ON FREDHOLM ALTERNATIVE FOR CERTAIN QUASILINEAR BOUNDARY VALUE PROBLEMS

Pavel Drábek, Plzeň

Abstract. We study the Dirichlet boundary value problem for the p-Laplacian of the form

$$
-\Delta_{p} u-\lambda_{1}|u|^{p-2} u=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega,
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with smooth boundary $\partial \Omega, N \geqslant 1, p>1, f \in C(\bar{\Omega})$ and $\lambda_{1}>0$ is the first eigenvalue of Δ_{p}. We study the geometry of the energy functional

$$
E_{p}(u)=\frac{1}{p} \int_{\Omega}|\nabla u|^{p}-\frac{\lambda_{1}}{p} \int_{\Omega}|u|^{p}-\int_{\Omega} f u
$$

and show the difference between the case $1<p<2$ and the case $p>2$. We also give the characterization of the right hand sides f for which the above Dirichlet problem is solvable and has multiple solutions.

Keywords: p-Laplacian, variational methods, PS condition, Fredholm alternative, upper and lower solutions

MSC 2000: 35J60, 35P30, 35B35, 49N10

1. Statement of the results

Our aim is to study the solvability of the Dirichlet boundary value problem

$$
\left\{\begin{align*}
-\Delta_{p} u-\lambda_{1}|u|^{p-2} u & =f \tag{1.1}
\end{align*} \text { in } \Omega,\right.
$$

Here $p>1$ is a real number, Ω is a bounded domain in \mathbb{R}^{N} with sufficiently smooth boundary $\partial \Omega^{1}, \Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian and $f \in C(\bar{\Omega})$. By λ_{1} we

[^0]denote the first eigenvalue of the related homogeneous eigenvalue problem
\[

\left\{$$
\begin{align*}
-\Delta_{p} u-\lambda|u|^{p-2} u & =0 \text { in } \Omega \tag{1.2}\\
u & =0 \text { on } \partial \Omega
\end{align*}
$$\right.
\]

In this paper, the function u is said to be a (weak) solution of (1.1) if $u \in W_{0}^{1, p}(\Omega)$ and the integral identity

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla v-\lambda_{1} \int_{\Omega}|u|^{p-2} u v=\int_{\Omega} f v \tag{1.3}
\end{equation*}
$$

holds for all $v \in W_{0}^{1, p}(\Omega)$.
As for the properties of λ_{1} (see e.g. [1], [15]), let us mention that λ_{1} is positive, simple and isolated and the corresponding eigenfunction φ_{1} (associated with λ_{1}) satisfies $\varphi_{1}>0$ in $\Omega, \partial \varphi_{1} / \partial n<0$ on $\partial \Omega$, where n denotes the exterior unit normal to $\partial \Omega$. One also has $\varphi_{1} \in C^{1, \nu}(\bar{\Omega})$ with some $\nu \in(0,1)$ (see e.g. [8, Lemma 2.1, p.115]). Moreover, λ_{1} can be characterized as the best (the greatest) constant $C>0$ in the Poincaré inequality

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p} \geqslant C \int_{\Omega}|u|^{p} \tag{1.4}
\end{equation*}
$$

for all $u \in W_{0}^{1, p}(\Omega)$, where the identity

$$
\int_{\Omega}|\nabla u|^{p}-\lambda_{1} \int_{\Omega}|u|^{p}=0
$$

holds exactly for the multiples of the first eigenfunction φ_{1}.
In our further considerations we will use the standard spaces $W_{0}^{1, p}(\Omega), L^{p}(\Omega)$, $C(\bar{\Omega})$ and $C^{1}(\bar{\Omega})$ (or $C_{0}^{1}(\bar{\Omega})$, respectively), with the corresponding norms $\|u\|=$ $\left(\int_{\Omega}|\nabla u|^{p}\right)^{\frac{1}{p}},\|u\|_{L^{p}}=\left(\int_{\Omega}|u|^{p}\right)^{1 / p},\|u\|_{C}=\max _{x \in \Omega}|u(x)|,\|u\|_{C^{1}}=\|u\|_{C}+\max _{x \in \Omega}|\nabla u(x)|$, respectively (here $|\cdot|$ denotes the Euclidean norm in \mathbb{R} or \mathbb{R}^{N}). The subscript 0 indicates that the traces (or values) of functions equal zero on $\partial \Omega$. Moreover, for element h we use the (L^{2}-orthogonal) decomposition

$$
h(x)=\tilde{h}(x)+\bar{h} \varphi_{1}(x)
$$

and also the L^{2}-nonorthogonal decomposition

$$
h(x)=\tilde{h}(x)+\hat{h}
$$

where $\bar{h}, \hat{h} \in \mathbb{R}$ and

$$
\int_{\Omega} \tilde{h}(x) \varphi_{1}(x) \mathrm{d} x=0
$$

The particular subspace formed by $\tilde{h}(x)$ will be denoted by $\widetilde{C}(\bar{\Omega})$.
By $B_{C}(\tilde{f}, \varrho)$ we denote the open ball in the space $C(\bar{\Omega})$ with the center \tilde{f} and radius ϱ.

