# ON SIGNED EDGE DOMINATION NUMBERS OF TREES 

Bohdan Zelinka, Liberec

(Received April 18, 2000)


#### Abstract

The signed edge domination number of a graph is an edge variant of the signed domination number. The closed neighbourhood $N_{G}[e]$ of an edge $e$ in a graph $G$ is the set consisting of $e$ and of all edges having a common end vertex with $e$. Let $f$ be a mapping of the edge set $E(G)$ of $G$ into the set $\{-1,1\}$. If $\sum_{x \in N[e]} f(x) \geqslant 1$ for each $e \in E(G)$, then $f$ is called a signed edge dominating function on $G$. The minimum of the values $\sum_{x \in E(G)} f(x)$, taken over all signed edge dominating function $f$ on $G$, is called the signed edge domination number of $G$ and is denoted by $\gamma_{s}^{\prime}(G)$. If instead of the closed neighbourhood $N_{G}[e]$ we use the open neighbourhood $N_{G}(e)=N_{G}[e]-\{e\}$, we obtain the definition of the signed edge total domination number $\gamma_{s t}^{\prime}(G)$ of $G$. In this paper these concepts are studied for trees.

The number $\gamma_{s}^{\prime}(T)$ is determined for $T$ being a star of a path or a caterpillar. Moreover, also $\gamma_{s}^{\prime}\left(C_{n}\right)$ for a circuit of length $n$ is determined. For a tree satisfying a certain condition the inequality $\gamma_{s}^{\prime}(T) \geqslant \gamma^{\prime}(T)$ is stated. An existence theorem for a tree $T$ with a given number of edges and given signed edge domination number is proved.

At the end similar results are obtained for $\gamma_{s t}^{\prime}(T)$.


Keywords: tree, signed edge domination number, signed edge total domination number
MSC 2000: 05C69, 05C05

We consider finite undirected graphs without loops and multiple edges. The edge set of a graph $G$ is denoted by $E(G)$, its vertex set by $V(G)$. Two edges $e_{1}, e_{2}$ of $G$ are called adjacent if they are distinct and have a common end vertex. The open neighbourhood $N_{G}(e)$ of an edge $e \in E(G)$ is the set of all edges adjacent to $e$. Its closed neighbourhood $N_{G}[e]=N_{G}(e) \vee\{e\}$.

If we consider a mapping $f: E(G) \rightarrow\{-1,1\}$ and $s \subseteq E(G)$, then we denote $f(s)=\sum_{x \in s} f(x)$.

A mapping $f: E(G) \rightarrow\{-1,1\}$ is called a signed edge dominating function (or signed edge total dominating function) on $G$, if $f\left(N_{G}[e]\right) \geqslant 1$ (or $f\left(N_{G}(e)\right) \geqslant 1$
respectively) for each edge $e \in E(G)$. The minimum of the values $f(E(G))$, taken over all signed edge dominating (or all signed edge total dominating) functions $f$ on $G$, is called the signed edge domination number (or signed edge total domination number respectively) of $G$. The signed edge domination number was introduced by B. Xu in [1] and is denoted by $\gamma_{s}^{\prime}(G)$. The signed edge total domination number of $G$ is denoted by $\gamma_{s t}^{\prime}(G)$.

A signed edge dominating function will be shortly called SEDF, a signed edge total domination function will be called SETDF. The number $\gamma_{s}^{\prime}(G)$ is an edge variant of the signed domination number [2].

Remember another numerical invariant of a graph which concerns domination. A subset $D$ of the edge set $F(G)$ of a graph $G$ is called edge dominating in $G$ if each edge of $G$ either is in $D$, or is adjacent to an edge of $D$. The minimum number of edges of an edge dominating set in $G$ is called the edge domination number of $G$ and denoted by $\gamma^{\prime}(G)$.

