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ON DISCONTINUOUS GALERKIN METHODS FOR

NONLINEAR CONVECTION-DIFFUSION PROBLEMS

AND COMPRESSIBLE FLOW
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Abstract. The paper is concerned with the discontinuous Galerkin finite element method
for the numerical solution of nonlinear conservation laws and nonlinear convection-diffusion
problems with emphasis on applications to the simulation of compressible flows. We discuss
two versions of this method: (a) Finite volume discontinuous Galerkin method, which is a
generalization of the combined finite volume—finite element method. Its advantage is the
use of only one mesh (in contrast to the combined finite volume—finite element schemes).
However, it is of the first order only. (b) Pure discontinuous Galerkin finite element method
of higher order combined with a technique avoiding spurious oscillations in the vicinity of
shock waves.
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Introduction

Our goal is to develop a sufficiently accurate and robust method for the numerical

solution of nonlinear conservation laws, nonlinear convection-diffusion problems and
compressible flows. In principle, all numerical methods for the solution of partial

differential equations can be applied to the problems mentioned. The most popular
ones are now the finite element (FE) and finite volume (FV) methods. The finite

volume schemes are suitable for the discretization of conservation laws, whereas the
FE methods are mainly used for diffusion problems. In order to exploit advantages
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of both these techniques, combined FV-FE methods for the solution of convection-

diffusion problems and compressible viscous flows were developed. For analysis and
applications see, e.g., [1], [10]–[14]. These methods give good results in many cases
of technically relevant problems in complex domains. However, their drawback is the

necessity to construct two mutually associated meshes, which is rather complicated
particularly in 3D ([15]).

A generalization of both the FV and FE methods is the discontinuous Galerkin
finite element (DG FE) method. It uses only one mesh and allows higher order of

accuracy. (For a survey about DG FE methods see [3] or [4].) However, in regions
where the solution has discontinuities or steep gradients, the so-called spurious os-

cillations appear in the numerical solution obtained by the DG FE method. In this
paper we describe two methods how to avoid this undesirable phenomenon. The first

possibility uses an FV approximation of the convective terms applied in the frame-
work of the DG FE method via averaging. This method requires only one mesh, but

its order of accuracy is one. The second method is based on a new type of limiting
of the order of accuracy in the vicinity of discontinuities or steep gradients. In con-

trast to [3], where the author introduces a slope limiter quite in analogy with the
FV MUSCL type schemes, we propose a different new method based on a suitable

identification of a discontinuity and the decrease of the order of the method to one
in a narrow neighbourhood of the discontinuity. This numerical technique is applied

to the solution of the inviscid compressible high-speed flow described by the Euler
equations.

1. DG FE method for a nonstationary nonlinear
convection-diffusion problem

1.1. Continuous problem. Let Ω ⊂ �
2 be a bounded polygonal domain and

T > 0. We set QT = Ω× (0, T ) and denote by ∂Ω the boundary of Ω. We consider

the following model initial-boundary value problem: Find u : QT → � such that

∂u

∂t
+

2∑
s=1

∂fs(u)
∂xs

= ε∆u+ g in QT ,(1.1)

u|∂Ω×(0,T ) = uD,(1.2)

u(x, 0) = u0(x), x ∈ Ω.(1.3)

We suppose that fs ∈ C1(�) and the data are sufficiently regular so that we can

assume the existence of a strong solution u satisfying (1.1)–(1.3) pointwise (almost
everywhere):

(1.4) u ∈ L2(0, T ;H2(Ω)), ∂u/∂t ∈ L2(0, T ;H1(Ω)).
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We use the standard notation for function spaces: Hk(Ω) = Sobolev space, L2(0, T ;

X) = Bochner space of square integrable functions on (0, T ) with values in a Banach
space X , C1(0, T ;X) = space of continuously differentiable mappings in (0, T ) with
values in X .