We introduce the energy functional associated with (1.1):

$$
E_{f}(u):=\frac{1}{p} \int_{\Omega}|\nabla u|^{p}-\frac{\lambda_{1}}{p} \int_{\Omega}|u|^{p}-\int_{\Omega} f u, u \in W_{0}^{1, p}(\Omega) .
$$

This functional is continuously Fréchet differentiable on $W_{0}^{1, p}(\Omega)$ and its critical points correspond one-to-one to solutions of (1.1).

Our main results concern the geometry of E_{f} and the structure of the set of its critical points on the one hand and the solvability properties of (1.1) on the other. They are formulated in theorems below.

Theorem $1.1([5])$. Let $1<p<2$ and $0 \neq \tilde{f} \in \widetilde{C}(\bar{\Omega})$. Then there exists $\varrho=\varrho(\tilde{f})>0$ such that for any $f \in B_{C}(\tilde{f}, \varrho)$ the functional E_{f} is unbounded from below and has at least one critical point (which is the saddle point). Moreover, for $f \in B_{C}(\tilde{f}, \varrho) \backslash \widetilde{C}(\bar{\Omega})$ the functional E_{f} has at least two distinct critical points.

Theorem $1.2([5])$. Let $p>2$ and $0 \neq \tilde{f} \in \widetilde{C}(\bar{\Omega})$. Then the functional $E_{\tilde{f}}$ is bounded from below and has at least one critical point (which is the global minimizer). Moreover, there exists $\varrho=\varrho(\tilde{f})>0$ such that for $f \in B_{C}(\tilde{f}, \varrho) \backslash \widetilde{C}(\bar{\Omega})$ the functional E_{f} has at least two distinct critical points.

Theorem 1.3 ([5]). Let $p>1, p \neq 2, \tilde{f} \in \widetilde{C}(\bar{\Omega})$. Then the problem (1.1) has at least one solution if $f=\tilde{f}$. For $0 \neq \tilde{f} \in \widetilde{C}(\bar{\Omega})$ there exists $\varrho=\varrho(\tilde{f})>0$ such that (1.1) has at least one solution for any $f \in B_{C}(\tilde{f}, \varrho)$. Moreover, there exist real numbers $F_{-}<0<F_{+}$(see Fig. 1) such that the problem (1.1) with $f=\tilde{f}+\hat{f}$ has
(i) no solution for $\hat{f} \notin\left[F_{-}, F_{+}\right]$;
(ii) at least two distinct solutions for $\hat{f} \in\left(F_{-}, 0\right) \cup\left(0, F_{+}\right)$;
(iii) at least one solution for $\hat{f} \in\left\{F_{-}, 0, F_{+}\right\}$.

Fig. 1. "Slice" of $C(\bar{\Omega})$ containing all constants and one fixed $\tilde{f} \in \widetilde{C}(\bar{\Omega})$.

2. Remarks

Remark 2.1. Note that a standard bootstrap regularity argument implies that any solution from Theorems 1.1-1.3 belongs to $L^{\infty}(\Omega)$ (cf. Drábek, Kufner, Nicolosi [9]). It follows then from the regularity results of Tolksdorf [19] (see also Di Benedetto [4] and Liebermann [14]) that it belongs to $C^{1, \nu}(\bar{\Omega})$ with some $\nu \in(0,1)$. In particular, our solution is an element of $C_{0}^{1}(\bar{\Omega})$.

Remark 2.2. In particular, it follows from our results that the set of $f \in C(\bar{\Omega})$ for which (1.1) with $p \neq 2$ has at least one solution has a nonempty interior in $C(\bar{\Omega})$.

Remark 2.3. Note that Theorem 1.3 provides a necessary and sufficient condition for solvability of the problem (1.1). This condition is in fact of Landesman-Lazer type (see [13], cf. also [10]). Indeed, given $\tilde{f} \in \widetilde{C}(\bar{\Omega}), \tilde{f} \neq 0$, the problem (1.1) with the right hand side $f(x)=\tilde{f}(x)+\hat{f}$ has a solution if and only if

$$
F_{-}(\tilde{f}) \leqslant \frac{1}{\left\|\varphi_{1}\right\|_{L^{1}}} \int_{\Omega} f(x) \varphi_{1}(x) \mathrm{d} x \leqslant F_{+}(\tilde{f})
$$

However, it should be pointed out that this condition differs from the original condition of Landesman and Lazer due to the fact that F_{-}and F_{+}depend on the component \tilde{f} of the right hand side f and not on the perturbation term (which is actually not present in our problem (1.1)). By homogeneity we have that for any $t>0$,

$$
F_{ \pm}(t \tilde{f})=t F_{ \pm}(\tilde{f})
$$

Our proofs can be found in paper [5] and rely on the combination of the variational approach and the method of lower and upper solutions. We also use essentially the results obtained by Drábek and Holubová [7], Takáč [17] and Fleckinger-Pellé
and Takáč [12]. In fact, Theorem 1.1 was proved already in [7], however, here a different approach is used. During the preparation of this manuscript the author received a preprint of Takáč [18], where a result similar to our Theorem 1.3 is proved. However, the approach used in [18] is very different from ours.

