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Abstract. We consider the functional equation f(xf(x)) = ϕ(f(x)) where ϕ : J → J

is a given increasing homeomorphism of an open interval J ⊂ (0,∞) and f : (0,∞) → J

is an unknown continuous function. In a previous paper we proved that no continuous
solution can cross the line y = p where p is a fixed point of ϕ, with a possible exception for
p = 1. The range of any non-constant continuous solution is an interval whose end-points
are fixed by ϕ and which contains in its interior no fixed point except for 1. We also gave
a characterization of the class of continuous monotone solutions and proved a sufficient
condition for any continuous function to be monotone.
In the present paper we give a characterization of the equations (or equivalently, of the

functions ϕ) which have all continuous solutions monotone. In particular, all continuous
solutions are monotone if either (i) 1 is an end-point of J and J contains no fixed point of
ϕ, or (ii) 1 ∈ J and J contains no fixed points different from 1.
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1. Introduction

We consider the functional equation

(1.1) f(xf(x)) = ϕ(f(x)), x ∈ (0,∞).

Throughout the paper we assume that J ⊂ (0,∞) is an open interval, ϕ : J → J is a

given homeomorphism of J , i.e., a continuous, increasing surjective function, and f
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is an unknown function, defined for x ∈ (0,∞), with values in J . Thus, any solution

of (1.1) is positive.

This equation is a special case of equations of invariant curves. A survey of some

general results can be found in [5] (cf. also [6]); however, these results cannot be

too strong. Concerning the equation (1.1), the case ϕ(y) = y2 was considered by

Dhombres in [1]. More general types of ϕ have been studied, e.g., in a series of our

papers [2]–[4], where other references can be found.

We recall the main results from [4]. The range Rf of any non-constant continuous

solution f of (1.1) must be a ϕ-invariant interval (i.e., ϕ(Rf ) = Rf ), and each of the

sets {x; f(x) < 1}, {x; f(x) = 1} and {x; f(x) > 1} is an interval, possibly empty

or degenerate. Moreover, Rf contains no fixed point of ϕ different from 1, and if

1 ∈ Rf then ϕ(1) = 1.

However, to describe the class of continuous solutions of (1.1) it suffices to con-

sider the case Rf ⊂ (0, 1]. This follows easily by the facts given above, since the

transformation f 7→ f̃ , where ϕ̃ is defined by ϕ̃(x) = 1/ϕ(1/x), is a bijection between

the solutions of (1.1) and the conjugate equation f̃(xf̃ (x)) = ϕ̃(f̃(x)), x ∈ (0,∞).

This transformation maps constant, increasing, decreasing or continuous functions

to functions with the same respective properties (for details, see [4]).

Moreover, if Rf = (0, 1], then f(x) ∈ (0, 1) on an interval (0, a) or (a,∞) and

f(x) = 1 on the complement, and vice versa: If a continuous function g defined on

an interval I ⊂ (0,∞) satisfies the equation and Rg = (0, 1) then I = (0, a) or (b,∞),

possibly with a = ∞, resp. b = 0, and g can be uniquely extended to a solution f of

(1.1) by f(x) = 1 for x ∈ (0,∞) \ I .

By the above argument, the class S(J, ϕ) of solutions of (1.1) corresponding to an

arbitrary open interval J ⊂ (0,∞) and a homeomorphism ϕ of J is determined by

the classes S(J, ϕ) with J , ϕ satisfying the conditions

(1.2) J = (p, q), 0 6 p < q 6 1, and ϕ(y) 6= y for x ∈ J,

with the reservation that, in the case q = 1, the domain of the solution may be a

proper subinterval (0, a) or (a,∞) of (0,∞). We will assume (1.2) with this reserva-

tion throughout the rest of the paper. One of the main recent results reads as follows

(ϕk denotes the kth iterate of ϕ):

1.1 Theorem. (Cf. [4].) Assume (1.2). Then any continuous solution of (1.1)

with values in J is monotone (i.e., non-decreasing or non-increasing) provided either

(1.3)
∞∏

k=0

ϕk(y)

ϕk(z)
= ∞ for any y > z in J,
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or

(1.4)
∞∏

k=1

ϕ−k(y)

ϕ−k(z)
= ∞ for any y > z in J.

In [4] we conjectured that the condition from the theorem is also necessary. Un-

fortunately, this is not the case. However, we are able to give the complete solution

of the problem. Our main results in this paper are the following three theorems.

