COMPLETELY SUBDIRECT PRODUCTS OF DIRECTED SETS

JÁn Jakubík, Košice

(Received May 22, 2000)

Abstract. This paper deals with directly indecomposable direct factors of a directed set.
Keywords: directed set, directed group, directly indecomposable direct factor, completely subdirect product

MSC 2000: 06A06, 06F15

The notion of the completely subdirect product of lattice ordered groups was introduced in [7] and has been used in several articles.

Let L be a directed set and let s^{0} be a fixed element of L.
In this paper we define the completely subdirect product decomposition of L with the central element s^{0}.

In all considerations we are dealing with a fixed s^{0}; therefore we will often omit the words "with the central element s^{0} ".

If $\left\{L_{i}\right\}_{i \in I}$ is a system of subsets of L, then this system is partially ordered by the set-theoretical inclusion.

We prove the following result (for definitions, cf. Section 1 below):
$\left(\mathrm{A}_{1}\right)$ Let L and s^{0} be as above. Suppose that there exists a linearly ordered system $\left\{L_{i}\right\}_{i \in I}$ of intervals of L such that
(i) for each $i \in I, s^{0}$ belongs to L_{i} and L_{i} is a completely subdirect product of directly indecomposable direct factors;
(ii) $\bigcup_{i \in I} L_{i}=L$.

Then L is a completely subdirect product of directly indecomposable direct factors. The results and methods from [5] will be applied.
For related results cf. [2], [3], [4] and [6].
Supported by VEGA grant 2/5125/98.

The relations between completely subdirect product decompositions of directed sets and completely subdirect product decompositions of directed groups will be investigated.

1.

Throughout the paper we suppose that L is a directed set and that s^{0} is a fixed element of L.

The notion of the internal direct product decomposition (with the central element s^{0}) of L will be used in the same sense as in [5]. We suppose that the reader is acquainted with the definitions and the notation from Section 2 in [5].

When considering an internal direct product decomposition of L or of a directed subset of L we always assume that the corresponding central element is s^{0}.

We recall that $D(L)$ is the set of all internal direct factors of L. Under the partial order defined by the set-theoretical inclusion, $D(L)$ is a Boolean algebra. For $A \in D(L)$ we denote by A^{\prime} the complement of A in $D(L)$; then $L=A \times A^{\prime}$.

The Boolean algebra $D(L)$ will be called atomic if for each $A \in D(L)$ with $\operatorname{card} A>1$ there exists an atom A_{0} of $D(L)$ such that $A_{0} \leqslant A$.

If $x \in L$ and $A \in D(L)$, then $x(A)$ denotes the component of x in the internal direct factor A.
1.1. Definition. Let L and s^{0} be as above. Further, let $\left\{A_{i}\right\}_{i \in I}$ be an indexed system of directed sets such that

1) $A_{i} \in D(L)$ for each $i \in I$;
2) if $x, y \in L$ and $x\left(A_{i}\right) \leqslant y\left(A_{i}\right)$ for each $i \in I$, then $x \leqslant y$;
3) if i and $i(1)$ are distinct elements of I, then $A_{i(1)} \subseteq A_{i}^{\prime}$.

Under these assumptions L is said to be a completely subdirect product of the system $\left\{A_{i}\right\}_{i \in I}$ and we express this fact by writing

$$
\begin{equation*}
L=(\mathrm{cs}) \prod_{i \in I} A_{i} \tag{1}
\end{equation*}
$$

The relation (1) is called a completely subdirect product decomposition of L.
1.2. Example. Suppose that L^{0} is a directed set, $s^{0} \in L^{0}$ and

$$
\begin{equation*}
L^{0}=\prod_{i \in I} B_{i} \tag{2}
\end{equation*}
$$

so that $s^{0} \in B_{i}$ and card $B_{i}>1$ for each $i \in I$. Let α be an infinite cardinal, $\operatorname{card} I>\alpha$. For $x \in L^{0}$ we put

$$
\operatorname{supp}(x)=\left\{i \in I: x\left(B_{i}\right) \neq s^{0}\right\}
$$

