊂ BR0 and we write GR0 := G ∩BR0 . By [11], Lemma 4.2, for u ∈ L1,p(G),

we see that u|GR0
∈ Lp(GR0) and there exist G

′ ⊂⊂ G and a constant CR0 > 0 such
that

(5.8) ‖u‖p;GR0
� CR0(‖∇u‖p;G + ‖u‖p;G′) ∀u ∈ L1,p(G).

Because of the Poincaré-type inequality

(5.9) ‖u0‖p;G′ � CG′‖∇u0‖p;G ∀u0 ∈ L1,pM (G)

(with CG′ = C(G′, G, p) > 0, see [9], Theorem 5.1), by (5.8), (5.9) we get

(5.10) ‖u0‖p;GR0
� C1‖∇u0‖p;G ∀u0 ∈ L1,pM (G)

with C1 := CR0(1 + CG′) > 0, and so

(5.11) ‖u0‖W 1,p(GR0)
� (1 + Cp

1 )
1
p ‖∇u0‖p;G ∀u0 ∈ L1,pM (G).

Lemma 5.1. Assume that ∂G ∈ C0,1 (e.g. ∂G = ∂K is a Lipschitz manifold).

Then there exists a linear extension

E : L1,pM (G)→ L1,pM (�
N )

such that Eu0|G = u0 ∀u0 ∈ L1,pM (G). In addition, there is a constant CE > 0 such

that

(5.12) ‖∇Eu0‖p;�N � CE‖∇u0‖p;G ∀u0 ∈ L1,pM (G).

�����. a) Because of ∂G ∈ C0,1, there exists a linear extension

Ẽ : W 1,p(GR0)→W 1,p
0 (�

N ),

Ẽv|GR0
= v ∀v ∈W 1,p(GR0)

and a constant C̃ = C̃(GR0 , p) > 0 such that

(5.13) ‖Ẽv‖W 1,p(�N) � C̃‖v‖W 1,p(GR0)
∀v ∈W 1,p(GR0)

(see e.g. [10], Thèoréme 3.9).
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b) As we mentioned above, u0 ∈ L1,pM (G) implies u0|GR0
∈ W 1,p(GR0). With help

of Ẽ we define

(5.14) (Eu0)(x) :=

{
u0(x) for x ∈ G,

Ẽ(u0|GR0
)(x) for x ∈ �

N \G = K.

Since M ⊂⊂ G it is clear that Eu0 ∈ L1,pM (�
N ) for u0 ∈ L1,pM (G) and Eu0|G = u0.

By (5.11) and (5.13) we see

‖∇Eu0‖p;�N � ‖∇u0‖p;G + ‖∇Ẽ(u0|GR0
)‖p;K

� ‖∇u0‖p;G + C̃‖u0‖W 1,p(GR0)
� CE‖∇u0‖p;G

with CE := 1 + C̃(1 + C
p
1 )

1
p . �

Obviously we get

Corollary 5.1. Let ∂G ∈ C0,1. Then

(5.15) L1,pM (G) = {v|G ; v ∈ L1,pM (�
N )}.

Let ∂G ∈ C0,1. Due to (5.4) any u ∈ L1,p(G) can be written as u = u0 + mu.
Define a linear map E1 : L1,p(G)→ L1,p(�N ) by

(5.16) E1u := Eu0 +mu.

Then E1u|G = u ∀u ∈ L1,p(G).

This extension enables us to apply the result found for the whole space �N to the
underlying case. But the price we have to pay is the assumption ∂G ∈ C0,1. On

the other hand, without any regularity assumptions on ∂G we never may expect any
imbedding theorems for G.

Let 1 < p < N . We recall the decomposition (4.2) and the density property (4.3).

Lemma 5.2. Let ∂G ∈ C0,1 and

(5.17) Ĥ1,p(G) := {u∗ ∈ L1,p(G) ; u∗ ∈ Lp∗
(G)}.

Then in the sense of a direct decomposition

(5.18)
L1,p(G) = Ĥ1,p(G) ⊕ �,

u = u∗ + cu
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where (GR := G ∩BR),

(5.19) cu := lim
R→∞
R>R0

1
|GR|

∫
GR

u.

Further, the map J : L1,pM (G)→ Ĥ1,p(G), Ju := u∗, is an isometric isomorphism and
(Ĥ1,p(G), ‖∇ · ‖p) is a reflexive Banach space.

With CSOB > 0 (the constant for the Sobolev imbedding) and CE > 0 from (5.12),
we have

(5.20) ‖u∗‖p∗;G � CSOBCE‖∇u∗‖p;G ∀u ∈ Ĥ1,p(G).

Further, Ĥ1,p(G) = {v∗|G ; v∗ ∈ Ĥ1,p0 (�
N )}.

Let

(5.21) C∞
0 (G) := {Φ ∈ C∞(G) ; ∃RΦ � R0 : Φ(x) = 0 for |x| � RΦ}.