1.2 Theorem. Assume (1.2) with q = 1. Then any continuous solution f of

(1.1) is monotone. In particular,

(i) if ϕ(y) < y for any y ∈ J then f is non-decreasing;

(ii) if ϕ(y) > y for any y ∈ J then f is non-increasing.

1.3 Theorem. Assume (1.2) with q < 1. Then any continuous solution of (1.1)

is non-decreasing if and only if (1.3) is satisfied.

1.4 Theorem. Assume (1.2) with q < 1. Then any continuous solution of (1.1)

is non-increasing if and only if (1.4) is satisfied.

1.5 ������������� Assume (1.2). Then neither (1.3) nor (1.4) can be satisfied if
p > 0. This follows from Lemma 2.2 (ii) below. Thus, by the above theorems, non-

monotone continuous solutions of (1.1) do exist if and only if one of the following

three conditions is satisfied: (i) 0 < p < q < 1; (ii) 0 = p < q < 1, ϕ(y) < y in J ,

and (1.3) is not true; (iii) 0 = p < q < 1, ϕ(y) > y in J , and (1.4) is not true.

1.6 � �����! #"$��%&� It is not difficult to find functions ϕ satisfying the conditions
(1.3) or (1.4) and hence giving only monotone continuous solutions. For example,

take ϕ(x) = kxs, where k, s are positive constants.

Here we provide an example of ϕ : (0, 3

4
) → (0, 3

4
) allowing non-monotone contin-

uous solutions. For n > 0 put an = 3−121−n, and let ϕ(an) = an+1. Moreover, let

ϕ(0) = 0 and ϕ( 3

4
) = 3

4
. Let bn = 1

3
an + 2

3
an+1. Let ϕ be linear, with slope 1 on

[an+1, bn] and 1

4
on [bn, an], and let ϕ be linear on [ 2

3
, 3

4
]. Now, by Lemma 2.2 (ii) be-

low, (1.4) is satisfied for no y > z. However, we have also
∞∏

k=0

(ϕk(a0)/ϕ
k(b0)) <∞.

Indeed, put bn = ϕn(b0) and let hn = an − bn for n > 0. Then h0 = 2

9
and since

ϕ[bn, an] ⊂ [bn+1, an+1] and ϕ has slope
1

4
on [bn, an], we have hn = h04

−n. An easy

computation shows that
∞∏

n=0

(an/bn) =
∞∏

n=0

(an/(an − hn)) = 1/
∞∏

n=0

(1 − 1

3

1

2n
) < ∞

since
∞∑

n=0

1

3

1

2n
<∞.
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In the next Section 2 we recall some technical results, mainly taken from [4]. The

proofs of Theorems 1.2–1.4 are in Section 3.

2. Preliminaries

2.1 Theorem. (Cf. [4].) For x > 0 and y ∈ J put Φ(x, y) = (xy, ϕ(y)). Then Φ

is a homeomorphism of (0,∞)× J which maps the graph of any continuous solution

f of (1.1) onto itself.

To simplify the notation, throughout the paper we identify any function with

its graph. In particular, if f : (0,∞) → (0,∞) is a function then Φ(f) stands

for {Φ(x, f(x));x ∈ (0,∞)}. The following terminology is standard: a sequence

{(xn, yn)}∞n=−∞
is the orbit under Φ of a point (x0, y0) in (0,∞) × J provided

Φ(xn, yn) = (xn+1, yn+1) for any integer n. Induction yields the formulas

yn = ϕn(y0) for any n,(2.1)

xn = x0y0ϕ(y0) . . . ϕ
n−1(y0) for n > 0,(2.2)

x−n =
x0

ϕ−1(y0)ϕ−2(y0) . . . ϕ−n(y0)
for n > 0.(2.3)

2.2 Lemma. (Cf. [4].) Let J ⊂ (0, 1) be an open interval and let ψ be an

increasing continuous function from J onto J such that ψ(y) 6= y in J .

(i) If
∞∏

k=1

(ψk(y)/ψk(z)) is finite for some z < y, then the function

t 7→
∞∏

k=1

(ψk(t)/ψk(z))

is continuous and strictly increasing in [z, y].

(ii) If lim
n→∞

ψn(x) 6= 0 for some x ∈ J then, for any y > z in J , the product

∞∏

k=1

(ψk(y)/ψk(z))

is non-zero and finite.
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3. Proofs

' ��()(+*,(-*/.10#��(+����� 1.2. (i) Assume, contrary to what we wish to show,

that there are u0 < v0 such that f(u0) = y0 > f(v0) = z0. We may assume that

(3.1) f(x) ∈ (z0, y0) whenever x ∈ (u0, v0).