Further, we denote

$$
L=\left\{x \in L^{0}: \operatorname{supp}(x) \leqslant \alpha\right\}
$$

Then we have

$$
\begin{equation*}
L^{0} \neq L=(\mathrm{cs}) \prod_{i \in I} B_{i} \tag{3}
\end{equation*}
$$

In $1.2, L$ is a convex subset of L^{0}. The following example shows that this need not be the case in general for analogous situations.
1.3. Example. Let \mathbb{R} be the set of all reals and let L^{0} be the set of all real functions defined on \mathbb{R}, with the partial order defined coordinatewise. Let $s^{0} \in L^{0}$ be such that $s^{0}(t)=0$ for each $t \in \mathbb{R}$. For $i \in \mathbb{R}$ we put

$$
B_{i}=\left\{f \in L^{0}: f(t)=0 \quad \text { for each } t \in \mathbb{R} \backslash\{i\}\right\} .
$$

Then (2) is valid. We denote by L_{1} the set of all $f \in L^{0}$ having only a finite number of points of discontinuity. Then the relation

$$
L_{1}=(\mathrm{cs}) \prod_{i \in I} B_{i}
$$

holds and L_{1} is not a convex subset of L^{0}.
Theorem $\left(\mathrm{A}_{1}\right)$ generalizes Theorem (A) of [5] concerning direct product decompositions of a directed set.

In order to have the possibility to compare $\left(\mathrm{A}_{1}\right)$ and (A) we consider the following conditions for L :
$\left(\alpha_{1}\right) L$ is an internal direct product of directly indecomposable direct factors.
$\left(\alpha_{2}\right) L$ is a completely subdirect product of directly indecomposable direct factors.
$\left(\alpha_{3}\right)$ The Boolean algebra $D(L)$ is atomic.
$\left(\alpha_{4}\right)$ There exists a linearly ordered system $\left\{L_{i}\right\}_{i \in I}$ of intervals of L such that $\bigcup_{i \in I} L_{i}=L$ and each L_{i} satisfies $\left(\alpha_{1}\right)$.
$\left(\alpha_{5}\right)$ There exists a linearly ordered system $\left\{L_{i}\right\}_{i \in I}$ of intervals of L such that $\bigcup_{i \in I} L_{i}=L$ and each L_{i} satisfies $\left(\alpha_{2}\right)$.

By using this notation, Theorem (A) of [5] can be expressed as follows:
(A) $\left(\alpha_{4}\right) \Rightarrow\left(\alpha_{3}\right)$.

Similarly, $\left(\mathrm{A}_{1}\right)$ can be written in the form
$\left(\mathrm{A}_{1}\right)\left(\alpha_{5}\right) \Rightarrow\left(\alpha_{2}\right)$.
It is clear that $\left(\alpha_{1}\right) \Rightarrow\left(\alpha_{2}\right)$ and hence $\left(\alpha_{4}\right) \Rightarrow\left(\alpha_{5}\right)$. Below (cf. Lemma 2.3) we shall show that $\left(\alpha_{2}\right) \Rightarrow\left(\alpha_{3}\right)$. Hence (A) is a particular case of $\left(\mathrm{A}_{1}\right)$.
2.

Let us have two completely subdirect product decompositions

$$
\begin{align*}
L & =(\mathrm{cs}) \prod_{i \in I} A_{i} \tag{1}\\
L & =(\mathrm{cs}) \prod_{j \in J} B_{j} .
\end{align*}
$$

(2)

