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Abstract. This is a survey of some recent results on the existence of globally defined
weak solutions to the Navier-Stokes equations of a viscous compressible fluid with a general
barotropic pressure-density relation.
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1. Introduction

This is a survey of some recent results on the existence and qualitative properties
of the global-in-time weak solutions to the Navier-Stokes system

∂t�+ div(��u) = 0,(1.1)

∂t(��u) + div(��u ⊗ �u) +∇p = µ∆�u + (λ+ µ)∇div �u+ ��f.(1.2)

The system describes the time evolution of the density � = �(t, x) and the velocity

�u = �u(t, x) of a viscous compressible fluid occupying a spatial domain Ω ⊂ �
N .

Though the problemmakes sense for any positive integerN , the physically interesting

cases are N = 1, 2, 3.
The viscosity coefficients are assumed to be constants satisfying

µ > 0, λ+ µ � 0.

The symbol �f stands for a given external volumic force, for instance the gravity,

which is allowed to depend on both t and x. For the sake of simplicity, we will
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assume that �f is a bounded measurable function of t and x though much more

general hypotheses could be treated by the same method.

We concentrate on the so-called barotropic case where p is a given function of the

density �, and, consequently, (1.1), (1.2) represent, at least formally, a closed system
of equations. The typical situation we have in mind is the isentropic regime where

p = a�γ , a > 0, γ > 1.

As we shall see, the adiabatic constant γ plays the role of a critical exponent for the

problem in question.

For the sake of definiteness, the system (1.1), (1.2) is supplemented by no-slip
boundary conditions for the velocity �u as well as initial conditions for both the

density � and the momentum ��u

�u|∂Ω = 0,(1.3)

�(0) = �0, (��u)(0) = �q.(1.4)

Clearly, the function �q must satisfy the compatibility conditions

�q = 0 a.e. on the set {�0 = 0}.

Multiplying (formally) the equations (1.2) by �u, integrating by parts and making

use of (1.1), we arrive at the energy inequality

(1.5)
d
dt

E[�, (��u)](t) +
∫
Ω

µ|∇�u(t)|2 + (λ+ µ)| div �u(t)|2 dx �
∫
Ω

��f · �udx

where the total energy E is given by the formula

E = E[�, (��u)] =
∫
Ω

1
2
�|�u|2 + P (�) dx, P (�) = �

∫ �

1

p(z)
z2
dz.

As a matter of fact, the function P satisfies

P ′(z)z − P (z) = p(z)

and, consequently, it is uniquely determined up to an affine function of �. In the

isentropic case, one typically takes

P (�) =
a

γ − 1�
γ ,
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in particular, the behaviour of the pressure p and the “potential” P is the same for

large values of the density.
To give a weak formulation of the problem (1.1)–(1.3), we consider the space

D1,20 (Ω)—the completion of the space D(Ω) of all compactly supported smooth func-
tions with respect to the (semi-)norm

(1.6) ‖v‖2D1,2(Ω) =
∫
Ω
|∇v|2 dx.

Note that the quantity defined in (1.6) is a norm on the space D1,20 (Ω) provided
N = 3 or when Ω is a bounded domain with a sufficiently smooth boundary. In the

latter case, D1,20 (Ω) coincides with the Sobolev space W 1,2
0 (Ω). Here “sufficiently

smooth boundary” means that the Poincaré inequality is satisfied.

Following [6], we shall say that �, �u is a finite energy weak solution to the problem
(1.1)–(1.3) on the set (0, T )× Ω if the following conditions hold:

• the density � is a non-negative function,

� ∈ L∞(0, T ;L1(Ω)), P (�) ∈ L∞(0, T ;L1(Ω)), �u ∈ L2(0, T ;D1,20 (Ω));

• the total energy E is locally integrable, and the energy inequality (1.5) holds in
D′(0, T ) (in the sense of distributions);

• the continuity equation (1.1) is satisfied in D′((0, T ) × �
N ) provided �, �u are

extended to be zero outside Ω; moreover, the functions �, �u represent a renor-

malized solution of the equation (1.1), i.e., one has

(1.7) ∂tb(�) + div(b(�)�u) + (b′(�)� − b(�))divu = 0 in D′((0, T )× �
N )

for any function b ∈ C1(R) such that

b′(z) ≡ 0 for all z large enough, say, z � M ;

• the pressure p is locally integrable and the equations (1.2) are satisfied in
D′((0, T )× Ω).