Then

(5.22) {ψ|G ; ψ ∈ C∞
0 (�

N )} ⊂ C∞
0 (G) ⊂ Ĥ1,p(G)

and

(5.23) Ĥ1,p(G) = C∞
0 (G)

‖∇·‖p;G
.

�����. a) If u ∈ L1,p(G), u = u0+mu, then by virtue of (5.4), with u0 ∈ L1,pM (G)

and mu ∈ �, we have v := E1u = Eu0 +mu ∈ L1,p(�N ). By (4.2), v = v∗ + cv with
v∗ ∈ Ĥ1,p0 (�

N ) and cv ∈ �. Let u∗ := v∗|G = (v − cv)|G = u − cv = u0 +mu − cv.

Therefore u = u∗ + cv. Since u∗ ∈ Lp∗
(G), we get∣∣∣∣|GR|−1

∫
GR

u− cv

∣∣∣∣ = |GR|−1
∣∣∣∣ ∫

GR

(u(y)− cv) dy

∣∣∣∣ � |GR|−1‖u∗‖p∗;GR |GR|
p∗−1

p∗

= ‖u∗‖p∗;G |GR|−
1

p∗ → 0 (R → ∞).

Hence cv = cu = lim
R→∞
R>R0

|GR|−1
∫

GR

u.

If u∗ ∈ Ĥ1,p(G)∩� then because of |G| =∞ we have u∗ = 0, proving (5.18), (5.19).
If conversely u∗ ∈ Ĥ1,p(G) ⊂ L1,p(G) is given then u∗ = u0 + mu, u0 ∈ L1,p(G),

mu ∈ �. Then E1u∗ = E1u0 +mu =: v. Then v = v∗ + cv, v∗ ∈ Ĥ1,p0 (�
N ), cv ∈ �.

Further u∗ = v|G = v∗|G + cv. Then cv = (u∗ − v∗|G) ∈ Lp∗
(G) ∩ � and again by

118



|G| = ∞ we see that cv = 0, that is u∗ = v∗|G, proving Ĥ1,p(G) = {v∗|G ; v∗ ∈
Ĥ1,p0 (�

N )}.
Moreover, we derive (5.20) from

‖u∗‖p∗;G � ‖v∗‖p∗;�N � CSOB‖∇v∗‖p;�N

= CSOB‖∇v‖p;�N = CSOB‖∇Eu0‖p;�N

� CSOBCE‖∇u0‖p;G = CSOBCE‖∇u∗‖p;G

and therefore completeness of Ĥ1,p(G) follows. If u∗ ∈ Ĥ1,p(G), u∗ = v∗|G with
v∗ ∈ Ĥ1,p(�N ), then by (4.3) there exists a sequence (vk) ⊂ C∞

0 (�
N ) with ‖∇v∗ −

∇vk‖p,�N → 0. Then Φk := vk|G ∈ C∞
0 (G) and

‖∇u∗ −∇Φk‖p;G � ‖∇u∗ −∇vk‖p;�N → 0,

which proves (5.23). Finally, the properties of the map J : L1,pM (G) → Ĥ1,p(G) are
obvious. �

Lemma 5.3. Let G ⊂ �
N be a domain with |G| =∞ and let 1 < p < N . Let us

suppose conversely that Ĥ1,p(G) defined by (5.17) is complete with respect to the

‖∇ · ‖p;G-norm. Then there is a constant C > 0 such that

(5.24) ‖u‖p∗;G � C‖∇u‖p;G ∀u ∈ Ĥ1,p(G).

�����. Let T : Ĥ1,p(G) → Lp∗
(G) be defined by T u∗ := u∗ ∀u∗ ∈ Ĥ1,p(G).

Suppose that (u∗j ) ⊂ Ĥ1,p(G) and u∗ ∈ Ĥ1,p(G) with ‖∇u∗−∇u∗j‖p;G → 0. Suppose
in addition that there is v ∈ Lp∗

(G) with

‖v − T u∗j‖p∗;G = ‖v − u∗j‖p∗;G → 0.

Then for Φ ∈ C∞
0 (G) and i = 1, . . . , N we have∫

G

v∂iΦ = lim
j→∞

∫
G

u∗j∂iΦ = − lim
j→∞

∫
Φ∂iu

∗
j = −

∫
G

Φ∂iu
∗,

proving that v has the weak derivatives ∂iu
∗. Then ∇v = ∇u∗ and therefore, since

G is a domain, u∗ = v+ c. Since u∗, v ∈ Lp∗
(G) and |G| =∞ we see that c = 0 and

v = u∗. This proves closedness of T and since D(T ) = Ĥ1,p(G) by Banach’s closed
graph theorem the boundedness of T and therefore (5.24) follow. �
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Theorem 5.3. Let G ⊂ �
N be an exterior domain with ∂G ∈ C0,1 and X :=

Ĥ1,p(G). Given f ∈ Lp∗′
(�N ) there exists a unique uf ∈ X such that∫

G

|∇uf |p−2∇uf · ∇v =
∫

G

fv ∀v ∈ X.

