ON k-STRONG DISTANCE IN STRONG DIGRAPHS

Ping Zhang, Kalamazoo

(Received January 15, 2001)

Abstract

For a nonempty set S of vertices in a strong digraph D, the strong distance $d(S)$ is the minimum size of a strong subdigraph of D containing the vertices of S. If S contains k vertices, then $d(S)$ is referred to as the k-strong distance of S. For an integer $k \geqslant 2$ and a vertex v of a strong digraph D, the k-strong eccentricity $\mathrm{se}_{k}(v)$ of v is the maximum k-strong distance $d(S)$ among all sets S of k vertices in D containing v. The minimum k-strong eccentricity among the vertices of D is its k-strong radius $\operatorname{srad}_{k} D$ and the maximum k-strong eccentricity is its k-strong diameter $\operatorname{sdiam}_{k} D$. The k-strong center (k-strong periphery) of D is the subdigraph of D induced by those vertices of k-strong eccentricity $\operatorname{srad}_{k}(D)\left(\operatorname{sdiam}_{k}(D)\right)$. It is shown that, for each integer $k \geqslant 2$, every oriented graph is the k-strong center of some strong oriented graph. A strong oriented graph D is called strongly k-self-centered if D is its own k-strong center. For every integer $r \geqslant 6$, there exist infinitely many strongly 3 -self-centered oriented graphs of 3 -strong radius r. The problem of determining those oriented graphs that are k-strong peripheries of strong oriented graphs is studied.

Keywords: strong distance, strong eccentricity, strong center, strong periphery
MSC 2000: 05C12, 05C20

1. Introduction

The familiar distance $d(u, v)$ between two vertices u and v in a connected graph is the length of a shortest $u-v$ path in G. Equivalently, this distance is the minimum size of a connected subgraph of G containing u and v. This concept was extended in [2] to connected digraphs, in particular to strongly connected (strong) oriented graphs. We refer to [4] for graph theory notation and terminology not described here.

[^0]A digraph D is strong if for every pair u, v of distinct vertices of D, there is both a directed $u-v$ path and a directed $v-u$ path in D. A digraph D is an oriented graph if D is obtained by assigning a direction to each edge of a graph G. The graph G is referred to as the underlying graph of D. In this paper we will be interested in strong oriented graphs. The underlying graph of a strong oriented graph is necessarily 2 -edge-connected. Let D be a strong oriented graph of order $n \geqslant 3$ and size m. For two vertices u and v of D, the strong distance $\operatorname{sd}(u, v)$ between u and v is defined in [2] as the minimum size of a strong subdigraph of D containing u and v. If $u \neq v$, then $3 \leqslant \operatorname{sd}(u, v) \leqslant m$. In the strong oriented graph D of Figure $1, \operatorname{sd}(v, w)=3$, $\operatorname{sd}(u, y)=4$, and $\operatorname{sd}(u, x)=5$.
D :

Figure 1. A strong oriented graph
A generalization of distance in graphs was introduced in [5]. For a nonempty set S of vertices in a connected graph G, the Steiner distance $d(S)$ of S is the minimum size of a connected subgraph of G containing S. Necessarily, each such subgraph is a tree and is called a Steiner tree with respect to S. We now extend this concept to connected strong digraphs. For a nonempty set S of vertices in a strong digraph D, the strong Steiner distance $d(S)$ is the minimum size of a strong subdigraph of D containing S. We will refer to such a subgraph as a Steiner subdigraph with respect to S, or, simply, S-subdigraph. Since D itself is strong, $d(S)$ is defined for every nonempty set S of vertices of D. We denote the size of a digraph D by $m(D)$. If $|S|=k$, then $d(S)$ is referred to as the k-strong Steiner distance (or simply k-strong distance) of S. Thus $3 \leqslant d(S) \leqslant m(D)$ for each set S of vertices in a strong digraph D with $|S| \geqslant 2$. Then the 2 -strong distance is the strong distance studied in [2], [3]. For example, in the strong oriented graph D of Figure 1, let $S_{1}=\{u, v, x\}$, $S_{2}=\{u, v, y\}$, and $S_{3}=\{v, w, y\}$. Then the 3-strong distances of S_{1}, S_{2}, and S_{3} are $d\left(S_{1}\right)=5, d\left(S_{2}\right)=4$, and $d\left(S_{3}\right)=3$.

