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Abstract. This paper deals with directly indecomposable direct factors of a directed set.
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The notion of the completely subdirect product of lattice ordered groups was

introduced in [7] and has been used in several articles.
Let L be a directed set and let s0 be a fixed element of L.

In this paper we define the completely subdirect product decomposition of L with
the central element s0.

In all considerations we are dealing with a fixed s0; therefore we will often omit
the words “with the central element s0”.

If {Li}i∈I is a system of subsets of L, then this system is partially ordered by the
set-theoretical inclusion.

We prove the following result (for definitions, cf. Section 1 below):

(A1) Let L and s0 be as above. Suppose that there exists a linearly ordered system

{Li}i∈I of intervals of L such that
(i) for each i ∈ I, s0 belongs to Li and Li is a completely subdirect

product of directly indecomposable direct factors;
(ii)

⋃
i∈I

Li = L.

Then L is a completely subdirect product of directly indecomposable direct factors.

The results and methods from [5] will be applied.
For related results cf. [2], [3], [4] and [6].
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The relations between completely subdirect product decompositions of directed

sets and completely subdirect product decompositions of directed groups will be
investigated.

1.

Throughout the paper we suppose that L is a directed set and that s0 is a fixed
element of L.

The notion of the internal direct product decomposition (with the central element
s0) of L will be used in the same sense as in [5]. We suppose that the reader is

acquainted with the definitions and the notation from Section 2 in [5].

When considering an internal direct product decomposition of L or of a directed
subset of L we always assume that the corresponding central element is s0.

We recall that D(L) is the set of all internal direct factors of L. Under the
partial order defined by the set-theoretical inclusion, D(L) is a Boolean algebra. For

A ∈ D(L) we denote by A′ the complement of A in D(L); then L = A × A′.
The Boolean algebra D(L) will be called atomic if for each A ∈ D(L) with

cardA > 1 there exists an atom A0 of D(L) such that A0 � A.

If x ∈ L and A ∈ D(L), then x(A) denotes the component of x in the internal
direct factor A.

1.1. Definition. Let L and s0 be as above. Further, let {Ai}i∈I be an indexed

system of directed sets such that

1) Ai ∈ D(L) for each i ∈ I;
2) if x, y ∈ L and x(Ai) � y(Ai) for each i ∈ I, then x � y;

3) if i and i(1) are distinct elements of I, then Ai(1) ⊆ A′
i.

Under these assumptions L is said to be a completely subdirect product of the
system {Ai}i∈I and we express this fact by writing

(1) L = (cs)
∏

i∈I

Ai.

The relation (1) is called a completely subdirect product decomposition of L.

1.2. �������. Suppose that L0 is a directed set, s0 ∈ L0 and

(2) L0 =
∏

i∈I

Bi,
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so that s0 ∈ Bi and cardBi > 1 for each i ∈ I. Let α be an infinite cardinal,

card I > α. For x ∈ L0 we put

supp (x) = {i ∈ I : x(Bi) �= s0}.

Further, we denote

L = {x ∈ L0 : supp (x) � α}.
Then we have

(3) L0 �= L = (cs)
∏

i∈I

Bi.

In 1.2, L is a convex subset of L0. The following example shows that this need
not be the case in general for analogous situations.

1.3. �������. Let � be the set of all reals and let L0 be the set of all real

functions defined on �, with the partial order defined coordinatewise. Let s0 ∈ L0

be such that s0(t) = 0 for each t ∈ �. For i ∈ � we put

Bi = {f ∈ L0 : f(t) = 0 for each t ∈ � \ {i}}.

Then (2) is valid. We denote by L1 the set of all f ∈ L0 having only a finite
number of points of discontinuity. Then the relation

L1 = (cs)
∏

i∈I

Bi

holds and L1 is not a convex subset of L0.

Theorem (A1) generalizes Theorem (A) of [5] concerning direct product decompo-
sitions of a directed set.

In order to have the possibility to compare (A1) and (A) we consider the following
conditions for L:

(α1) L is an internal direct product of directly indecomposable direct factors.

(α2) L is a completely subdirect product of directly indecomposable direct factors.
(α3) The Boolean algebra D(L) is atomic.

(α4) There exists a linearly ordered system {Li}i∈I of intervals of L such that⋃
i∈I

Li = L and each Li satisfies (α1).

