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DIFFERENTIAL EQUATIONS IN METRIC SPACES

Jacek Tabor, Kraków

Abstract. We give a meaning to derivative of a function u : � → X, whereX is a complete
metric space. This enables us to investigate differential equations in a metric space. One can
prove in particular Gronwall’s Lemma, Peano and Picard Existence Theorems, Lyapunov
Theorem or Nagumo Theorem in metric spaces.
The main idea is to define the tangent space TxX of x ∈ X. Let u, v : [0, 1)→ X, u(0) =

v(0) be continuous at zero. Then by the definition u and v are in the same equivalence
class if they are tangent at zero, that is if

lim
h→0+

d(u(h), v(h))
h

= 0.

By TxX we denote the set of all equivalence classes of continuous at zero functions u :
[0, 1)→ X, u(0) = x, and by T X the disjoint sum of all TxX over x ∈ X.
By u′(t) ∈ Tu(t)X, where u : � → X, we understand the equivalence class of a function

[0, 1) � h → u(t + h) ∈ X. Given a function F : X → T X such that F(x) ∈ TxX we are
now able to investigate solutions to the differential equation u′(t) = F(u(t)).
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Introduction

The motivation for defining and investigating differential equations in metric

spaces comes from many sources.

Probably the most important are mutational equations, which appeared during the

investigation of the evolution of sets (tubes) in vector spaces. From the introduction
to [1], which serves also as our leading idea, we read: “While attempting to give a

meaning to a differential equation governing the evolution of tubes, it was observed
that no specific property of the Hausdorff distance was used, and that the theorems

could be formulated and proved in any metric space”. Mutational equations are a
particular case of a differential equation in the sense understood in this paper.
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Nagumo Theorem (see [2]) gives another motivation. Suppose that A is a closed

subset of �n and that we are given a differential equation x′(t) = f(x(t)). Roughly
speaking, Nagumo Theorem says that under the assumption that the vector field
f is “tangent” to A for every a ∈ A there exists a solution which begins in a and

stays in A. Looking at this result from the local point of view of the set A we see
that although A does not have a vector structure, we may consider the differential

equation x′(t) = f(x(t)) in A.
Still another motivation comes from the differential equations with discontinu-

ous right hand sides. In this case the solutions may change their speed in a non-
continuous way. For such equations it is even nontrivial what we understand by a

solution. In some situations the notion of the differential equation in a metric space
may help to better understand this problem.

Tangent spaces

To explain what we understand by a differential equation in a metric space, we

first have to know what is a differential equation on a manifold M . For the sake of
simplicity we discuss here the case of autonomous differential equations. To consider

a differential equation on a differential manifold we need a vector field f : M → TM ,
f(x) ∈ TxM , where TM is the tangent space. A solution u : �+ → M of u′(t) =
f(u(t)) is a function which “locally” moves along the vector field.

The above idea can easily be generalized to complete metric spaces. From now on
we assume that X is a complete metric space. We know that the tangent space TxM

at x ∈ M consists of all equivalence classes of differentiable functions u : [0, 1)→ M ,
u(0) = x, where u, v : [0, 1)→ M are in the same equivalence class if they are tangent

at zero, that is if lim
h→0+

‖u(h)−v(h)‖
h = 0.

We proceed in a similar way in metric spaces (the difference is that we do not have

differentiable functions). By C0([0, 1), X) we denote the space of all continuous at
zero functions u : [0, 1)→ X .

Definition. Let u, v ∈ C0([0, 1), X), u(0) = v(0) =: x. Then by the definition u

and v are in the same equivalence class if they are tangent at zero, that is if

lim
h→0+

d(u(h), v(h))
h

= 0.

By TxX we denote the set of all equivalence classes of functions u ∈ C0([0, 1), X),
u(0) = x and by T X the disjoint sum of all TxX over x ∈ X .