It was shown in [2] that strong distance is a metric on the vertex set of a strong oriented graph D. As such, certain properties are satisfied. Among these are: (1) $\operatorname{sd}(u, v) \geqslant 0$ for vertices u and v of D and $\operatorname{sd}(u, v)=0$ if and only if $u=v$ and (2) $\operatorname{sd}(u, w) \leqslant \operatorname{sd}(u, v)+\operatorname{sd}(v, w)$ for vertices u, v, w of D. These two properties can be considered in a different setting. Let D be a strong oriented graph and let $S \subseteq V(D)$, where $S \neq \emptyset$. Then $d(S) \geqslant 0$ and $d(S)=0$ if and only if $|S|=1$, which is property (1). Let $S_{1}=\{u, w\}, S_{2}=\{u, v\}$, and $S_{3}=\{v, w\}$. Then the triangle inequality $\operatorname{sd}(u, w) \leqslant \operatorname{sd}(u, v)+\operatorname{sd}(v, w)$ given in (2) can be restated as $d\left(S_{1}\right) \leqslant d\left(S_{2}\right)+d\left(S_{3}\right)$,
where, of course, $\left|S_{i}\right|=2$ for $1 \leqslant i \leqslant 3, S_{1} \subseteq S_{2} \cup S_{3}$ and $S_{2} \cap S_{3} \neq \emptyset$. We now describe an extension of (2).

Proposition 1.1. For an integer $k \geqslant 2$, let S_{1}, S_{2}, S_{3} be sets of k vertices in a strong oriented graph with $\left|S_{i}\right|=k$ for $1 \leqslant i \leqslant 3$. If $S_{1} \subseteq S_{2} \cup S_{3}$ and $S_{2} \cap S_{3} \neq \emptyset$, then

$$
d\left(S_{1}\right) \leqslant d\left(S_{2}\right)+d\left(S_{3}\right)
$$

Proof. Let D_{i} be an S_{i}-digraph of size $d\left(S_{i}\right)$ for $i=1,2,3$. Define a digraph D^{\prime} to be the subdigraph of D with vertex set $V\left(D_{2}\right) \cup V\left(D_{3}\right)$ and arc set $E\left(D_{2}\right) \cup E\left(D_{3}\right)$. Since $S_{2} \cap S_{3} \neq \emptyset$ and D_{2} and D_{3} are strong subdigraphs of D, it follows that D^{\prime} is also a strong subdigraph of D with $S_{1} \subseteq V\left(D^{\prime}\right)$. Thus $m\left(D_{1}\right) \leqslant m\left(D^{\prime}\right)$. Therefore,

$$
d\left(S_{1}\right)=m\left(D_{1}\right) \leqslant m\left(D^{\prime}\right) \leqslant m\left(D_{2}\right)+m\left(D_{3}\right)=d\left(S_{2}\right)+d\left(S_{3}\right)
$$

as desired.
As an example, consider the strong oriented graph D of Figure 2. Let $S_{1}=$ $\{s, v, x\}, S_{2}=\{v, x, z\}$, and $S_{3}=\{s, x, y\}$. Then $\left|S_{i}\right|=3$ for $1 \leqslant i \leqslant 3$, where $S_{1} \subseteq S_{2} \cup S_{3}$ and $S_{2} \cap S_{3} \neq \emptyset$. For each i with $1 \leqslant i \leqslant 3$, let D_{i} be an S_{i}-subdigraph of size $d\left(S_{i}\right)$ in D, which is also shown in Figure 2. Hence $d\left(S_{1}\right)=3, d\left(S_{2}\right)=4$, and $d\left(S_{3}\right)=5$. Note that the subdigraph D^{\prime} of D described in the proof of Proposition 1.1 has size 6 . Thus $d\left(S_{1}\right) \leqslant m\left(D^{\prime}\right) \leqslant d\left(S_{2}\right)+d\left(S_{3}\right)$.
D :

D_{1}

D_{2}

D_{3}

Figure 2. An example of an extension of (2)
The extended triangle inequality $d\left(S_{1}\right) \leqslant d\left(S_{2}\right)+d\left(S_{3}\right)$ stated in Proposition 1.1 suggests a generalization of strong distance in strong oriented graphs, which we introduce in this paper.