(α5) There exists a linearly ordered system {Li}i∈I of intervals of L such that⋃
i∈I

Li = L and each Li satisfies (α2).
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By using this notation, Theorem (A) of [5] can be expressed as follows:

(A) (α4) ⇒ (α3).
Similarly, (A1) can be written in the form

(A1) (α5) ⇒ (α2).
It is clear that (α1) ⇒ (α2) and hence (α4) ⇒ (α5). Below (cf. Lemma 2.3) we

shall show that (α2) ⇒ (α3). Hence (A) is a particular case of (A1).

2.

Let us have two completely subdirect product decompositions

L = (cs)
∏

i∈I

Ai,(1)

L = (cs)
∏

j∈J

Bj .(2)

We say that (2) is a refinement of (1) if for each i ∈ I there exists a subset J(i) of J
such that

Ai = (cs)
∏

j∈J(i)

Bj .

Now let (1) and (2) be arbitrary (i.e., we do not suppose that (2) is a refinement

of (1)). For each i ∈ I and j ∈ J we put

Ai ∩ Bj = Cij .

Then (by applying the results from [5]) we obtain

L = A1 × A′
i, L = Bj × B′

j ,

L = (Ai ∩ Bj)× (Ai ∩ B′
j)× (A′

i ∩ Bj)× (A′
i ∩ B′

j).

Thus Cij ∈ D(L). Hence the condition 1) from 1.1. holds for Cij . Moreover,

(3) C′
ij = (Ai ∩ B′

j)× (A′
i ∩ Bj)× (A′

i ∩ B′
j).

Let x, y ∈ L and suppose that x(Cij) � y(Cij) is valid for each (i, j) ∈ I × J . We
have (cf. [5])

x(Cij) = (x(Ai))(Bj).

To simplify the notation we shall write x(Ai)(Bj) rather than (x(Ai))(Bj).
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Thus, if i is fixed, then

x(Ai)(Bj) � y(Ai)(Bj)

is valid for each j ∈ J . Therefore in view of 1.1

x(Ai) � y(Ai).

By using 1.1 again we get x � y. We have verified the validity of the condition 2)

from 1.1 for the system {Cij}(i,j)∈I×J .

Let (i, j) and (i(1), j(1)) be distinct elements of the set I × J . Without loss of
generality we can suppose that i �= i(1). Thus according to 1.1 we get

Ai(1) ⊆ A′
i.

Now we distinguish two cases. If j = j(1), then Ci(1)j(1) ⊆ A′
i ∩ Bj and hence in

view of (3), Ci(1)j(1) ⊆ C′
ij . If j �= j(1), then Bj(1) ⊆ B′

j , whence

Ci(1)j(1) ⊆ A′
i ∩ B′

j

and by using (3) again we infer that also in this case we have Ci(1)j(1) ⊆ C′
ij . Thus

the condition 3) from 1.1 holds. Therefore

(4) L = (cs)
∏

(i,j)∈I×J

Cij .

Let i be a fixed element of I. We intend to prove that the relation

(5) Ai = (cs)
∏

j∈J

Cij

is valid. Again, we assume the conditions 1), 2) and 3) from 1.1. In view of 2.7, [5],

for each j ∈ J we have

Ai = (Ai ∩ Bj)× (Ai ∩ B′
j).

Hence Cij belongs to D(Ai) and its complement in D(Ai) is Ai ∩ B′
j .

Let x, y ∈ Ai and suppose that x(Cij) � y(Cij) for each j ∈ J . This means that

x(Ai)(Bj) � y(Ai)(Bj)

for each j ∈ J . But in view of the relations x ∈ Ai and y ∈ Ai we get x(Ai) = x,
y(Ai) = y, whence x(Bj) � y(Bj) for each j ∈ J . Therefore x � y.
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Let j and j(1) be distinct elements of J . Then Bj(1) ⊆ B′
j , hence

Cij(1) = Ai ∩ Bj(1) ⊆ Ai ∩ B′
j .

Thus Cij(1) is a subset of the complement of Cij in D(Ai). We have verified that (5)
holds. Analogously we can verify

(6) Bj = (cs)
∏

i∈I

Cij .

By summarizing we obtain

2.1. Proposition. Let (1) and (2) be completely subdirect product decompo-
sitions of L. Then (5) is also a completely subdirect product decomposition of L.

Moreover, (5) is a refinement of both (1) and (2).

2.2. Lemma. Let (1) be valid and let C be an interval of L, s0 ∈ C. Put

Ci = Ai ∩ C for each i ∈ I. Then

(7) C = (cs)
∏

i∈I

Ci.

��		
. Let i ∈ I. Then L = Ai × A′
i. Thus in view of [5], Lemma 2.8 we have

C = (Ai ∩ C)× (A′
i ∩ C).