We shall study $\gamma_{s}^{\prime}(G)$ and $\gamma_{s t}^{\prime}(G)$ in the case when $G$ is a tree.
Proposition 1. Let $G$ be a graph with $m$ edges. Then

$$
\gamma_{s}^{\prime}(G) \equiv m(\bmod 2)
$$

Proof. Let $f$ be a SFDF of $G$ such that $\gamma_{s}^{\prime}(G)=f(E(G))$. Let $m^{+}$(or $m^{-}$) be the number of edges $e$ of $G$ such that $f(e)=1$ (or $f(e)=-1$ respectively). We have $m=m^{+}+m^{-}, \gamma_{s}^{\prime}(G)=m^{+}-m^{-}$and hence $\gamma_{s}^{\prime}(G)=m-2 m^{-}$. This implies the assertion.

Proposition 2. Let $u, v, w$ be three vertices of a tree $T$ such that $u$ is a pendant vertex of $T$ and $v$ is adjacent to exactly two vertices $u$, $w$. Let $f$ be a SFDF on $T$. Then

$$
f(u v)=f(v w)=1 .
$$

Proof. We have $N[u v]=\{u v, v w\}$ and $f(N[u v])=f(u v)+f(v w)$. This implies the assertion.

Proposition 3. Let $T$ be a star with $m$ edges. If $m$ is odd, then $\gamma_{s}^{\prime}(T)=1$. If $m$ is even, then $\gamma_{s}^{\prime}(T)=2$.

Proof. In a star all edges are pairwise adjacent and thus $N_{T}[e]=E(T)$ for each $e \in E(T)$. If $f$ is a SEDF, then $f(E(T))=f\left(N_{T}[e]\right) \geqslant 1$ and thus $\gamma_{s}^{\prime}(T) \geqslant 1$. Let $m^{-}$be the number of edges $e$ of $T$ such that $f(e)=-1$; then $f(E(T))=m-2 m^{-}$. If $m$ is odd, we may choose a function $f$ such that $m^{-}=\frac{1}{2}(m-1)$ and then $f(E(T))=\gamma_{s}^{\prime}(T)-1$. If $m$ is even, the value $m-2 m^{-}$is always even; we may choose $f$ such that $m^{-}=\frac{1}{2}(m-2)$ and then $F(E(T))=\gamma_{s}^{\prime}(T)=2$.

Let $e \in E(T)$. The neighbourhood subtree $T_{N}[e]$ of $T$ is the subtree of $T$ whose edge set is $N_{T}[e]$ and whose vertex set is the set of all end vertices of the edges of $N_{T}[e]$. If $e$ is a pendant edge of $T$, then $T_{N}[e]$ is the star whose central vertex is the vertex of $e$ having the degree greater than 1 ; this is the maximal (with respect to subtree inclusion) subtree of $T$ of diameter 2 containing $e$. In the opposite case $T_{N}[e]$ is the maximal subtree of $T$ of diameter 3 whose central edge is $e$. The set of all subtrees $T_{N}[e]$ for $e \in E(T)$ will be denoted by $\mathcal{T}_{N}$.

Theorem 1. Let $T$ be a tree having the property that there exists a subset $\mathcal{T}_{0}$ of $\mathcal{T}_{N}$ consisting of edge-disjoint trees whose union is $T$. Then

$$
\gamma^{\prime}(T) \leqslant \gamma_{s}^{\prime}(T)
$$

Proof. Let $E_{0}$ be the set of edges $e$ such that $T_{N}[e] \in \mathcal{T}_{0}$. For each $e \in F_{0}$ the set $N_{T}[e]$ is the set of neighbours of $e$ and the union of all these sets is $E(T)$. Thus $F_{0}$ is an edge dominating set in $T$. Therefore $\left|E_{0}\right| \geqslant \gamma^{\prime}(T)$.