As we will see, under some “reasonable hypotheses” concerning the domain Ω and
the pressure-density constitutive relation, the finite energy weak solutions belong to

the class
� ∈ C([0, T ];L1(Ω)), (��u) ∈ C([0, T ];L1weak(Ω)),

so the initial conditions (1.4) make sense. Following this philosophy, one can redefine
the energy (on a set of zero Lebesgue measure in (0, T )) as

E = E[�, (��u)] =
∫
Ω∩{�>0}

1
2
|��u|2

�
dx+

∫
Ω

P (�) dx
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to obtain a quantity defined for any t ∈ [0, T ] which is lower semi-continuous in t

(see [4]).
It is worthwhile to note that there seems to be a large qualitative gap between the

existence theory available for N = 1 and N = 2, 3. Here, we concentrate on the more

difficult case N = 2, 3 leaving the reader to consult the monograph of Antontsev,
Kazhikhov and Monakhov [1] for the former case.

2. Basic existence result

We start with the isentropic case

(2.1) p(�) = a�γ , a > 0, γ > 1.

The main result we want to present here reads as follows:

Theorem 2.1. Let Ω ⊂ �
N , N = 2, 3 be a bounded spatial domain with a

boundary of the class C2+ν , ν > 0. Let the pressure p be given by the constitutive

relation (2.1) with

γ >
N

2
.

Let the initial data �0, �q satisfy the compatibility conditions

(2.2) �0 � 0, �0 ∈ Lγ(Ω),
|�q|2
�0

∈ L1(Ω).

Finally, let T > 0 be given and let �f be a bounded measurable function on the set

(0, T )× Ω.
Then there exists a finite energy weak solution �, �u of the problem (1.1)–(1.3) on

(0, T )× Ω satisfying the initial conditions (1.4).
Lions [9] proved Theorem 2.1 for the critical values γ � 3/2 forN = 2, and γ � 9/5

if N = 3. The present result was obtained in [5], [7]. As was already indicated in

the introduction, the value of the adiabatic constant γ plays the role of the critical
exponent here. As a matter of fact, the critical values treated in [9] are related to

the pressure estimates of the form

(2.3) p(�)�θ bounded in L1((0, T )× Ω) for θ =
2
N

γ − 1

(cf. Lions [9], [10], and [8]). For both γ � 3/2 if N = 2 and γ � 9/5 for N = 3, the

relation (2.3) yields
� bounded in L2((0, T )× Ω).
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The square integrability of the density can be used to show the following result.

Assume that � ∈ L2((0, T )×Ω), �u ∈ L2(0, T ;W 1,2(Ω)) solve the continuity equation
(1.1) in the sense of distributions. Then (1.1) is also satisfied in the sense of renor-
malized solutions in the spirit of DiPerna and Lions [2] (cf. (1.7)). This fact in turn

plays the crucial role in the existence proof presented in [9].

The main contribution of [5], [7] to the existence theory lies in the observation
that one can replace the square integrability of the density by a different condi-

tion. Specifically, assume that �n, �un is a sequence of renormalized solutions to the
equation (1.1) such that

{
�n → � weakly star in L∞(0, T ;Lγ(Ω)),

�un → �u weakly in L2(0, T ;W 1,2(Ω)).

}

Suppose, in addition, that the quantity

(2.4) oscp[�n − �] = sup
k�1
(lim sup

n→∞
‖Tk(�n)− Tk(�)‖Lp((0,T )×Ω))

is bounded for a certain p > 2. Here Tk(z) = min{z, k} are the cut-off functions.
Then the limit functions �, �u represent a renormalized solution of (1.1).

Boundedness of the quantity oscp[�n − �] called the oscillation defect measure is
an essential ingredient of the existence theory presented in [7]. In fact, one can show
that it is bounded for p = γ + 1. This might indicate the proof should work for any

γ > 1 though there are, of course, some unsurmountabe difficulties connected with
a priori estimates when N = 3.

3. General barotropic pressure laws

The first possible generalization of the above existence results addresses a general
barotropic pressure-density constitutive law p = p(�). More specifically, we will

assume

(3.1) p = p(·) ∈ C1[0,∞), p(0) = 0,
1
a
�γ−1 − b � p′(�) � a�γ−1 + b for all � � 0

for certain positive constants a, b.

Observe that p need be neither convex nor even a monotone function of the den-

sity. The non-monotone pressure-density constitutive laws occur, for example, in
astrophysics, nuclear astrophysics, low energy nuclear physics etc (cf. [3]).
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The following result can be found in [3]:

Theorem 3.1. Theorem 2.1 remains valid in the case when the isentropic
pressure-density relation (2.1) is replaced by a general barotropic constitutive law
satisfying (3.1).