Hence Ci ∈ D(C). Moreover, the complement C′
i of Ci in D(C) is A′

i ∩ C.

If x ∈ C, then by applying 2.8 of [5] again we get that the relation

(8) x(Ci) = x(Ai)

is valid.

Let x, y ∈ C and suppose that x(Ci) � y(Ci) holds for each i ∈ I. Hence x(Ai) �
y(Ai) for each i ∈ I and thus x � y.

Let i and i(1) be distinct elements of I. Then

Ci(1) = Ai(1) ∩ C ⊆ A′
i ∩ C = C′

i.

Therefore according to 1.1 the relation (7) holds. �
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Let (α2) and (α3) be as in Section 2.

2.3. Lemma. (α2)⇒ (α3).
��		
. Suppose that (1) holds and that all Ai are directly indecomposable.

The case L = {s0} being trivial we can suppose that cardL > 1. Hence we can

assume that cardAi > 1 for each i ∈ I. According to 4.11 in [5], all Ai are atoms
of D(L). Let B ∈ D(L) be such that B fails to be the least element of D(L), i.e.,

B �= {s0}. In view of 2.1 we have

B = (cs)
∏

i∈I

(Ai ∩ B).

Hence there exists i(1) ∈ I such that Ai(1) ∩ B �= {s0}. At the same time,

Ai(1) = (Ai(1) ∩ B)× (Ai(1) ∩ B′).

Since Ai(1) is directly indecomposable we infer that Ai(1)∩B = Ai(1). Hence Ai(1) ⊆
B. Thus (α3) is valid. �

3.

In this section we suppose that the condition (α5) is satisfied. It suffices to consider

the case when L �= {s0} and Li �= {s0} for each i ∈ I. We can also assume that I is
linearly ordered and whenever i(1), i(2) ∈ I, i(1) � i(2), then Li(1) ⊆ Li(2).

Let i(1) ∈ I. There exists a completely subdirect product decomposition

(1) Li(1) = (cs)
∏

j∈J(i(1))

Ai(1)j

such that all Ai(1)j are directly indecomposable and Ai(1)j �= {s0}. Then 2.1 implies
that the completely subdirect product decomposition (1) is uniquely determined.

Now we apply the same method as in [5], Section 4 with the distinction that
(a) instead of the relation (1) from [5] we use the relation (1) above;

(b) instead of 2.8 from [5] we use 2.2 above (including the relation (8) from Sec-
tion 2);

(c) the internal direct product decompositions (e.g. in (10′) and in analogous sub-
sequent places of [5]) are replaced by completely subdirect product decompositions.

In this way we obtain a system {Ck}k∈K of directly indecomposable elements of
D(L) (cf. [5], 4.8 and 4.10).
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Hence the condition 1) from 1.1 is valid for the system {Ck}k∈K .

Let x, y ∈ L and x(Ck) � y(Ck) for each k ∈ K. There exists i(1) ∈ I such that
both x and y belong to Li(1). From the definition of Ck and from 4.4 in [5] we get

that

x(Ai(1)j) � y(Ai(1)j)

is valid for each j ∈ J(i(1)). Thus x � y. Hence the condition 2) from 1.1 holds for
the system {Ck}k∈K .

Finally, let k and k(1) be distinct elements of K and let x ∈ Ck(1). There exists

i(1) ∈ I with x ∈ Li(1). In view of the construction of the system {Ck}k∈K in [5] we
infer that there are j and j(1) in J(i(1)) such that

Ai(1)j = Li(1) ∩ Ck, Ai(1)j(1) = Li(1) ∩ Ck(1).

We have x ∈ Ai(1)j(1), thus x ∈ A′
i(1)j , where A′

i(1)j is the complement of Ai(1) in

D(Li(1)). Then under the notation as in [5], x belongs to C∗
k . According to 4.8 in

[5], C∗
k is the complement of Ck in D(L). Hence the condition 3) from 1.1 holds for

the system {Ck}k∈K .

Therefore we obtain

L = (cs)
∏

k∈K

Ck,

completing the proof of (A1).

4.

For a directed group G we denote the group operation by +, though we do not
assume that G is abelian; 0 is the neutral element of G.

4.1. Definition. Suppose that

ϕ : G →
∏

i∈I

Gi

is an isomorphism of a directed group G into the direct product of directed groups
Gi (i ∈ I). Assume that for each i(1) ∈ I and each xi(1) ∈ Gi(1) there exists g ∈ G

such that

ϕ(g)i(1) = xi(1), ϕ(g)i = 0 for each i ∈ I \ {i(1)}.