Let $f: E(T) \rightarrow\{-1,1\}$ be an SEDF of $T$ such that $f(E(T))=\gamma_{s}^{\prime}(T)$. As the trees from $\mathcal{T}_{0}$ are pairwise edge-disjoint, we have

$$
\gamma_{s}^{\prime}(T)=f(E(T))=\sum_{\tau^{\prime} \in \mathcal{T}_{0}} f\left(E\left(T^{\prime}\right)\right)=\sum_{e \in \mathcal{E}_{0}} f\left(N_{T}[e]\right) \geqslant \sum_{e \in E_{0}} 1=\left|E_{0}\right| \geqslant \gamma^{\prime}(T)
$$

As $\gamma^{\prime}(T) \geqslant 1$ for every tree $T$, we have a corollary.
Corollary 1. Let $T$ have the property from Theorem 1. Then

$$
\gamma_{s}^{\prime}(T) \geqslant 1
$$

Conjecture. For every tree $T$ we have $\gamma_{s}^{\prime}(T) \geqslant 1$.
By the symbol $P_{m}$ we denote the path of length $m$, i.e. with $m$ edges and $m+1$ vertices. By $C_{m}$ we denote the circuit of length $m$.

Theorem 2. For the signed edge domination number on a path $P_{m}$ with $m \geqslant 2$ we have

$$
\begin{aligned}
\gamma_{s}^{\prime}\left(P_{m}\right) & =\frac{1}{3} m+2 & \text { for } m \equiv 0(\bmod 3), \\
\gamma_{s}^{\prime}\left(P_{m}\right) & =\frac{1}{3}(m+2)+2 & \text { for } m \equiv 1(\bmod 3), \\
\gamma_{s}^{\prime}\left(P_{m}\right) & =\frac{1}{3}(m+1)+1 & \text { for } m \equiv 2(\bmod 3) .
\end{aligned}
$$

Proof. Let $f$ be an SEDF on $P$ such that $f\left(E\left(P_{m}\right)\right)=\gamma_{s}^{\prime}\left(P_{m}\right)$. Denote $E+=\left\{e \in E\left(P_{m}\right) ; f(e)=1\right\}, E^{-}=\left\{e \in E P_{m} ; f(e)=-1\right\}$. Evidently each edge of $E^{-}$must be adjacent to at least two edges of $E^{+}$and each edge of $F^{+}$ is adjacent to at most one edge of $E^{\prime}$. By Proposition 2 between an edge of $E^{-}$ and an end vertex of $P_{m}$ there are at least two edges of $E^{+}$and also between two edges of $E^{-}$there are at least two edges of $E^{+}$. Hence $\left|E^{\prime}\right| \leqslant\left\lfloor\frac{1}{3}(m-2)\right\rfloor$ and $f\left(E\left(P_{m}\right)\right)=|E|-2\left|F^{-}\right| \geqslant m-2\left\lfloor\frac{1}{2}(m-2)\right\rfloor$. If we choose one end vertex of $P_{m}$ and number the edges of $P_{m}$ starting at it, we may choose a function $f$ such that $f(a)=-1$ if and only if the number of $e$ is divisible by 3 and less than $m-1$. The $f\left(E\left(P_{m}\right)\right)=m-2\left\lfloor\frac{1}{2}(m-2)\right\rfloor$ and this is $\gamma_{s}^{\prime}\left(P_{m}\right)$. And this number treted separately for particular congruence classes modulo 3 can be expressed as in the text of the theorem.

As an aside, we state an assertion on circuits; its proof is quite analogous to the proof of Theorem 2.