The general monotone pressure density relations are also discussed by Lions [9].

4. Unbounded and/or irregular domains

The last question we want to discuss here is to which extent the existence results
presented above depend on the regularity of the spatial domain Ω. The first result

is proved in [3].

Theorem 4.1. Let Ω ⊂ �
3 be a domain (not necessarily bounded) with a compact

boundary of the class C2+ν , ν > 0. Let the data �0, �q, �f satisfy the hypotheses of

Theorem 2.1, and, in addition, let �0 ∈ L1(Ω). Finally, let the pressure p be given

by a constitutive law obeying (3.1) with γ > 3/2.

Then there exists a finite energy weak solution �, �u of the problem (1.1)–(1.3)
satisfying the initial conditions (1.4).

Now, assume the boundary of Ω is not regular, say, not even Lipschitz. In that case,
we have to “give up” the differential form (1.5) of the energy inequality. Integrating

(1.5) with respect to t, we obtain

(4.1)
E[�, (��u)](τ) +

∫ τ

0

∫
Ω

µ|∇�u|2 + (λ+ µ)| div �u|2 dxdt

� E0 +
∫ τ

0

∫
Ω

��f · �udxdt for a.e. τ ∈ (0, T )

where

E0 =
∫
Ω

1
2
|�q|2
�0
+ P (�0) dx.

Replacing (1.5) by (4.1) in the definition of the finite energy weak solutions

(cf. Section 1), we will speak about the bounded energy weak solutions of the problem
(1.1)–(1.3) for which we report the following rather general result (see [6]):

Theorem 4.2. Let Ω ⊂ �
3 be an arbitrary open set. Let the pressure p be given

by a general constitutive law obeying (3.1) with

γ > 3/2.
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Let the initial data satisfy

�0 � 0, �0, P (�0) ∈ L1(Ω), �q ∈ L1(Ω),
|�q|2
�0

∈ L1(Ω).

Finally, let �f = �f(t, x) be a given bounded measurable function.

Then the problem (1.1)–(1.3) supplemented by the initial conditions (1.4) admits
a bounded energy weak solution �, �u on (0, T )× Ω, T > 0 arbitrary.

References

[1] S.N.Antontsev, A.V.Kazhikhov, V.N.Monakhov: Boundary Value Problems of Me-
chanics of Non-Homogeneous Fluids. Novosibirsk, 1983. (In Russian.)

[2] R. J. DiPerna, P.-L. Lions: Ordinary differential equations, transport theory and
Sobolev spaces. Invent. Math. 98 (1989), 511–547.

[3] B.Ducomet, E. Feireisl, H.Petzeltová, I. Straškraba: Global in time weak solutions for
compressible barotropic self-gravitating fluids. Adv. Appl. Math. Submitted (2001).

[4] E.Feireisl: The dynamical systems approach to the Navier-Stokes equations of compress-
ible fluid. Advances in Mathematical Fluid Mechanics (J.Málek, J. Nečas, M.Rokyta,
eds.). Springer, Berlin, 2000.

[5] E.Feireisl: On compactness of solutions to the compressible isentropic Navier-Stokes
equations when the density is not square integrable. Comment. Math. Univ. Carolin.
42 (2001), 83–98.

[6] E.Feireisl, A. Novotný, H. Petzeltová: On the domain dependence of solutions to the
compressible Navier-Stokes equations of a barotropic fluid. Math. Meth. Appl. Sci. To
appear.

[7] E.Feireisl, A. Novotný, H.Petzeltová: On the existence of globally defined weak solu-
tions to the Navier-Stokes equations of compressible isentropic fluids. J. Math. Fluid
Dynamics 3 (2001), 358–392.

[8] E.Feireisl, H.Petzeltová: On integrability up to the boundary of the weak solutions of
the Navier-Stokes equations of compressible flow. Commun. Partial Differential Equa-
tions 25 (2000), 755–767.

[9] P.-L. Lions: Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models. Ox-
ford Science Publication, Oxford, 1998.

[10] P.-L. Lions: Bornes sur la densité pour les équations de Navier-Stokes compressible
isentropiques avec conditions aux limites de Dirichlet. C. R. Acad. Sci. Paris, Sér I. 328
(1999), 659–662.

Author’s address: Eduard Feireisl, Mathematical Institute AV ČR, Žitná 25, 115 67
Praha 1, Czech Republic, e-mail: feireisl@math.cas.cz.

209