Our objective in this paper is to avoid complicated technical assumptions. For this reason we restrict to rather special domains Ω and right hand sides f. On the other hand, we believe that in our approach the main ideas appear more clearly and that a possible generalization of Ω or f will bring new insight neither into the geometry of E_{f} nor to the solvability of (1.1).

It should be mentioned that our approach covers also the case $N=1$, and completes thus the previous results in this direction proved by Del Pino, Drábek and Manásevich [3], Drábek, Girg and Manásevich [6], Manásevich and Takáč [16], Binding, Drábek and Huang [2], Drábek and Takáč [11]. In fact, the first relevant result which led to better understanding of the problem appeared in [3].

Note also that our Theorems 1.1, 1.2 and 1.3 express not only the difference between the linear case $p=2$ and the nonlinear case $p \neq 2$ but also the striking difference between the case $1<p<2$ and the case $p>2$. The main goal of this paper is actually to emphasize this fact.

Acknowledgement. This research has been partially supported by the Grant Agency of the Czech Republic, grant 201/00/0376. The results were presented in August 2001 at EQUADIFF 10, Prague, Czech Republic.

References

[1] A. Anane: Etude des valeurs propres et de la résonance pour l'opérateur p-Laplacien. Thése de doctorat, U.L.B., 1987-1988.
[2] P. A. Binding, P. Drábek, Y. X. Huang: On the Fredholm alternative for the p-Laplacian. Proc. Amer. Math. Soc. 125 (1997), 3555-3559.
[3] M. Del Pino, P. Drábek, R. Manásevich: The Fredholm alternative at the first eigenvalue for the one-dimensional p-Laplacian. J. Differ. Equations 151 (1999), 386-419.
[4] E. Di Benedetto: C^{1+d} local regularity of weak solutions of degenerate elliptic equations. Nonlin. Anal. 7 (1983), 827-850.
[5] P. Drábek: Geometry of the energy functional and the Fredholm alternative for the p-Laplacian in more dimensions. To appear in Electronic J. Differ. Equations.
[6] P. Drábek, P. Girg, R. Manásevich: Generic Fredholm alternative for the one dimensional p-Laplacian. Nonlin. Differ. Equations Appl. 8 (2001), 285-298.
[7] P. Drábek, G. Holubová: Fredholm alternative for the p-Laplacian in higher dimensions. To appear in J. Math. Anal. Applications.
[8] P. Drábek, P. Krejčí, P. Takáč: Nonlinear Differential Equations. Chapman \& Hall/CRC, Boca Raton, 1999.
[9] P. Drábek, A. Kufner, F. Nicolosi: Quasilinear Elliptic Equations with Degenerations and Singularities. De Gruyter Series in Nonlinear Anal. and Appl. 5, Walter de Gruyter, Berlin, New York, 1997.
[10] P. Drábek, S. B. Robinson: Resonance problems for the p-Laplacian. J. Funct. Anal. 169 (1999), 189-200.
[11] P. Drábek, P. Takáč: A counterexample to the Fredholm alternative for the p-Laplacian. Proc. Amer. Math. Soc. 127 (1999), 1079-1087.
[12] J. Fleckinger-Pellé, P. Takáč: An improved Poincaré inequality and the p-Laplacian at resonance for $p>2$. Preprint.
[13] E. M. Landesman, A. C. Lazer: Nonlinear perturbations of linear elliptic boundary value problems at resonance. J. Math. Mech. 19 (1970), 609-623.
[14] G. Liebermann: Boundary regularity for solutions of degenerate elliptic equations. Nonlin. Anal. 12 (1998), 1203-1219.
[15] P. Lindqvist: On the equation $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+\lambda|u|^{p-2} u=0$. Proc. Amer. Math. Soc. 109 (1990), 157-164.
[16] R. Manásevich, P. Takáč: On the Fredholm alternative for the p-Laplacian in one dimension. Preprint.
[17] P. Takáč: On the Fredholm alternative for the p-Laplacian at the first eigenvalue. Preprint.
[18] P. Takáč: On the number and structure of solutions for a Fredholm alternative with p-Laplacian. Preprint.
[19] P. Tolksdorf: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equations 51 (1984), 126-150.

Author's address: Pavel Drábek, Centre of Applied Mathematics, University of West
Bohemia, P. O. Box 314, 30614 Plzeň, Czech Republic, e-mail: pdrabek@kma.zcu.cz.

[^0]: ${ }^{1}$ We assume that if $N \geqslant 2$ then $\partial \Omega$ is a compact connected manifold of class C^{2}.