We say that (2) is a refinement of (1) if for each $i \in I$ there exists a subset $J(i)$ of J such that

$$
A_{i}=(\mathrm{cs}) \prod_{j \in J(i)} B_{j} .
$$

Now let (1) and (2) be arbitrary (i.e., we do not suppose that (2) is a refinement of (1)). For each $i \in I$ and $j \in J$ we put

$$
A_{i} \cap B_{j}=C_{i j}
$$

Then (by applying the results from [5]) we obtain

$$
\begin{aligned}
& L=A_{1} \times A_{i}^{\prime}, \quad L=B_{j} \times B_{j}^{\prime} \\
& L=\left(A_{i} \cap B_{j}\right) \times\left(A_{i} \cap B_{j}^{\prime}\right) \times\left(A_{i}^{\prime} \cap B_{j}\right) \times\left(A_{i}^{\prime} \cap B_{j}^{\prime}\right)
\end{aligned}
$$

Thus $C_{i j} \in D(L)$. Hence the condition 1) from 1.1. holds for $C_{i j}$. Moreover,

$$
\begin{equation*}
C_{i j}^{\prime}=\left(A_{i} \cap B_{j}^{\prime}\right) \times\left(A_{i}^{\prime} \cap B_{j}\right) \times\left(A_{i}^{\prime} \cap B_{j}^{\prime}\right) \tag{3}
\end{equation*}
$$

Let $x, y \in L$ and suppose that $x\left(C_{i j}\right) \leqslant y\left(C_{i j}\right)$ is valid for each $(i, j) \in I \times J$. We have (cf. [5])

$$
x\left(C_{i j}\right)=\left(x\left(A_{i}\right)\right)\left(B_{j}\right)
$$

To simplify the notation we shall write $x\left(A_{i}\right)\left(B_{j}\right)$ rather than $\left(x\left(A_{i}\right)\right)\left(B_{j}\right)$.

Thus, if i is fixed, then

$$
x\left(A_{i}\right)\left(B_{j}\right) \leqslant y\left(A_{i}\right)\left(B_{j}\right)
$$

is valid for each $j \in J$. Therefore in view of 1.1

$$
x\left(A_{i}\right) \leqslant y\left(A_{i}\right)
$$

By using 1.1 again we get $x \leqslant y$. We have verified the validity of the condition 2) from 1.1 for the system $\left\{C_{i j}\right\}_{(i, j) \in I \times J}$.

Let (i, j) and $(i(1), j(1))$ be distinct elements of the set $I \times J$. Without loss of generality we can suppose that $i \neq i(1)$. Thus according to 1.1 we get

$$
A_{i(1)} \subseteq A_{i}^{\prime}
$$

Now we distinguish two cases. If $j=j(1)$, then $C_{i(1) j(1)} \subseteq A_{i}^{\prime} \cap B_{j}$ and hence in view of $(3), C_{i(1) j(1)} \subseteq C_{i j}^{\prime}$. If $j \neq j(1)$, then $B_{j(1)} \subseteq B_{j}^{\prime}$, whence

$$
C_{i(1) j(1)} \subseteq A_{i}^{\prime} \cap B_{j}^{\prime}
$$

and by using (3) again we infer that also in this case we have $C_{i(1) j(1)} \subseteq C_{i j}^{\prime}$. Thus the condition 3) from 1.1 holds. Therefore

$$
\begin{equation*}
L=(\mathrm{cs}) \prod_{(i, j) \in I \times J} C_{i j} . \tag{4}
\end{equation*}
$$

Let i be a fixed element of I. We intend to prove that the relation

$$
\begin{equation*}
A_{i}=(\mathrm{cs}) \prod_{j \in J} C_{i j} \tag{5}
\end{equation*}
$$

is valid. Again, we assume the conditions 1), 2) and 3) from 1.1. In view of 2.7, [5], for each $j \in J$ we have

$$
A_{i}=\left(A_{i} \cap B_{j}\right) \times\left(A_{i} \cap B_{j}^{\prime}\right)
$$

Hence $C_{i j}$ belongs to $D\left(A_{i}\right)$ and its complement in $D\left(A_{i}\right)$ is $A_{i} \cap B_{j}^{\prime}$.
Let $x, y \in A_{i}$ and suppose that $x\left(C_{i j}\right) \leqslant y\left(C_{i j}\right)$ for each $j \in J$. This means that

$$
x\left(A_{i}\right)\left(B_{j}\right) \leqslant y\left(A_{i}\right)\left(B_{j}\right)
$$

for each $j \in J$. But in view of the relations $x \in A_{i}$ and $y \in A_{i}$ we get $x\left(A_{i}\right)=x$, $y\left(A_{i}\right)=y$, whence $x\left(B_{j}\right) \leqslant y\left(B_{j}\right)$ for each $j \in J$. Therefore $x \leqslant y$.