2. On k-Strong eccentricity, Radius, And diameter

Let v be a vertex of a strong oriented graph D of order $n \geqslant 3$ and let k be an integer with $2 \leqslant k \leqslant n$. The k-strong eccentricity $\operatorname{se}_{k}(v)$ is defined by

$$
\operatorname{se}_{k}(v)=\max \{d(S) ; S \subseteq V(D), v \in S,|S|=k\}
$$

The k-strong diameter $\operatorname{sdiam}_{k}(D)$ is

$$
\operatorname{sdiam}_{k}(D)=\max \left\{\operatorname{se}_{k}(v) ; v \in V(D)\right\}
$$

while the k-strong radius $\operatorname{srad}_{k}(D)$ is defined by

$$
\operatorname{srad}_{k}(D)=\min \left\{\operatorname{se}_{k}(v) ; v \in V(D)\right\}
$$

To illustrate these concepts, consider the strong oriented graph D of Figure 3. The 3 -strong eccentricity of each vertex of D is shown in Figure 3 . Thus $\operatorname{srad}_{3}(D)=8$ and $\operatorname{sdiam}_{3}(D)=12$.

Figure 3. A strong oriented graph D with $\operatorname{srad}_{3}(D)=8$ and $\operatorname{sdiam}_{3}(D)=12$

For a nontrivial strong oriented graph D of order n, the radius sequence $\mathcal{S}_{r}(D)$ of D is defined as

$$
\mathcal{S}_{r}(D): \operatorname{srad}_{2}(D), \operatorname{srad}_{3}(D), \operatorname{srad}_{4}(D), \ldots, \operatorname{srad}_{n}(D)
$$

and the diameter sequence $\mathcal{S}_{d}(D)$ of D is defined as

$$
\mathcal{S}_{d}(D): \operatorname{sdiam}_{2}(D), \operatorname{sdiam}_{3}(D), \operatorname{sdiam}_{4}(D), \ldots, \operatorname{sdiam}_{n}(D)
$$

For example, the strong oriented graph D in Figure 4 has order 9. Since $\operatorname{srad}_{2}(D)=$ $6, \operatorname{srad}_{3}(D)=9$, and $\operatorname{srad}_{k}(D)=12$ for $4 \leqslant k \leqslant 9$, it follows that $\mathcal{S}_{r}(D)$: $6,9,12,12, \ldots, 12$. Moreover, $\operatorname{sdiam}_{2}(D)=9$ and $\operatorname{sdiam}_{k}(D)=12$ for $3 \leqslant k \leqslant 9$.

D:

Figure 4. A strong oriented graph
Thus $\mathcal{S}_{d}(D): 9,12,12, \ldots, 12$. Note that both $\mathcal{S}_{r}(D)$ and $\mathcal{S}_{d}(D)$ are nondecreasing sequences. This is no coincidence, as we now see.

Proposition 2.1. For a nontrivial strong oriented graph D of order n and every integer k with $2 \leqslant k \leqslant n-1$,
(a) $\operatorname{srad}_{k}(D) \leqslant \operatorname{srad}_{k+1}(D)$ and $(b) \operatorname{sdiam}_{k}(D) \leqslant \operatorname{sdiam}_{k+1}(D)$.

Proof. To verify (a), let u and v be two vertices of D with $\operatorname{se}_{k}(u)=\operatorname{srad}_{k}(D)$ and $\operatorname{se}_{k+1}(v)=\operatorname{srad}_{k+1}(D)$. Let S be a set of k vertices of D such that $\operatorname{se}_{k}(u)=$ $d(S)=\operatorname{srad}_{k}(D)$. Now let x be a vertex of D such that $x=v$ if $v \notin S$ and $x \in V(D)-S$ if $v \in S$. Let $S^{\prime}=\{x\} \cup S$. Since $S \subseteq S^{\prime}$, it follows that $d(S) \leqslant d\left(S^{\prime}\right)$. Moreover, S^{\prime} is a set of $k+1$ vertices of D containing v and so $d\left(S^{\prime}\right) \leqslant \operatorname{se}_{k+1}(v)$. Thus

$$
\operatorname{srad}_{k}(D)=d(S) \leqslant d\left(S^{\prime}\right) \leqslant \operatorname{se}_{k+1}(v)=\operatorname{srad}_{k+1}(D)
$$

and so (a) holds. To verify (b), let S be a set of k vertices of D with $d(S)=$ $\operatorname{sdiam}_{k}(D)$. If S^{\prime} is any set of $k+1$ vertices of D with $S \subseteq S^{\prime}$, then

$$
\operatorname{sdiam}_{k}(D)=d(S) \leqslant d\left(S^{\prime}\right) \leqslant \operatorname{sdiam}_{k+1}(D)
$$