For u ∈ C0([0, 1), X), by [u] ∈ Tu(0)X we denote the equivalence class of u. As in
the case of differential manifolds the tangent space TxX is a metric space with the
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(extended) metric defined by

dx([u], [v]) := lim sup
h→0+

d(u(h), v(h))
h

,

where u, v ∈ C0([0, 1), X), u(0) = v(0) = x.

The main difference between the tangent spaces TM and T X is that we do not
have a topology on T X which would enable us to reasonably measure the distance
between elements from different “tangent spaces”.

Now we are ready to define the derivative of a continuous function u : I → X ,
where I is a right open subinterval of �.

Definition. By u′(t) ∈ Tu(t)X we understand the equivalence class of the func-
tion [0, δ) � h → u(t+ h) ∈ X , where δ > 0 is such that [t, t+ δ) ⊂ I.

As we have a tangent space and the derivative we can now obviously investigate
differential equations. For simplicity we consider here autonomous differential equa-
tions.

Let F : X → T X be such that F(x) ∈ TxX for every x ∈ X . We seek continuous
solutions u : I → X of

u′(t) = F(u(t)) for t ∈ I.

Since the function F goes into the equivalence classes, an easier way to investigate
it is by taking its representative. From now on we assume that F : X → C0([0, 1), X)

is such that F (x)(0) = x for every x ∈ X . Then the function [F ] : X � x →
[F (x)] ∈ T X satisfies [F ](x) ∈ TxX for every x ∈ X . Instead of writing that

u : I → X is a solution to u′(t) = [F ](u(t)) we write for brevity that it is a solution
to u′(t) = F (u(t)).

Given F we use the abbreviation x•F h = F (x)(h). Thus a continuous u is a
solution to u′(t) = F (u(t)) iff lim

h→0+
d(u(t+h),u(t)•F h)

h = 0 for t ∈ I.

For a function u : I → � we denote by D+u(t) the right upper Dini derivative of

u, that is D+u(t) := lim sup
h→0+

u(t+h)−u(t)
h .

������� 1. We show that differential equations in metric spaces may have no

solutions.

Let X = � and F (x)(h) := x +
√

h. Suppose that u : I → � is a solution to
u′(t) = F (u(t)). Then D+u(t) = ∞ for every t ∈ I, which yields a contradiction.

The reason why there are no solutions is that the local “speed” of the “vector field”
is infinite at every point.

Let us now investigate another example. Let F (x)(h) := x+h sin(1/h). Then one
can easily check that the differential equation u′(t) = F (u(t)) has no solutions. The
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reason which causes the nonexistence in this case is that according to the “vector

field” the points should move simultaneously forward and backward.
As we have seen, there are examples when solutions do not exist. However, every

semidynamical system is a solution to itself. Namely, let U : �+ × X → X be a

semidynamical system. Then for every x0 ∈ X , the function u : �+ � t → U(t, x0) ∈
X is a solution to the differential equation

u′(t) = F (u(t)) for t ∈ �+ ,

where F (x)(h) := U(x, h).

Gronwall’s lemma

From now on we assume that F : X → T X is a function such that F(x) ∈ TxX

for every x ∈ X .
One of the most crucial tools in the differential equations is Gronwall’s Lemma.

To formulate it we need the notion of approximate solutions.

Definition. Let ε � 0. We say that a continuous function u : I → X is an

ε-solution to u′(t) = F(u(t)) if

du(t)(u
′(t),F(u(t))) � ε for t ∈ I.

One can easily notice that a 0-solution is simply a solution.

If F : X → C0([0, 1), X) is a representative of F then u : I → X is an ε-solution

iff lim sup
h→0+

d(u(t+h),u(t)•F h)
h � ε for t ∈ I.

As we have mentioned before it is not possible to define reasonable topology on
T X . However, we can compare elements from different tangent spaces. For u, v ∈
T X we define

dX(u, v) := lim sup
h→0+

d(u0(h), v0(h))− d(u0(0), v0(0))
h

,

where u0, v0 ∈ C0([0, 1), X) are such that [u0] = u, [v0] = v. Clearly dX does not
satisfy the axioms of a metric. Let us remark that if u, v ∈ TxX then dx(u, v) =

dX(u, v).