Then the morphism ϕ is said to be a completely subdirect product decomposition of
G.
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Let G and ϕ be as in 4.1 and let i(1) ∈ I. We put

G0i(1) = {g ∈ G : ϕ(g) = 0 for each i ∈ I \ {i(1)}}.

Hence G0i(1) is a directed subgroup of G. For each g ∈ G0i(1) we set

ϕi(1)(g) = ϕ(g)i(1).

Then ϕi(1) is an isomorphism of G0i(1) onto Gi(1). Thus without loss of generality the

directed groups G0i(1) and Gi(1) can be identified (such that the element g ∈ G0i(1) is
identified with ϕ(g)i(1)). Under this supposition we write

(1) G = (cs)
∏

i∈I

Gi.

Let (1) be valid and i(1) ∈ I. For g ∈ G we denote

ϕ(g)i(1) = g(i(1)).

Then (1) yields that g(i(1)) ∈ G. Further, we denote

G∗
i(1) = {g ∈ G : g(i(1)) = 0}.

Then G∗
i(1) is a convex subgroup of G. We set

g∗i(1) = g − g(i(1)).

Hence g∗i(1) ∈ G∗
i(1).

Let x ∈ Gi(1) and y ∈ G∗
i(1). Put g = x+ y. Then we clearly have

g(i(1)) = x.

From this construction we immediately obtain

4.2. Lemma. Under the above notation, G = Gi(1) × G∗
i(1).

For each directed group G we denote by L(G) the underlying lattice. Let (1) be

valid; put L(G) = L, L(Gi) = Li, L(G∗
i ) = L∗

i for each i ∈ I, s0 = 0. Then 4.2
yields

4.3. Lemma. L = Li(1) × L∗
i(1) for each i(1) ∈ I.
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Consider the system {Li}i∈I and the conditions 1), 2), 3) from 1.1. In view of

4.3, this system satisfies the condition 1). From (1) we infer that 2) and 3) are also
valid. Thus we have

4.4. Lemma. Let (1) be valid. Then

(2) L(G) = (cs)
∏

i∈I

L(Gi).

4.5. Proposition. Suppose that G is a directed group, L = L(G), s0 = 0 and

that a completely subdirect product decomposition

(2′) L = (cs)
∏

i∈I

Li

is given. Then for each i ∈ I, Li is a subgroup of G and (1) is valid, where Gi = Li.

��		
. Let i(1) ∈ I. From (2′) we infer that

(3) L = Li(1) × L′
i(1).

Thus according to Theorem 3, [1], both Li(1) and L′
i(1) are subgroups of the group

G and for the directed group G the internal direct product decomposition

(4) G = Li(1) × L′
i(1)

is valid. Moreover, from the proof of the above mentioned theorem of [1] it follows

that for each x ∈ G the component of x in Li(1) with respect to (3) is the same as
the component of x in Li(1) with respect to (4).

Consider the mapping ϕ of G into
∏
i∈I

Li defined by ϕ(g) = (. . . , g(Li), . . .)i∈I .

Then ϕ is a homomorphism with respect to the group operation. In view of (2′),
ϕ is a monomorphism. Therefore ϕ is an isomorphism with respect to the group
operation. This yields that (1) is valid, where Gi = Li for each i ∈ I. �
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5.

We conclude by considering the conditions (α1)–(α5) from Section 1; the following

implications between them were given above:

(α4)⇒ (α3), (α5)⇒ (α2), (α1)⇒ (α2),
(α4)⇒ (α5), (α2)⇒ (α3).

The natural question arises which of these implications can be reversed.

It is clear that (α2)⇒ (α5). Hence in view of (A1), the conditions (α2) and (α5)
are equivalent. The following two examples show that this is the only such case.

5.1. �������. Let L be the system of all finite subsets of an infinite set M ,
s0 = ∅. The system L is partially ordered by the set-theoretical inclusion. Then

L is a directed set. It was remarked already in [5], Example 5.1 (under another
terminology) that L satisfies (α3) and that it does not satisfy (α1). Thus, since

(α2)⇒(α3), we obtain that the relation (α2)⇒(α1) fails to be valid. It is easy to
verify that the condition (α4) does not hold for L; hence (α4) is not implied by (α3).

Further, the condition (α5) is valid for L and thus (α5) does not imply (α4).

5.2. �������. Let L1 be as in 1.3 and let L be the set of all f ∈ L1 such
that, whenever t0 ∈ R and f is not continuous at the point t0, then t0 < 0. The

condition (α3) is valid for L, but (α2) does not hold for L. Hence (α2) is not implied
by (α3).
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