Let j and $j(1)$ be distinct elements of J. Then $B_{j(1)} \subseteq B_{j}^{\prime}$, hence

$$
C_{i j(1)}=A_{i} \cap B_{j(1)} \subseteq A_{i} \cap B_{j}^{\prime}
$$

Thus $C_{i j(1)}$ is a subset of the complement of $C_{i j}$ in $D\left(A_{i}\right)$. We have verified that (5) holds. Analogously we can verify

$$
\begin{equation*}
B_{j}=(\mathrm{cs}) \prod_{i \in I} C_{i j} \tag{6}
\end{equation*}
$$

By summarizing we obtain
2.1. Proposition. Let (1) and (2) be completely subdirect product decompositions of L. Then (5) is also a completely subdirect product decomposition of L. Moreover, (5) is a refinement of both (1) and (2).
2.2. Lemma. Let (1) be valid and let C be an interval of L, $s^{0} \in C$. Put $C_{i}=A_{i} \cap C$ for each $i \in I$. Then

$$
\begin{equation*}
C=(\mathrm{cs}) \prod_{i \in I} C_{i} \tag{7}
\end{equation*}
$$

Proof. Let $i \in I$. Then $L=A_{i} \times A_{i}^{\prime}$. Thus in view of [5], Lemma 2.8 we have

$$
C=\left(A_{i} \cap C\right) \times\left(A_{i}^{\prime} \cap C\right)
$$

Hence $C_{i} \in D(C)$. Moreover, the complement C_{i}^{\prime} of C_{i} in $D(C)$ is $A_{i}^{\prime} \cap C$.
If $x \in C$, then by applying 2.8 of [5] again we get that the relation

$$
\begin{equation*}
x\left(C_{i}\right)=x\left(A_{i}\right) \tag{8}
\end{equation*}
$$

is valid.
Let $x, y \in C$ and suppose that $x\left(C_{i}\right) \leqslant y\left(C_{i}\right)$ holds for each $i \in I$. Hence $x\left(A_{i}\right) \leqslant$ $y\left(A_{i}\right)$ for each $i \in I$ and thus $x \leqslant y$.

Let i and $i(1)$ be distinct elements of I. Then

$$
C_{i(1)}=A_{i(1)} \cap C \subseteq A_{i}^{\prime} \cap C=C_{i}^{\prime} .
$$

Therefore according to 1.1 the relation (7) holds.

Let $\left(\alpha_{2}\right)$ and $\left(\alpha_{3}\right)$ be as in Section 2.
2.3. Lemma. $\quad\left(\alpha_{2}\right) \Rightarrow\left(\alpha_{3}\right)$.

Proof. Suppose that (1) holds and that all A_{i} are directly indecomposable. The case $L=\left\{s^{0}\right\}$ being trivial we can suppose that $\operatorname{card} L>1$. Hence we can assume that card $A_{i}>1$ for each $i \in I$. According to 4.11 in [5], all A_{i} are atoms of $D(L)$. Let $B \in D(L)$ be such that B fails to be the least element of $D(L)$, i.e., $B \neq\left\{s^{0}\right\}$. In view of 2.1 we have

$$
B=(\mathrm{cs}) \prod_{i \in I}\left(A_{i} \cap B\right)
$$

Hence there exists $i(1) \in I$ such that $A_{i(1)} \cap B \neq\left\{s^{0}\right\}$. At the same time,

$$
A_{i(1)}=\left(A_{i(1)} \cap B\right) \times\left(A_{i(1)} \cap B^{\prime}\right)
$$

Since $A_{i(1)}$ is directly indecomposable we infer that $A_{i(1)} \cap B=A_{i(1)}$. Hence $A_{i(1)} \subseteq$ B. Thus $\left(\alpha_{3}\right)$ is valid.