1.2. Discretization. Let Th (h > 0) denote a partition of the closure Ω of the
domain Ω into a finite number of closed convex polygons K with mutually disjoint

interiors. We call Th a triangulation of Ω, but �� ��� require the usual conforming
properties from the finite element method. We usually choose K ∈ Th as triangles

or quadrilaterals but we can allow even more general convex elements.
We set hK = diam(K), h = max

K∈Th

hK , �K = radius of the largest ball inscribed

into K. All elements of Th will be numbered so that Th = {Ki}i∈I , where I ⊂ Z+ =

{1, 2, . . .} is a suitable index set. If two elements Ki, Kj ∈ Th contain a nonempty
open face which is a part of a straight line, we call them neighbours. In this case we
set Γij = ∂Ki ∩ ∂Kj and assume that the whole set Γij is a part of a straight line.

For i ∈ I we set s(i) = {j ∈ I;Kj is a neighbour of Ki}.
The boundary ∂Ω is formed by a finite number of faces of elements Ki adjacent to

∂Ω. We denote all these boundary faces by Sj , where j ∈ Ib ⊂ Z− = {−1,−2, . . .},
and set γ(i) = {j ∈ Ib;Sj is a face of Ki},Γij = Sj for Ki ∈ Th such that Sj ⊂
∂Ki, j ∈ Ib. For Ki not containing any boundary face Sj we set γ(i) = ∅. Obviously,
s(i) ∩ γ(i) = ∅ for all i ∈ I. Now, if we write S(i) = s(i) ∪ γ(i), we have

(1.5) ∂Ki =
⋃

j∈S(i)

Γij , ∂Ki ∩ ∂Ω =
⋃

j∈γ(i)

Γij .

Furthermore, we use the following notation: nij = ((nij)1, (nij)2) = unit outer

normal to ∂Ki on the face Γij , |Γij |=length of Γij . By |K| we denote the two-
dimensional Lebesgue measure of K ∈ Th.

Over the triangulation Th we define the broken Sobolev space

(1.6) Hk(Ω, Th) = {v; v|K ∈ Hk(K) ∀K ∈ Th}

and for v ∈ H1(Ω, Th) we introduce the following notation: v|Γij = the trace of v|Ki

on Γij , v|Γji = the trace of v|Kjon Γji = Γij , 〈v〉Γij =
1
2

(
v|Γij + v|Γji

)
, [v]Γij =

v|Γij −v|Γji . Obviously, 〈v〉Γij = 〈v〉Γji but [v]Γij = −[v]Γji and [v]Γij nij = [v]Γjinji.

The approximate solution of problem (1.1)–(1.3) is sought in the space of discon-
tinuous piecewise polynomial functions

(1.7) Sh = Sp,−1(Ω, Th) = {v; v|K ∈ Pp(K) ∀K ∈ Th},

where Pp(K) denotes the space of all polynomials on K of degree � p.
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In order to derive the discrete problem, we multiply equation (1.1) by any v ∈ Sh,

integrate over K ∈ Th, apply Green’s theorem and sum over all K ∈ Th. Moreover,
we use the relations [u]|Γij = 0, 〈∇u〉Γij = ∇u|Γij = ∇u|Γji and add to the identity
thus obtained some terms which mutually cancel.

The flux
∫
Γij

fs(u)ns v dS is approximated with the aid of the numerical flux

H = H(α, β, n):

(1.8)
∫
Γij

2∑
s=1

fs(u)ns v|Γij dS ≈
∫
Γij

H
(
u|Γij , u|Γji , nij

)
v|Γij dS

and the approximate convective form is defined as

(1.9)

b̃h(uh, vh) =
∑
i∈I

∑
j∈S(i)

∫
Γij

H
(
uh|Γij , uh|Γji , nij

)
vh|Γij dS

−
∑
i∈I

∫
Ki

2∑
s=1

fs(uh)
∂vh

∂xs
dx, uh, vh ∈ Sh.

If Γij ⊂ ∂Ω, we use the Dirichlet boundary condition (1.2) in order to specify
uh|Γji .