�����. By (5.20), for v ∈ X we have∣∣∣∣ ∫
G

fv

∣∣∣∣ � ‖f‖p∗′;GCSOBCE‖∇v‖p;G.

�

Let p � N . We recall (4.6). Then the following assertion holds.

Lemma 5.4. Let G ⊂ �
N be an exterior domain with ∂G ∈ C0,1. Let ∅ �=M ⊂⊂

G and

C∞
0,M (G) :=

{
Φ ∈ C∞(G) ;

∫
M

Φdy = 0 and(5.25)

∃RΦ > 0: Φ(x) = 0 for |x| � RΦ

}
.

Then {Φ|G ; Φ ∈ C∞
0,M (�

N )} ⊂ C∞
0,M (G) and for p � N we have

(5.26) L1,pM (G) = {Φ|G : Φ ∈ C∞
0,M (�

N )}
‖∇·‖p;G

and

(5.27) L1,pM (G) = {v|G ; v ∈ L1,pM (�
N )}.

�����. If u ∈ L1,pM (G) then Eu ∈ L1,pM (�
N ) and by (4.6) there exists a sequence

(Φk) ⊂ C∞
0,M (�

N ) with ‖∇Eu−∇Φk‖p;�N → 0. �

Theorem 5.4. Let X := L1,pM (G). Let R � R0(G) and suppose that f ∈ Lp′
(G)

satisfies (4.7) if p > N or (4.8) if p = N . Then there exists a unique u ∈ L1,pM (G)
with

(5.28)
∫

G

|∇u|p−2∇u · ∇v =
∫

G

fv ∀v ∈ L1,pM (G).

Further, (5.28) holds even for all v ∈ C∞
0 (G) if and only if

∫
G
f = 0.
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�����. a) Existence is clear.

b) If
∫
f = 0, then v ∈ C∞

0 (G) may be decomposed into v = v0+mv, v0 ∈ L1,pM (G),
mv ∈ �. Since

∫
G
fmv = 0 and ∇mv = 0, (5.28) holds for v ∈ C∞

0 (G), too.
Conversely, consider again the sequence (ηk) ⊂ C∞

0 (�
N ) with ηk|BR → 1 (k → ∞)

uniformly for every fixed R > 0 and ‖∇ηk‖p;�N → ∞. Then with v := ηk we conclude
from (5.28) for k → ∞ :

∫
G
f = 0. �

In the case N < p <∞ we have an additional “realization” of L1,pM (G) correspond-
ing to the case G = �N .

Lemma 5.5. Let G ⊂ �
N be an exterior domain with ∂G ∈ C0,1 and let N <

p <∞. Let x0 ∈ G be fixed and let

(5.29)
Ĥ1,p{xo}(G) := {ũ ∈ L1,p(G) ; |ũ(x) − ũ(y)|

� C(N, p)|x− y|1−
N
p ‖∇ũ‖p;G ∀x, y ∈ G, and ũ(x0) = 0}.

Then Ĥ1,p{xo}(G) equipped with the norm ‖∇ũ‖p,G is a reflexive Banach space,

Ĥ1,p{x0}(G) = {(ṽ − ṽ(xo))|G ; ṽ ∈ Ĥ1,p• (�
N
+ )}

(with Ĥ1,p• (�N
+ ) by (4.15)), and there is an isometrically isomorphic map Ip :

L1,pM (G)→ Ĥ1,p{xo}(G).

�����. If u ∈ L1,pM (G) then v := Eu ∈ L1,pM (�
N ). Denote by w̃ the unique

Hölder continuous representative of v. Then ṽ := (w̃ − w̃(0)) ∈ Ĥ1,p• (�N ) and
ũ := (ṽ − ṽ(x0)) ∈ Ĥ1,p• (G). Clearly, if ũ ∈ Ĥ1,p{x0}(G) then Eũ ∈ L1,pM (�

N ) and

ṽ := Eũ− (Eũ)(0) ∈ Ĥ1,p• (�
N
+ ), ũ = (ṽ − ṽ(x0))|G.

Further, the map Ipu := (Eũ − Eũ(x0)), Ip : L
1,p
M (G) → Ĥ1,p{x0}(G) is an isometric

isomorphism. �

Theorem 5.5. Let G ⊂ �
N be an exterior domain with ∂G ∈ C0,1 and 0 ∈ �

N \G
and let N < p <∞. Let f ∈ L1loc(G) and assume that for some q > p,∫

G

|f(x)|q
′
|x|q

′
dx <∞.

Then there exists a unique family uf,c = uf + c with uf ∈ X := Ĥ1,p{x0}(G) and c ∈ �

satisfying ∫
G

|∇uf,c|p−2∇uf,c.∇ϕ =
∫

G

fϕ ∀ϕ ∈ C∞
0 (G)

(see (5.21)) if and only if
∫

G
f = 0.

�����. The proof is performed analogously to that of Theorem 4.3. �
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