3.

In this section we suppose that the condition $\left(\alpha_{5}\right)$ is satisfied. It suffices to consider the case when $L \neq\left\{s^{0}\right\}$ and $L_{i} \neq\left\{s^{0}\right\}$ for each $i \in I$. We can also assume that I is linearly ordered and whenever $i(1), i(2) \in I, i(1) \leqslant i(2)$, then $L_{i(1)} \subseteq L_{i(2)}$.

Let $i(1) \in I$. There exists a completely subdirect product decomposition

$$
\begin{equation*}
L_{i(1)}=(\mathrm{cs}) \prod_{j \in J(i(1))} A_{i(1) j} \tag{1}
\end{equation*}
$$

such that all $A_{i(1) j}$ are directly indecomposable and $A_{i(1) j} \neq\left\{s^{0}\right\}$. Then 2.1 implies that the completely subdirect product decomposition (1) is uniquely determined.

Now we apply the same method as in [5], Section 4 with the distinction that
(a) instead of the relation (1) from [5] we use the relation (1) above;
(b) instead of 2.8 from [5] we use 2.2 above (including the relation (8) from Section 2);
(c) the internal direct product decompositions (e.g. in (10') and in analogous subsequent places of [5]) are replaced by completely subdirect product decompositions.

In this way we obtain a system $\left\{C_{k}\right\}_{k \in K}$ of directly indecomposable elements of $D(L)$ (cf. [5], 4.8 and 4.10).

Hence the condition 1) from 1.1 is valid for the system $\left\{C_{k}\right\}_{k \in K}$.
Let $x, y \in L$ and $x\left(C_{k}\right) \leqslant y\left(C_{k}\right)$ for each $k \in K$. There exists $i(1) \in I$ such that both x and y belong to $L_{i(1)}$. From the definition of C_{k} and from 4.4 in [5] we get that

$$
x\left(A_{i(1) j}\right) \leqslant y\left(A_{i(1) j}\right)
$$

is valid for each $j \in J(i(1))$. Thus $x \leqslant y$. Hence the condition 2) from 1.1 holds for the system $\left\{C_{k}\right\}_{k \in K}$.

Finally, let k and $k(1)$ be distinct elements of K and let $x \in C_{k(1)}$. There exists $i(1) \in I$ with $x \in L_{i(1)}$. In view of the construction of the system $\left\{C_{k}\right\}_{k \in K}$ in [5] we infer that there are j and $j(1)$ in $J(i(1))$ such that

$$
A_{i(1) j}=L_{i(1)} \cap C_{k}, \quad A_{i(1) j(1)}=L_{i(1)} \cap C_{k(1)}
$$

We have $x \in A_{i(1) j(1)}$, thus $x \in A_{i(1) j}^{\prime}$, where $A_{i(1) j}^{\prime}$ is the complement of $A_{i(1)}$ in $D\left(L_{i(1)}\right)$. Then under the notation as in [5], x belongs to C_{k}^{*}. According to 4.8 in [5], C_{k}^{*} is the complement of C_{k} in $D(L)$. Hence the condition 3) from 1.1 holds for the system $\left\{C_{k}\right\}_{k \in K}$.

Therefore we obtain

$$
L=(\mathrm{cs}) \prod_{k \in K} C_{k}
$$

completing the proof of $\left(\mathrm{A}_{1}\right)$.

4.

For a directed group G we denote the group operation by + , though we do not assume that G is abelian; 0 is the neutral element of G.
4.1. Definition. Suppose that

$$
\varphi: G \rightarrow \prod_{i \in I} G_{i}
$$

is an isomorphism of a directed group G into the direct product of directed groups $G_{i}(i \in I)$. Assume that for each $i(1) \in I$ and each $x^{i(1)} \in G_{i(1)}$ there exists $g \in G$ such that

$$
\varphi(g)_{i(1)}=x^{i(1)}, \quad \varphi(g)_{i}=0 \quad \text { for each } i \in I \backslash\{i(1)\}
$$

Then the morphism φ is said to be a completely subdirect product decomposition of G.