Let {(un, yn)} and {(vn, zn)} be the orbits of (u0, y0) and (v0, z0), respectively. We

will show that

(3.2) un < un−1 < vn for some n 6 0.

Indeed, assume un−1 > vn for any integer n 6 0. Then, by (2.3),

un−1

vn

=
u0

v0

n∏

k=−1

ϕk(z0)

ϕk(y0)
.

1

ϕn−1(y0)
> 1,

hence

ϕn−1(y0) 6
u0

v0

n∏

k=−1

ϕk(z0)

ϕk(y0)
< 1,

which is impossible since lim
n→−∞

ϕn−1(y0) = 1. The inequality un < un−1 follows by

(2.3). Thus, we have proved (3.2).

By Theorem 2.1 we have Φ(f) = f , hence

(3.3) Φn(f |[u0, v0]) ⊃ f |[un, vn] for any integer n,

since the graph of f is locally connected. By (3.1), x ∈ (u0, v0) implies ϕ
n(f(x)) ∈

(zn, yn) for any integer n. Thus, the projection of the set Φn(f |[u0, v0]) to the second

axis is the interval [zn, yn]. On the other hand, by (3.2), the range of f |[un, vn]

contains f(un−1) = yn−1. Hence, by (3.3), yn−1 ∈ [zn, yn], which is impossible since

yn−1 = ϕ−1(yn) > yn.

(ii) Assume similarly that there are u0 < v0 such that f(u0) = y0 < f(v0) = z0

and (3.1) is satisfied. Then

(3.4) un < un−1 < vn for some n > 0.

The first inequality follows by (2.2), so to prove (3.4) assume un−1 > vn for any

n > 0. By (2.2), for n > 1,

un−1

vn

=
u0

v0

n−2∏

k=0

ϕk(y0)

ϕk(z0)
·

1

ϕn−1(z0)
> 1,
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hence

1 = lim
n→∞

ϕn−1(z0) 6
u0

v0

∞∏

k=0

ϕk(y0)

ϕk(z0)
< 1,

which is a contradiction. The rest of the argument is similar to the first case. Note

that if un−1 ∈ [un, vn] for some n > 0, then yn−1 = f(un−1) /∈ [yn, zn] since yn >

yn−1. �

To simplify the notation, we will use in the sequel the following abbreviations:

P (u, v) :=

∞∏

k=0

ϕk(u)

ϕk(v)
, Q(u, v) :=

∞∏

k=1

ϕ−k(u)

ϕ−k(v)
.

Since ϕ is increasing the functions P (u, v), Q(u, v) for u, v ∈ J are well-defined.
' ��()(+*2(+*3.10#��(+����� 1.3. We have lim

k→∞

ϕ−k(z) = q ∈ (0, 1) for z ∈ J . Hence,

by Lemma 2.2 (ii), Q(y0, z0) <∞. Since ϕ(y) < y in J , any monotone solution must

be non-decreasing. This follows easily by (2.1)–(2.3). So, by Theorem 1.1, it suffices

to assume that P (y0, z0) < ∞ for some y0 > z0 in J , and to show that there is a

continuous solution which is not monotone. By Lemma 2.2 (i) we may assume that

y0 is close enough to z0 so that

(3.5) 1 < P (y0, z0)Q(y0, z0) 6
1

q
.

Then there are positive reals u0 < v0 such that

(3.6) qQ(y0, z0) 6
u0

v0
6 P (z0, y0).

Let {(un, yn)} and {(vn, zn)} be the orbits of (u0, y0) and (v0, z0), respectively. We

will show that there is a decreasing continuous function g from [u0, v0] onto [z0, y0]

such that

(3.7)
u

v
6 P (g(v), g(u)) for any u < v in [u0, v0].

Denote P (z0, y0) = α. Thus α < 1 and there is an increasing continuous function

% on [α, 1] such that %(x)/x is non-decreasing, %(1) = v0 and %(α) = u0. Put

τ(x) = %(P (z0, x)). Then τ maps {z0, y0} onto {u0, v0} and, by Lemma 2.2 (i), it is

continuous and decreasing. Then, for z < y in [z0, y0],

τ(y)

τ(z)
=
%(P (z0, y))

%(P (z0, z))
6
P (z0, y)

P (z0, z)
= P (z, y).
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The inequality follows since %(x)/x is non-decreasing, the equality since P (x0, y) and

P (z0, z) are non-zero and finite. Put g = τ−1 to get (3.7).