Gronwall’s Lemma. Let Fi : X → T X , where i = 1, 2, be such that Fi(x) ∈
TxX for every x ∈ X . Let I be a subinterval of � and let L : �+ → �+ be such that

dX(F1(x),F2(y)) � L(d(x, y)) for x, y ∈ X.

356



Let ui : I → X for i = 1, 2 be εi-solutions to

(ui)′(t) = Fi(ui(t)) for t ∈ I.

Let r(t) := d(u1(t), u2(t)). Then r is a continuous function which satisfies the differ-

ential inequality

D+r(t) � L(r(t)) + ε1 + ε2 for t ∈ I.

��		
. Let Fi : X → C0([0, 1), X) be representatives of Fi. We have

D+r(t) = lim sup
h→0+

d(u1(t+ h), u2(t+ h))− d(u1(t), u2(t))
h

� lim sup
h→0+

d(u1(t)•F1h, u2(t)•F2h)− d(u1(t), u2(t))
h

+ (ε1 + ε2)

= dX(F1(u1(t)),F2(u2(t))) + (ε1 + ε2) � L(r(t)) + (ε1 + ε2).

�

We say that F : X → T X is Lipschitz with a constant K if

dX(F(x),F(y)) � Kd(x, y) for x, y ∈ X.

As a direct consequence of Gronwall’s Lemma we obtain that solutions to Lipschitz
differential equations, if they exist, are unique (Example 1 shows that even if F is
Lipschitz the solutions need not exist).

Corollary 1. Let F be Lipschitz with a constant K. Let x, y ∈ X and let

ux, uy : [0, δ) → X be solutions to u′(t) = F(u(t)) such that ux(0) = x, uy(0) = y.

Then

d(ux(t), uy(t)) � d(x, y)eKt for t ∈ [0, δ).

Tangency fields

There appears an obvious question what possible assumption on the function F

will enforce the existence of solutions. We are going to give a condition which in the
case of classical differential equations follows from the continuity of the vector field.
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Definition. We say that F is a tangency field if there exists a continuous function
L : [0, 1)× X2 → �+ such that L(0, x, x) = 0 for x ∈ X and

(1) lim sup
h→0+

d(x•F h, y•F (t+ h))− d(x, y•F t)
h

� L(t, x, y) for
t ∈ [0, 1),
x, y ∈ X.

If we have a particular L in mind then we say that F is an L-tangency field.

At first the above condition may seem to be artificial, however, this is not the
case. It tells us that the “vector fields” of near-by points are near.

In the case of differential equations the above condition follows from the assump-
tion that the right hand side of the differential equation u′(t) = F (u(t)) is continuous.

Namely, let us consider the differential equation x′(t) = f(x(t)) where f : �n → �
n

is a continuous function. Then for t ∈ [0, 1), x, y ∈ X

lim sup
h→0+

‖x+ hf(x)− (y + (t+ h)f(y))‖ − ‖x − (y + tf(y))‖
h

� ‖f(x)− f(y)‖.

Thus we may put L(t, x, y) := ‖f(x)− f(y)‖.
Let us now consider the case when U : �+ × X → X is a semidynamical system

and F (x)(h) := U(x, h). A natural question is when F is a tangency field. The
above reasoning shows that if U is given as a solution to a differential equation this

is the case. One can also notice that if U(t, ·) is a contraction for every t ∈ �+ then
this is also the case.

By applying the following proposition it is possible to construct, as in the case of
classical differential equations, ε-solutions with arbitrary small ε > 0.

Proposition 1. Let F be an L-tangency field. Fix x ∈ X and ε > 0. Then there

exists δ > 0 such that the function u : [0, δ) � t → x•F t ∈ X is an ε-solution to

u′(t) = F (u(t)).