78

Let G and φ be as in 4.1 and let $i(1) \in I$. We put

$$
G_{i(1)}^{0}=\{g \in G: \varphi(g)=0 \quad \text { for each } i \in I \backslash\{i(1)\}\}
$$

Hence $G_{i(1)}^{0}$ is a directed subgroup of G. For each $g \in G_{i(1)}^{0}$ we set

$$
\varphi_{i(1)}(g)=\varphi(g)_{i(1)}
$$

Then $\varphi_{i(1)}$ is an isomorphism of $G_{i(1)}^{0}$ onto $G_{i(1)}$. Thus without loss of generality the directed groups $G_{i(1)}^{0}$ and $G_{i(1)}$ can be identified (such that the element $g \in G_{i(1)}^{0}$ is identified with $\left.\varphi(g)_{i(1)}\right)$. Under this supposition we write

$$
\begin{equation*}
G=(\mathrm{cs}) \prod_{i \in I} G_{i} . \tag{1}
\end{equation*}
$$

Let (1) be valid and $i(1) \in I$. For $g \in G$ we denote

$$
\varphi(g)_{i(1)}=g(i(1))
$$

Then (1) yields that $g(i(1)) \in G$. Further, we denote

$$
G_{i(1)}^{*}=\{g \in G: g(i(1))=0\}
$$

Then $G_{i(1)}^{*}$ is a convex subgroup of G. We set

$$
g_{i(1)}^{*}=g-g(i(1)) .
$$

Hence $g_{i(1)}^{*} \in G_{i(1)}^{*}$.
Let $x \in G_{i(1)}$ and $y \in G_{i(1)}^{*}$. Put $g=x+y$. Then we clearly have

$$
g(i(1))=x
$$

From this construction we immediately obtain
4.2. Lemma. Under the above notation, $G=G_{i(1)} \times G_{i(1)}^{*}$.

For each directed group G we denote by $L(G)$ the underlying lattice. Let (1) be valid; put $L(G)=L, L\left(G_{i}\right)=L_{i}, L\left(G_{i}^{*}\right)=L_{i}^{*}$ for each $i \in I, s^{0}=0$. Then 4.2 yields
4.3. Lemma. $L=L_{i(1)} \times L_{i(1)}^{*}$ for each $i(1) \in I$.

Consider the system $\left\{L_{i}\right\}_{i \in I}$ and the conditions 1), 2), 3) from 1.1. In view of 4.3 , this system satisfies the condition 1). From (1) we infer that 2) and 3) are also valid. Thus we have
4.4. Lemma. Let (1) be valid. Then

$$
\begin{equation*}
L(G)=(\mathrm{cs}) \prod_{i \in I} L\left(G_{i}\right) \tag{2}
\end{equation*}
$$

4.5. Proposition. Suppose that G is a directed group, $L=L(G), s^{0}=0$ and that a completely subdirect product decomposition

$$
L=(\mathrm{cs}) \prod_{i \in I} L_{i}
$$

is given. Then for each $i \in I, L_{i}$ is a subgroup of G and (1) is valid, where $G_{i}=L_{i}$.
Proof. Let $i(1) \in I$. From ($\left.2^{\prime}\right)$ we infer that

$$
\begin{equation*}
L=L_{i(1)} \times L_{i(1)}^{\prime} \tag{3}
\end{equation*}
$$

Thus according to Theorem 3, [1], both $L_{i(1)}$ and $L_{i(1)}^{\prime}$ are subgroups of the group G and for the directed group G the internal direct product decomposition

$$
\begin{equation*}
G=L_{i(1)} \times L_{i(1)}^{\prime} \tag{4}
\end{equation*}
$$

is valid. Moreover, from the proof of the above mentioned theorem of [1] it follows that for each $x \in G$ the component of x in $L_{i(1)}$ with respect to (3) is the same as the component of x in $L_{i(1)}$ with respect to (4).