Theorem 3. For the signed edge domination number of a circuit $C_{m}$ we have

$$
\begin{aligned}
\gamma_{s}^{\prime}\left(C_{m}\right) & =\frac{1}{3} m \quad \text { for } m \equiv 0(\bmod 3) \\
\gamma_{s}^{\prime}\left(C_{m}\right) & =\frac{1}{3}(m+2) \quad \text { for } m \equiv 1(\bmod 3) \\
\gamma_{s}^{\prime}\left(C_{m}\right) & =\frac{1}{3}(m+1)+1 \quad \text { for } m \equiv 2(\bmod 3)
\end{aligned}
$$

Now we shall investigate caterpillars. A caterpillar is a tree $C$ with the property that upon deleting all pendant edges from it a path is obtained: this path is called the body of the caterpillar. Particular cases of caterpillars include stars and paths.

Let the vertices of the body of $C$ be $u_{1}, \ldots, u_{k}$ and edges $u_{i} u_{i+1}$ for $i=1, \ldots, k-1$. For $i=1, \ldots, k$ let $p_{i}$ be the number of pendant edges incident to $u_{i}$. The finite sequence $\left(p_{i}\right)_{i=1}^{k}$ determines the caterpillar uniquely. From the definition it is clear that $p_{1} \geqslant 1$ and $p_{k} \geqslant 1$. If $k=1$, then such a caterpillar is a star. If $p_{1}=p_{k}=1$, $p_{i}=0$ for $i=2, \ldots, k-1$, then it is a path.

Theorem 4. Let $\left(p_{i}\right)_{i=1}^{k}$ be a finite sequence of integers such that $p_{1} \geqslant 2, p_{k} \geqslant 2$, $p_{i} \geqslant 1$ for $2 \leqslant i \leqslant k-1$. Let $k_{0}$ be the number of even numbers among the numbers $p_{1}-1, p_{2}, \ldots, p_{k-1}, p_{k}-1$. Let $C$ be the caterpillar determined by this sequence. Then $\gamma_{s}^{\prime}(C)=k_{0}+1$.

Proof. The assumption of the theorem implies that each vertex of the body of $C$ is incident to at least one pendant edge. For $i=1, \ldots, k$ let $M_{i}$ be the set of all
edges incident to $p_{i}$. Let $p_{i}$ be a vertex of the body of $C$ and let $e$ be a pendant edge incident to it. We have $N[e]=M_{i}$.

We have $\bigcup_{i=1}^{k} M_{i}=E(C), M_{i} \cap M_{i+1}=\left\{u_{i} u_{i+1}\right\}, M_{i} \cap M_{j}=\emptyset$ for $|j-i| \geqslant 2$.
Hence $f(E(C))=\sum_{i=1}^{k} f\left(M_{i}\right)-\sum_{i=1}^{k-1} f\left(\left\{u_{i}, u_{i+1}\right\}\right)$. The function $f$ may be described in the following way. If $i=1$ or $i=k$, then $f(e)=-1$ for exactly $\frac{1}{2} p_{i}$ pendant edges from $M_{i}$ if $p_{i}$ is even and for exactly $\frac{1}{2}\left(p_{i}-1\right)$ ones if $p_{i}$ is odd. If $2 \leqslant i \leqslant k-1$, then $f(e)=-1$ for exactly $\frac{1}{2} p_{i}$ pendant edges $e$ from $M_{i}$ if $p$ is even and for exactly $\frac{1}{2}\left(p_{i}+1\right)$ ones if $p_{i}$ is odd. For an edge $e$ from the body of $C$ always $f(e)=1$. If $i=1$ or $i=k$, then $f\left(M_{i}\right)=1$ for $p_{i}$ even and $f\left(M_{i}\right)=2$ for $p_{i}$ odd. If $2 \leqslant i \leqslant k-1$, then $f\left(M_{i}\right)=1$ for $p_{i}$ odd and $f\left(M_{i}\right)=2$ for $p_{i}$ even. We have $\sum_{i=1}^{k} f\left(M_{i}\right)=k+k_{0}$, $\sum_{i=1}^{k-1} f\left(u_{i} u_{i+1}\right)=k-1$, which implies the assertion.

Our considerations concerning $\gamma_{s}^{\prime}(T)$ will be finished by an existence theorem.