Now, for uh, vh ∈ Sh we set

ah(uh, vh) = ε
∑
i∈I

∫
Ki

∇uh · ∇vh dx(1.10)

− ε
∑
i∈I

∑
j∈s(i)

j<i

∫
Γij

〈∇uh〉 · nij [vh] dS

+ ε
∑
i∈I

∑
j∈s(i)

j<i

∫
Γij

〈∇vh〉 · nij [uh] dS

− ε
∑
i∈I

∑
j∈γ(i)

∫
Γij

∇uh · nij vh dS

+ ε
∑
i∈I

∑
j∈γ(i)

∫
Γij

∇vh · nij uh dS

(diffusion terms),

Jσ
h (uh, vh) =

∑
i∈I

∑
j∈s(i)

∫
Γij

σ[uh] [vh] dS +
∑
i∈I

∑
j∈γ(i)

∫
Γij

σ uh vh dS(1.11)

(stabilization jump terms),
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�h(vh) (t) =
∫
Ω

g(t) vh dx+ ε
∑
i∈I

∑
j∈γ(i)

∫
Γij

∇vh · nijuD(t) dS(1.12)

+ ε
∑
i∈I

∑
j∈γ(i)

∫
Γij

σ uD(t) vh dS,

(α, β) =
∫
Ω

αβ dx.(1.13)

Here σ is a weight function such that σ|Γij = 1/|Γij |. An approximate solution is
defined as a function uh satisfying the conditions

(1.14)

(a) uh ∈ C1([0, T ], Sh),

(b)

(
∂uh(t)

∂t
, vh

)
+ b̃h(uh(t), vh) + ah(uh(t), vh) + εJσ

h (uh(t), vh)

= �h(vh)(t), ∀ vh ∈ Sh ∀ t ∈ (0, T ),
(c) uh(0) = u0h,

where u0h is an Sh-approximation of u0 (e.g., L2-projection). If ε = 0, it is necessary
to use boundary conditions suitable for hyperbolic equations. (See Section 5.)

We have carried out the semidiscretization in space (called the method of lines)

leading to a system of ordinary differential equations. In practical computations, the
full discretization is carried out. We can use, e.g., the explicit Euler or Runge-Kutta

schemes. Semiimplicit or fully implicit time discretization leads to large nonlinear
algebraic systems which must be solved iteratively. Moreover, the integrals are eval-

uated with the aid of quadrature formulae. Let us note that the form ah is a variant
of the DG FE approximation of the diffusion terms proposed in [18].

We assume that the numerical flux has the following properties:

(1) H(α, β, n) is defined and (locally) Lipschitz-continuous on �2×B1, where B1 =
{n ∈ �

2 ; |n| = 1}
(2) H(α, β, n) is consistent :

(1.15) H(α, α, n) =
2∑

s=1

fs(α)ns, α ∈ �, n = (n1, n2) ∈ B1,

(3) H(α, β, n) is conservative:

(1.16) H(α, β, n) = −H(β, α,−n), α, β ∈ �, n ∈ B1.

The above described process yields a higher order scheme using only one (in gen-
eral unstructured) mesh. Its disadvantage are spurious oscillations in approximate
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solutions which appear in areas with steep gradients in the case of small diffusion

terms (or discontinuities if ε = 0). We will discuss two methods how to avoid this
problem.

2. Finite volume discontinuous Galerkin method

The first method for avoiding spurious oscillations in the DG FE solution is based

on a modification of the convective form with the aid of the FV approach and element
averaging. Therefore, we speak of the finite volume discontinuous Galerkin method

(FV DG).
In (1.7) we put p = 1, i.e., we use piecewise linear elements, and introduce a

modification bh of the form b̃h defined in the following way. By π0 we denote the
L2-projection of functions v ∈ L2(Ω) to the space S0,−1h (Ω, Th) of piecewise constant

functions: π0v|K =
∫

K v dx/|K| for K ∈ Th. Then, instead of b̃h we use in (1.14),
(b) the approximate convective form

(2.1)

bh(uh, vh) =
∑
i∈I

π0vh|Ki

{ ∑
j∈s(i)

H
(
π0uh|Ki , π0uh|Kj , nij

)
|Γij |

+
∑

j∈γ(i)

H (π0uh|Ki , π0uh|Ki , nij) |Γij |
}

.

In this case, the boundary values are realized in the form bh by extrapolation.

In order to derive error estimates, we introduce the following assumptions :
Let us consider a system {Th}h∈(0,h0), h0 > 0, of partitions of the domain Ω

(Th = {Ki}i∈Ih
, Ih ⊂ Z+, but for simplicity we write again I instead of Ih) and

assume that it has the following properties:

(A1) There exists a constant C1 > 0 such that

(2.2) hK/�K � C1 ∀K ∈ Th, ∀h ∈ (0, h0).