Consider the mapping φ of G into $\prod_{i \in I} L_{i}$ defined by $\varphi(g)=\left(\ldots, g\left(L_{i}\right), \ldots\right)_{i \in I}$. Then φ is a homomorphism with respect to the group operation. In view of (2^{\prime}), φ is a monomorphism. Therefore φ is an isomorphism with respect to the group operation. This yields that (1) is valid, where $G_{i}=L_{i}$ for each $i \in I$.

We conclude by considering the conditions $\left(\alpha_{1}\right)-\left(\alpha_{5}\right)$ from Section 1 ; the following implications between them were given above:

$$
\begin{array}{ll}
\left(\alpha_{4}\right) \Rightarrow\left(\alpha_{3}\right), & \left(\alpha_{5}\right) \Rightarrow\left(\alpha_{2}\right), \quad\left(\alpha_{1}\right) \Rightarrow\left(\alpha_{2}\right) \\
\left(\alpha_{4}\right) \Rightarrow\left(\alpha_{5}\right), & \left(\alpha_{2}\right) \Rightarrow\left(\alpha_{3}\right)
\end{array}
$$

The natural question arises which of these implications can be reversed.
It is clear that $\left(\alpha_{2}\right) \Rightarrow\left(\alpha_{5}\right)$. Hence in view of $\left(\mathrm{A}_{1}\right)$, the conditions $\left(\alpha_{2}\right)$ and $\left(\alpha_{5}\right)$ are equivalent. The following two examples show that this is the only such case.
5.1. Example. Let L be the system of all finite subsets of an infinite set M, $s^{0}=\emptyset$. The system L is partially ordered by the set-theoretical inclusion. Then L is a directed set. It was remarked already in [5], Example 5.1 (under another terminology) that L satisfies $\left(\alpha_{3}\right)$ and that it does not satisfy $\left(\alpha_{1}\right)$. Thus, since $\left(\alpha_{2}\right) \Rightarrow\left(\alpha_{3}\right)$, we obtain that the relation $\left(\alpha_{2}\right) \Rightarrow\left(\alpha_{1}\right)$ fails to be valid. It is easy to verify that the condition $\left(\alpha_{4}\right)$ does not hold for L; hence $\left(\alpha_{4}\right)$ is not implied by $\left(\alpha_{3}\right)$. Further, the condition $\left(\alpha_{5}\right)$ is valid for L and thus $\left(\alpha_{5}\right)$ does not imply $\left(\alpha_{4}\right)$.
5.2. Example. Let L_{1} be as in 1.3 and let L be the set of all $f \in L_{1}$ such that, whenever $t_{0} \in R$ and f is not continuous at the point t_{0}, then $t_{0}<0$. The condition $\left(\alpha_{3}\right)$ is valid for L, but $\left(\alpha_{2}\right)$ does not hold for L. Hence $\left(\alpha_{2}\right)$ is not implied by $\left(\alpha_{3}\right)$.

References

[1] J. Jakubik: Direct decompositions of partially ordered groups. Czechoslovak Math. J. 10 (1960), 231-243. (In Russian.)
[2] J. Jakubik: Weak product decompositions of discrete lattices. Czechoslovak Math. J. 21 (1971), 399-412.
[3] J. Jakubik: Weak product decompositions of partially ordered sets. Colloquium Math. 25 (1972), 177-190.
[4] J. Jakubik: Directly indecomposable direct factors of a lattice. Math. Bohem. 121 (1996), 281-292.
[5] J. Jakubik: Atomicity of the Boolean algebra of direct factors of a directed set. Math. Bohem. 132 (1998), 145-162.
[6] L. Libkin: Direct decompositions of atomistic algebraic lattices. Algebra Univ. 33 (1995), 127-135.
[7] F. Šik: Über subdirekte Summen geordneter Gruppen. Czechoslovak Math. J. 10 (1960), 400-424.

Author's address: Ján Jakubik, Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia.