��		
. Let r > 0 and δ > 0 be chosen so that

x•F [0, δ) ⊂ B(x, r),

sup{L(t, y, z) : t ∈ [0, δ), y, z ∈ B(x, 2r)} < ε.

Let t ∈ [0, δ) be arbitrary. Then u(t)•F h ⊂ B(x, 2r) for sufficiently small h and

therefore by (1) (with x = x•F t, y = x) we get

lim sup
h→0+

d(u(t+ h), u(t)•F h)
h

= lim sup
h→0+

d(x•F (t+ h), (x•F t)•F h)
h

� L(t, x•F t, x) + lim sup
h→0+

d(x•F t, x•F t)
h

� ε.

�
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Peano and Picard theorems

The following lemma is essential in the proof that a limit of a convergent sequence
of approximate solutions is a solution.

Lemma. Let F be a tangency field and let u : I → X be an ε-solution to u′(t) =
F (u(t)) for t ∈ I. Let U ⊂ X be such that u(s)•F (t − s) ⊂ U for t, s ∈ I, s � t. Let

L := sup{L(t, x, y) : t ∈ I, x, y ∈ U}.

Then

d(u(t), u(s)•F (t − s)) � (t − s)(L + ε) for s, t ∈ I, s � t.

��		
. Let rs(t) = d(u(t), u(s)•F (t − s)). Then rs(s) = 0 and applying (1) we

get

D+rs(t) = lim sup
h→0+

d(u(t+ h), u(s)•F (t+ h − s))− d(u(t), u(s)•F (t − s))
h

� ε+ lim sup
h→0+

d(u(t)•F h, u(s)•F (t+ h − s))− d(u(t), u(s)•F (t − s))
h

� ε+ L.

�

Proposition 2. Let F be a tangency field and let un : [0, T )→ X be a sequence

of εn-solutions, with εn → 0. Let u : [0, T )→ X be a continuous function such that

lim
n→∞un(s) = u(s) for s ∈ [0, T ).

Then u is a solution.

��		
. Let s ∈ [0, T ) and ε > 0 be arbitrarily chosen. Applying the fact that
F is a tangency field one can get r > 0 and d > 0 such that

sup{L(t, x, y) : x, y ∈ B(x0, 2r), t ∈ [0, δ)} < ε,

and v([0, δ]) ⊂ B(x0, 2r) for every ε-solution v such that v(0) ∈ B(x0, r). Then by

Lemma 1 for every h ∈ [0, δ) we have

d(u(s+ h), u(s)•F h) = lim
n→∞ d(un(s+ h), un(s)•F h) � εh,

which yields that u is a solution. �
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As a consequence of Proposition 2 and the existence of approximate solutions we

can prove

Peano and Picard Theorems. Let x0 ∈ X be arbitrary. Let r > 0 and S > 0
be chosen so that

K := sup{L(t, x, y) : x, y ∈ B(x0, R), s, t ∈ [0, S]} < ∞,

x0•F [0, S] ⊂ B(x0, r).

Assume that either F is a Lipschitz tangency field on B(x0, 5r) or that B(x0, 5r) is
compact.

Then for every x ∈ B(x0, r) there exists a solution v : [0,min{S, r
K })→ B(x0, 5r)

such that v(0) = x.

In a similar manner we can consider nonautonomous differential equations. Then
we are given a function F : X×�+ → T X such that F (x, t) ∈ TxX for every x ∈ X .

All the results of the paper can be easily modified to such a case.
Without much difficulty one can prove in metric spaces a version of the Nagumo

Theorem (see [2]) or the Lyapunov Theorem.
We can also investigate functional-differential equations. To do so we need a

function F : C([−1, 0], X)→ T X such that F (ϕ)[0] ∈ Tϕ(0)X . Analogously we can
define differential inclusions—then we need a set-valued map V : X � T X such

that v ∈ TxX for every x ∈ X , v ∈ V (x).
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