Theorem 5. Let $m, g$ be integers, $1 \leqslant g \leqslant m, g \equiv m(\bmod 2)$. Let $g \neq m$ for $m$ odd and $g \neq m-2$ for $m$ even. Then there exists a tree $T$ with $m$ edges such that $\gamma_{s}^{\prime}(T)=g$.

Proof. Consider the following tree $T(p, q)$ for a positive integer $p$ and a nonnegative integer $q$. Take a vertex $v$ and $p$ paths of length 2 having a common terminal vertex $v$ and no other common vertex. Denote the set of edges of all these paths by $E_{1}$. Further add $q$ edges with a common end vertex $v$; they form the set $E_{2}$. Let $f$ be a SEDF on $T(p, q)$ such that $f(E(T(p, q)))=\gamma_{s}^{\prime}(T(p, q))$. We have $f(e)=1$ for each $e \in E_{1}$ by Proposition 2. If $q<p$, then $f(e)=-1$ for each $e \in F_{2}$ and $\gamma_{s}^{\prime}(T(p, q))=2 p-q$. If $q \geqslant p$, then for our purpose it suffices to consider the case when $p+q$ is odd. Then $f(e)=-1$ for $\frac{1}{2}(p+q-1)$ edges of $E_{2}$ and $f(e)=1$ for the remaining edges. Hence $\gamma_{s}^{\prime}(T(p, q))=p+1$. Further let $T^{\prime}(p, q)$ be the tree obtained from $T(p, q)$ by adding a path $Q$ of length 7 with the terminal vertex in $v$. If $q \leqslant p+1$, then exactly two edges of $Q$ have the value of a SEDF $f$ equal to -1 . Again let $f$ be such a SEDF that $f\left(T^{\prime}(p, q)\right)=\gamma_{s}^{\prime}\left(T^{\prime}(p, q)\right)$. Further $f(e)=-1$ for all edges $e \in E_{2}$. Then $\gamma_{s}^{\prime}\left(T^{\prime}(p, q)\right)=2 p-q+3$.

Now return to the numbers $m, g$ and consider particular cases:
C ase $3 g \leqslant m$ : Put $p=g-1, q=m-2 g+2$. We have $q>p$ and thus $\gamma_{s}^{\prime}(T(p, q)=$ $p+1=g$. The tree $T(p, q)$ has evidently $m$ edges. The sum $p+q=m-g+1$ is odd, because $m \equiv g(\bmod 2)$.

Case $3 g>m, m+g \equiv 0(\bmod 4)$ : Put $p=\frac{1}{4}(m+g), q=\frac{1}{2}(m-g)$. Now $q<p$. Again $T(p, q)$ has $m$ edges and $\gamma_{s}^{\prime}(T(p, q))=g$.

Case $3 g>m, m+g \equiv 2(\bmod 4)$ : Put $p=\frac{1}{4}(m+g-2)-2, q=\frac{1}{2}(m-g)-2$. Evidently $q \geqslant 0$ if and only if $g<m-4$; this is fulfilled if $m$ is even and $g \neq m-2$ or if $m$ is odd and $g \neq m$. The tree $T^{\prime}(p, q)$ has $m$ edges and $\gamma_{s}^{\prime}\left(T^{\prime}(p, q)\right)=g$.

Now we shall consider the signed edge total domination number $\gamma_{s t}^{\prime}(T)$ of a tree $T$. Note that $\gamma_{s}^{\prime}(G)$ is well-defined for every graph $G$ with $E(G) \neq \emptyset$; for each edge $e \in E(G)$ we have $N[e] \neq \emptyset$, because $e \in N[e]$. On the contrary if there is a connected component of $G$ isomorphic to $K_{2}$ (the complete graph with two vertices) and $e$ is its edge, then $N(e)=\emptyset$ and there exists no SETDF on $G$. Therefore $\gamma_{s t}^{\prime}(G)$ is defined only for graphs $G$ which have no connected component isomorphic to $K_{2}$. If we restrict our considerations to trees, we must suppose that the considered tree $T$ has at least two edges.