(We say that the system {Th}h∈(0,h0) is shape regular.)

(A2) There exists a constant C2 such that

(2.3) cardS(i) � C2 ∀Ki ∈ Th, ∀h ∈ (0, h0).

(The number of neighbours Kj of Ki is uniformly bounded.)
(A3) There exists a constant C3 > 0 such that

(2.4) hKi � C3|Γij |, i ∈ I, j ∈ S(i), h ∈ (0, h0).

(The length of faces between neighbouring elements does not degenerate.)
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(A4) The numerical flux H is Lipschitz-continuous.

There is not enough space here for the complete derivation of error estimates,
but we shall mention without proofs at least main steps and results in order to give
an idea of the whole argumentation. Under the above assumptions, the following

auxiliary results can be established.

Lemma 2.1 (Multiplicative trace inequality). There exists a constant C4 > 0
independent of h, K such that

(2.5)
‖v‖2L2(∂K) � C4(‖v‖L2(K) |v|H1(K) + h−1

K ‖v‖2L2(K)),
K ∈ Th, v ∈ H1(K), h ∈ (0, h0).

Lemma 2.2. The following estimates hold:

‖π0v‖L2(K) � ‖v‖L2(K), K ∈ Th, v ∈ L2(K),(2.6)

‖π0v‖L2(Ω) � ‖v‖L2(Ω), v ∈ L2(Ω),(2.7)

‖v − π0v‖L2(K) � hK

�

|v|H1(K), K ∈ Th, v ∈ H1(K),(2.8)

‖v − π0v‖L2(∂K) � C5 h
1/2
K |v|H1(K), K ∈ Th, v ∈ H1(K),(2.9)

with a constant C5 > 0 independent of h ∈ (0, h0) and K, v.

There exist a constant C6 > 0 independent of h ∈ (0, h0) and v and a mapping

Π: H1(Ω, Th)→ Sh such that

‖Πv − v‖L2(K) � C6hK |v|H1(K), v ∈ H1(K),(2.10)

‖Πv − v‖L2(K) � C6h
2
K |v|H2(K), v ∈ H2(K),

|Πv − v|H1(K) � C6hK |v|H2(K), v ∈ H2(K), K ∈ Th, h ∈ (0, h0),
‖Πv − v‖L2(Ω) � C6h|v|H1(Ω,Th), v ∈ H1(Ω, Th),(2.11)

‖Πv − v‖L2(Ω) � C6h
2|v|H2(Ω,Th), v ∈ H2(Ω, Th),

|Πv − v|H1(Ω,Th) � C6h|v|H2(Ω,Th), v ∈ H2(Ω, Th).

Now we shall be concerned with properties of the form bh.

Lemma 2.3. The form bh is Lipschitz continuous: There exists a constant

C7 > 0 such that

(2.12)
|bh(uh, vh)− bh(u, vh)| � C7(Jσ

h (vh, vh)1/2 + |vh|H1(Ω,Th)) ‖u − uh‖L2(Ω),

uh ∈ Sh, u ∈ L2(Ω), vh ∈ Sh, h ∈ (0, h0).
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Moreover, bh is consistent: There exists a constant C8 > 0 such that

(2.13)

|bh(u, vh)− b(u, vh)| � C8 h|u|H1(Ω) (J
σ
h (vh, vh)1/2

+ |vh|H1(Ω,Th)(Φ(‖u‖L∞(Ω)) + 1)),

u ∈ H1(Ω) ∩ L∞(Ω), vh ∈ Sh, h ∈ (0, h0),

where we define, for M � 0,

(2.14) Φ(M) = max
ξ∈[−M,M]

s=1,2

|f ′
s(ξ)|

and

(2.15) b(u, vh) =
∫
Ω

2∑
s=1

∂fs(u)
∂xs

vh dx

is a weak form of the convective terms from the continuous problem.