Next we show that there is an increasing continuous function h from [v1, u0] onto

[z1, y0] such that

(3.8)
u

v
6 Q(h(u), h(v)) for any u < v in [v1, u0].

Actually, we have v1 < u0 since z0 < q and (3.6) implies z0 < u0/v0, hence

v1 = v0z0 < u0. Put Q(y0, z0) = β. Similarly to the previous case, define τ(x) =

%(Q(x, z0)) for x ∈ [z1, y0]. Here % is an increasing continuous function such that

%(z0/q) = v1, %(β) = u0 (we have z0/q < 1 < β), and %(x)/x is non-increasing. By

Lemma 2.2 (i), τ(x) is continuous, increasing, with τ(z1) = v1 and τ(y0) = u0. Since

%(x)/x is non-increasing, for any z < y in [z1, y0] we have

τ(y)

τ(z)
=
%(Q(y, z0))

%(Q(z, z0))
6
Q(y, z0)

Q(z, z0)
= Q(y, z),

which proves (3.8) when putting h = τ−1.

Define f0 : [v1, v0] → [z1, y0] by f0(x) = h(x) for x ∈ [v1, u0] and f0(x) = g(x)

otherwise. Set

(3.9) τn(x) = x

n−1∏

k=0

ϕk(f0(x)) for n > 0 and x ∈ [v1, v0].

We will show that τn is increasing. For x < y in [u0, v0] we have f0(x) > f0(y) hence,

by (3.7),

τn(y)

τn(x)
=
y

x

n−1∏

k=0

ϕk(f0(y))

ϕk(f0(x))
>
y

x

∞∏

k=0

ϕk(f0(y))

ϕk(f0(x))
> 1.

This proves that τn is increasing in [u0, v0]. For x ∈ [v1, u0], f0(x) is increasing, hence

τn as a composition of increasing functions is increasing as well. Consequently, τn is

increasing in [u0, v0] and by (2.2), τn maps [u0, v0] onto [un, vn] for n > 0.

Similarly, let

(3.10) τn(x) =
x

n∏
k=−1

ϕk(f0(x))
for n < 0 and x ∈ [v1, v0].

Then again τn is increasing. This is clearly true for x ∈ [u0, v0] since f0(x) is

decreasing there. So let x < y in [v1, u0]. Since f0(x) < f0(y) we have, by (3.8),

τn(y)

τn(x)
=
y

x

n∏

k=−1

ϕk(f0(y))

ϕk(f0(x))
>
y

x

∞∏

k=1

ϕ−k(f0(y))

ϕ−k(f0(x))
> 1.
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Thus, τn(x) < τn(y). Hence, τn is increasing on [v1, u0] and consequently, on [v1, v0].

Finally, for any integer n put

fn(x) = ϕn(f0(τ
−n
n (x)) for x ∈ [vn+1, vn],

letting τ0 be the identity function. By (3.9), (3.10) and Theorem 2.1, and since τn

is increasing and maps [v1, v0] onto [vn+1, vn], we get that f =
⋃
n

fn is a continuous

solution of (1.1) which is not monotone (e.g., on [v1, v0]). This completes the proof.

�

' ��()(+*2(+*3.10#��(+����� 1.4. It is similar to that of Theorem 1.3, so we give here
only a brief outline, emphasizing the differences. There are u0 < v0 in (0,∞) and z0
greater than y0 in J such that

qα = qP (z0, y0) 6
u0

v0
6 Q(y0, z0) = β.

We need a decreasing continuous g from [v1, u0] onto [y0, z1] such that

(3.11)
u

v
6 P (g(v), g(u)) <∞ for any u < v in [v1, u0].

Put g = τ−1 where τ(x) = %(P (y0, x)), %(z0/(qα)) = v1 = u0z0, %(1) = u0, and

%(x)/x is non-decreasing.

Similarly find an increasing continuous function h from [u0, v0] onto [y0, z0] such

that

(3.12)
u

v
6 Q(h(u), h(v)) <∞ for any u < v in [u0, v0].

To do this we set τ(x) = %(Q(x, z0)) for x ∈ [y0, z0] so that %(x)/x is non-decreasing,

%(β) = u0 and %(1) = v0, and put h = τ−1.

The rest of the proof is similar to that of Theorem 1.3. We only replace (3.7) and

(3.8) by (3.11) and (3.12), respectively. �
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