Proposition 4. Let $G$ be a graph with $m$ edges and without a connected component isomorphic to $K_{2}$. Then

$$
\gamma_{s t}^{\prime}(G) \equiv m(\bmod 2)
$$

The proof is quite similar to the proof of Proposition 1.
Proposition 5. Let $G$ be a graph without a connected component isomorphic to $K_{2}$. Let $|N(e)| \leqslant 2$ for some edge $e \in E(G)$. Then $f(x)=1$ for each $x \in N(e)$.

The proof is straightforward.
This proposition implies two corollaries.
Corollary 2. Let $P_{m}$ be a path of length $m \geqslant 2$. Then $\gamma_{s t}^{\prime}\left(P_{m}\right)=m$.
Corollary 3. Let $C_{m}$ be a circuit of length $m$. Then $\gamma_{s t}^{\prime}\left(C_{m}\right)=m$.
Namely, in both cases the unique SETDF is the constant equal to 1 .
Theorem 6. Let $T$ be a star with $m \geqslant 2$ edges. If $m$ is odd, then $\gamma_{s t}^{\prime}(T)=3$. If $m$ is even, then $\gamma_{s t}^{\prime}(T)=2$.

Proof. Let $f$ be a SETDF such that $f(E(T))=\gamma_{s t}^{\prime}(T)$. Evidently there exists at least one edge $e \in E(T)$ such that $f(e)=1$. We have $E(T)=N(e) \cup\{e\}$ and $\gamma_{s t}^{\prime}(T)=f(E(T))=f(N(e))+f(e) \geqslant 1+1=2$. If $m$ is even, the value 2 can be attained by constructing a SETDF $f$ such that $f(e)=1$ for $\frac{1}{2} m+1$ edges $e$ and $f(e)=-1$ for $\frac{1}{2} m-1$ edges. If $m$ is odd, then, according to Proposition 4, we have $\gamma_{s t}^{\prime}(T) \geqslant 3$. We may construct a SETDF $f$ such that $f(e)=1$ for $\frac{1}{2}(m+3)$ edges $e$ and $f(e)=-1$ for $\frac{1}{2}(m-3)$ edges $e$.

We finish again by an existence theorem.

Theorem 7. Let $m, g$ be integers, $2 \leqslant g \leqslant m, g \equiv m(\bmod 2)$. Then there exists a tree $T$ with $m$ edges such that $\gamma_{s t}^{\prime}(T)=g$.

Proof. Let $\Omega$ be a path of length $g-1$. Let $S$ be a star with $m-g+1$ edges. Let these two trees be disjoint. Identify a terminal vertex of $Q$ with the center $v$ of $S$ : the tree thus obtained will be denoted by $T$. Let $f$ be a SETDF such that $f(E(T))=\gamma_{s t}^{\prime}(T)$. By Proposition 5 we have $f(e)=1$ for each edge $e$ of $Q$. For each edge $e$ of $S$ the set $N(e)$ consists of $E(S)-\{e\}$ and one edge of $Q$. We have $f(N(e))=1$ if and only if $f(e)=-1$ for exactly $\frac{1}{2}(m-g)$ edges $e$ of $S$. Then we have $f(E(T))=\gamma_{s t}^{\prime}(T)=g$.

## References

[1] E. Xu: On signed domination numbers of graphs. Discr. Math. (submitted).
[2] T. W. Haynes, S. T. Hedetniemi, P. J. Slater: Fundamentals of Domination in Graphs. Marcel Dekker, New York, 1998.

Author's address: Bohdan Zelinka, Technical University Liberec, Voroněžská 13, 46001
Liberec 1, Czech Republic, e-mail: bohdan.zelinka@vslib.cz.