Let us assume that the exact solution satisfies conditions (1.4). Then it satisfies
the relation

(2.16)

(
∂u

∂t
, vh

)
+ ah(u, vh) + εJσ

h (u, vh) + b(u, vh) = �(vh) ∀vh ∈ Sh.

We set

(2.17) M = ‖u‖L∞(QT )

and

(2.18) ξ = uh −Πu, η = Πu − u.

Then

(2.19) uh − u = ξ + η, ξ(t) ∈ Sh, η(t) ∈ H2(Ω, Th), t ∈ [0, T ].

From the numerical scheme (1.14), where we write bh instead of b̃h, and identity
(2.16), it is possible to derive the relation

(2.20)

(
∂ξ

∂t
, ξ

)
+ ah(ξ, ξ) + εJσ

h (ξ, ξ)

= b(u, ξ)− bh(uh, ξ)−
(

∂η

∂t
, ξ

)
− ah(η, ξ)− εJσ

h (η, ξ).
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In the sequel, we estimate the individual terms on the right-hand side of (2.20) and

get the following results:

Lemma 2.4. We have

2

(
∂ξ

∂t
, ξ

)
=
d
dt

‖ξ‖2L2(Ω),(2.21)
∣∣∣∣
(

∂η

∂t
, ξ

)∣∣∣∣ �
∥∥∥∥∂η

∂t

∥∥∥∥
L2(Ω)

‖ξ‖L2(Ω),(2.22)

Jσ
h (η, ξ) � (Jσ

h (η, η))1/2 (Jσ
h (ξ, ξ))

1/2,(2.23)

‖η‖L2(Ω) � C9h|u|H1(Ω),(2.24)

‖η‖L2(Ω) � C9h
2|u|H2(Ω),

|η|H1(Ω,Th) � C9h|u|H2(Ω),∥∥∥∥∂η

∂t

∥∥∥∥
L2(Ω)

� C9h

∣∣∣∣∂u

∂t

∣∣∣∣
H1(Ω)

, h ∈ (0, h0),

where C9 > 0 is a constant independent of u and h.

Lemma 2.5. We have

(2.25)
|b(u, ξ)− bh(uh, ξ)| � C10(Jσ

h (ξ, ξ)
1/2 + |ξ|H1(Ω,Th))

× (‖ξ‖L2(Ω) + h2|u|H2(Ω) + h|u|H1(Ω)), h ∈ (0, h0),

where C10 > 0 is a constant dependent on M = ‖u‖L∞(QT ) but independent of h

and ξ. Moreover, there exists a constant C11 > 0 independent of u, h, ξ, ε such that

(2.26) |ah(η, ξ)| � C11εh|u|H2(Ω)(J
σ
h (ξ, ξ)

1/2 + |ξ|H1(Ω,Th)), h ∈ (0, h0).

The last step in the proof of the error estimates is the application of Gronwall’s

lemma. This yields the ���� ��	
��.

Theorem 2.1. Let assumptions (1.15), (1.16) and (A1)–(A4) be satisfied. Let
u be the exact strong solution of problem (1.1)–(1.3) satisfying (1.4) and let uh be the

approximate solution defined by the FV DG modification of scheme (1.14), described
in Section 2. Then the error eh = uh − u satisfies the estimate

(2.27)
sup

t∈[0,T ]
‖eh(t)‖2L2(Ω) + ε

∫ T

0

(
|eh(ϑ)|2H1(Ω,Th) + Jσ

h (eh(ϑ), eh(ϑ))
)
dϑ

� Ch2, h ∈ (0, h0),

with a constant C > 0 independent of h.
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All proofs are rather technical. They will appear in a separate paper [6].

As we see from (2.27), the FV DG method is of the first order. This was also
confirmed by numerical experiments described in [6]. Unfortunately, the constant C

from the above estimate depends on ε → 0 in a very pessimistic way: C ≈ exp(c/ε)

(c is a constant independent of h and ε). This is caused by the application of
Gronwall’s lemma. A uniform estimate for ε → 0 remains open.
The same results can be obtained for a three-dimensional problem and a problem

in Ω× (0, T ) with Ω = (−1, 1)d (d = 2, 3) and periodic boundary conditions.

3. Second-order DG FE method with order limiting

This section is concerned with a numerical technique avoiding disadvantages of

both schemes discussed above: spurious oscillations in solutions obtained by the
pure DG FE method (1.14) and a low order (= first order) of the FV DG scheme

from Section 2.
Let us return to scheme (1.14), where we suppose that Th is formed by triangles

and p = 1. We carry out the discretization in time by the forward Euler method. To
this end, we consider a partition 0 = t0 < t1 < t2 < . . . of the time interval (0, T )

and set τk = tk+1 − tk.
The fully discrete problem reads: starting from u0h ∈ Sh, for each k � 0 find uk+1

h

such that

(3.1)

(a) uk+1
h ∈ Sh = S1,−1h (Ω, Th),

(b) (uk+1
h , vh) = (uk

h, vh)− τk ah(uk
h, vh)

− τk b̃h(uk
h, vh)− τkεJσ

h (u
k
h, vh) + τk �h(vh) (tk) ∀ vh ∈ Sh.

In order to avoid spurious oscillations in the numerical solution, discontinuities
and steep gradients of the solution are identified, and in their vicinity, the order of

accuracy of the scheme is suppressed to one. On the basis of detailed numerical
experiments ([7]), the following indicator of discontinuities and steep gradients has

been proposed:

(3.2) g(i) =
∫

∂Ki

[uk
h]
2 dS

/
(hKi |Ki|3/4), Ki ∈ Th.

Now we define an adaptive strategy for an automatic limiting of the order of ac-

curacy of scheme (3.1):

(3.3)

(a) uk+1
h ∈ Sh = S1,−1h (Ω, Th),

(b) (uk+1
h , vh) = (ũk

h, vh)− τk ah(uk
h, vh)

− τk b̃h(ũk
h, vh)− τkJσ

h (u
k
h, vh) + τk �h(vh) (tk) ∀ vh ∈ Sh,
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where ũk
h is the modification of uk

h defined with the aid of our limiting strategy in

the following way:

(3.4)
(a) Set ũk

h|Ki := uk
h|Ki ∀i ∈ I.

(b) If g(i) > 1 for some i ∈ I, then set ũk
h|Ki := π0 uk

h|Ki .

This means that in (3.3) the limiting (3.4) of the order of the scheme is applied to

the elements lying on discontinuities (or regions with steep gradients). In other areas
the second order of accuracy is preserved.

The next sections demonstrate the applicability of the schemes just developed.

4. Scalar numerical examples

Let us consider the Burgers equation

(4.5)
∂u

∂t
+

2∑
s=1

u
∂u

∂xs
= ε∆u in Ω× (0, T ),

where Ω = (−1, 1)2, equipped with the initial condition

(4.6) u0(x1, x2) = 0.25 + 0.5 sin(�(x1 + x2)), (x1, x2) ∈ Ω,

and periodic boundary conditions. This problem has a unique weak solution con-
verging to a weak entropy solution of the inviscid Burgers equation as ε → 0+. If
ε = 0, the solution is discontinuous for t � 0.3. For 0 < ε  1, the solution has

steep gradients (tending to discontinuities as ε → 0).
This problem is solved by the numerical scheme (3.1) (adapted to the problem

with periodic conditions). The numerical flux is chosen in the following way:
In Figure 1, the computational mesh used in Ω is plotted. The time step is chosen

to be τ = 2.5 · 10−4. Figure 2 shows the graph of the numerical solution at time
t = 0.45 for ε = 0. It is seen here that the solution contains spurious oscillations

near discontinuities. In Figure 3 we see the numerical solution of the problem with
ε = 0.002 obtained by the FV DG method described in Section 2. In this case the

exact solution differs only slightly from the solution of the problem with ε = 0. We
see in Figure 3 that the oscillations are strongly suppressed. The best results were

obtained with the aid of the method (3.3)–(3.4), as is seen from Figure 4 showing
the numerical solution of the problem with ε = 0. In this case, the discontinuities

are resolved very well. They are quite sharp without spurious oscillations.
In all computational results presented, we can notice an interesting fact that al-

though the discontinuous approximation is used, the interelement jumps are negli-
gible in the regions where the exact solution is regular. Conspicuous discontinuities
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Figure 1. Triangulation used for the numerical solution of problem (4.5)–(4.6)

Figure 2. Numerical solution of problem (4.5)–(4.6) computed by DG FE method plotted
at t = 0.45
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Figure 3. Numerical solution of problem (4.5)–(4.6) computed by FV DG method plotted
at t = 0.45

Figure 4. Numerical solution of problem (4.5)–(4.6) computed by DG FE method with
limiting, plotted at t = 0.45

appear in the numerical solution only there where the solution is discontinuous.
This indicates that the DG FE method is very suitable for the numerical solution of

problem with solutions containing steep gradients or discontinuities.
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5. DG FE method for the Euler equations

The system of the Euler equations describing the 2D inviscid flow can be written
in the form

(5.1)
∂w

∂t
+

2∑
s=1

∂fs(w)
∂xs

= 0 in QT = Ω× (0, T ),

where Ω ⊂ �
2 is a bounded domain occupied by gas,

(5.2) w = (w1, . . . , w4)T = (�, �v1, �v2, e)T

is the so-called state vector and

(5.3)
fs(w) = (f1s (w), . . . , f

4
s (w))

= (�vs, �vsv1 + δs1p, �vsv2 + δs2p, (e+ p) vs)T, s = 1, 2,

are the so-called inviscid (Euler) fluxes. We use the following notation: �-density,

p-pressure, e-total energy, v = (v1, v2)-velocity. The state equation implies that

(5.4) p = (γ − 1) (e − �|v|2/2).

Here γ > 1 is the Poisson adiabatic constant. The system (5.1)–(5.4) is hyperbolic.

It is equipped with the initial condition

(5.5) w(x, 0) = w0(x), x ∈ Ω,

and boundary conditions

(5.6) B(w) = 0 on ∂Ω× (0, T ),

chosen in such a way that problem (5.1)–(5.6) is linearly well-posed. For details see,

e.g., [8] or [9].

The DG FE discretization in space combined with the forward Euler discretization
in time can be written in the form (3.1) where (due to zero diffusion) ah = 0, ε = 0,

�h = 0. In order to avoid spurious oscillations in the numerical solution, automatic
adaptive limiting of order of accuracy is used, which leads to scheme (3.3)–(3.4):

(5.7)
(a) wk+1

h ∈ Sh := S1,−1h (Ω, Th)4,

(b) (wk+1
h , vh) = (w̃k

h, vh)− τk b̃h(w̃k
h, vh) ∀vh ∈ Sh
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where

(5.8)
(a) we set w̃k

h|Ki := wk
h|Ki ∀i ∈ I,

(b) if g(i) > 1 for some i ∈ I, then we set w̃k
h|Ki := π0wk

h|Ki .

The shock indicator g(i) is computed by (3.2), where instead of uk
h, the density � on

the k-th time level is used. The form b̃h is defined by (1.9), where H is chosen to
be the well-known Osher-Solomon numerical flux (see [19], [9]). The Osher-Solomon
boundary conditions are also described in [9].

As an example we present the inviscid flow past the NACA0012 profile with the
far field Mach number M = 0.8, the angle of attack α = 1.25◦ and γ = 1.4. The

algorithm (5.7)–(5.8) was used as an iterative time marching process with “k → ∞”
for obtaining the steady state solution. The computational mesh Th was obtained

by the anisotropic mesh adaptation (AMA) (see [5]). The stationary solution was
obtained after 4.3 · 105 time steps (for the 7th level of mesh adaptation) when the
achieved residuum was ‖�k+1 − �k‖L1(Ω)/τk � 10−5. In Figure 5 the mesh and the
Mach number isolines with well resolved sharp shock waves are plotted.
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Figure 5. The final triangulation obtained by AMA (left) and the corresponding isolines of
Mach number obtained by DG FE method

A series of numerical experiments have shown that in many cases the DG FE
method does not give good resolution in a neighbourhood of curved parts of boundary

∂Ω, if Ω is approximated by a polygonal domain. In order to get a good quality
solution, it is necessary to use superparametric finite elements or a suitable numerical

integration. (This will be a subject matter of a forthcoming paper. See also [2] and
[17], where the subsonic flow without shock waves is solved.)
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