and so (b) holds.
Equalities in (a) and (b) of Proposition 2.1 hold for certain strong oriented graphs, for example, the directed n-cycle $\overrightarrow{C_{n}}$ for $n \geqslant 3$. In fact, $\operatorname{srad}_{k}\left(\overrightarrow{C_{n}}\right)=\operatorname{sdiam}_{k}\left(\overrightarrow{C_{n}}\right)=n$ for all k with $2 \leqslant k \leqslant n$. As another example, let D be the strong oriented graph of order $n \geqslant 3$ with $V(D)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that for $1 \leqslant i<j \leqslant n,\left(v_{i}, v_{j}\right) \in$ $E(D)$, except when $i=1$ and $j=n$, and $\left(v_{n}, v_{1}\right) \in E(D)$ (see Figure 5). Then $\operatorname{srad}_{k}(D)=\operatorname{sdiam}_{k}(D)=n$ for all k with $2 \leqslant k \leqslant n$. In fact, there are many other strong oriented graphs D with the property that $\operatorname{srad}_{k}(D)=\operatorname{sdiam}_{k}(D)$.

Figure 5. A strong oriented graph D of order n with $\operatorname{srad}_{k}(D)=\operatorname{sdiam}_{k}(D)$ for $2 \leqslant k \leqslant n$

On the other hand, for a strong oriented graph D, the difference between $\operatorname{srad}_{k+1}(D)$ and $\operatorname{srad}_{k}(D)$ (or $\operatorname{sdiam}_{k+1}(D)$ and $\operatorname{sdiam}_{k}(D)$) can be arbitrarily large for some k.

Proposition 2.2. For every integer $N \geqslant 3$, there exist a strong oriented graph D and an integer k such that

$$
\operatorname{srad}_{k+1}(D)-\operatorname{srad}_{k}(D) \geqslant N \text { and } \operatorname{sdiam}_{k+1}(D)-\operatorname{sdiam}_{k}(D) \geqslant N
$$

Proof. Let $\ell \geqslant 3$ be an integer. For each i with $1 \leqslant i \leqslant \ell$, let D_{i} be a copy of the directed N-cycle $\overrightarrow{C_{N}}$ and let $v_{i} \in V\left(D_{i}\right)$. Now let D be the strong oriented graph obtained from the digraphs $D_{i}(1 \leqslant i \leqslant \ell)$ by identifying the ℓ vertices $v_{1}, v_{2}, \ldots, v_{\ell}$. It can be verified that $\operatorname{srad}_{k+1}(D)-\operatorname{srad}_{k}(D)=N$ and $\operatorname{sdiam}_{k+1}(D)-\operatorname{sdiam}_{k}(D)=$ N for all k with $2 \leqslant k \leqslant \ell-1$.

For an integer $k \geqslant 2$, the k-strong radius and k-strong diameter of a strong oriented graph satisfy familiar inequalities, which are verified with familiar arguments.

Proposition 2.3. Let $k \geqslant 2$ be an integer. For every strong oriented graph D,

$$
\operatorname{srad}_{k}(D) \leqslant \operatorname{sdiam}_{k}(D) \leqslant 2 \operatorname{srad}_{k}(D)
$$

Proof. The inequality $\operatorname{srad}_{k}(D) \leqslant \operatorname{sdiam}_{k}(D)$ follows directly from the definitions. It was shown in [2] that result is true for $k=2$. So we may assume that $k \geqslant 3$. Let $S_{1}=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a set of vertices of D with $d(S)=\operatorname{sdiam}_{k}(D)$ and let v be a vertex of D with $\operatorname{se}_{k}(v)=\operatorname{srad}_{k}(D)$. Define $S_{2}=\left\{v, w_{1}, w_{2}, \ldots, w_{k-1}\right\}$ and $S_{3}=\left\{v, w_{2}, w_{3}, \ldots, w_{k}\right\}$. Thus $S_{1} \subseteq S_{2} \cup S_{3}$ and $S_{2} \cap S_{3} \neq \emptyset$. It then follows from Proposition 1.1 that

$$
\operatorname{sdiam}_{k}(D)=d\left(S_{1}\right) \leqslant d\left(S_{2}\right)+d\left(S_{3}\right) \leqslant 2 \operatorname{srad}_{k}(D)
$$

producing the desired result.

3. On k-STRONG CENTERS AND PERIPHERALS

A vertex v in a strong digraph D is a k-strong central vertex if $e_{k}(v)=\operatorname{srad}_{k}(G)$, while the k-strong center $S C_{k}(D)$ of D is the subgraph induced by the k-strong central vertices of D. These concepts were first introduced in [3] for $k=2$. For example, consider the strong digraph D of Figure 4, which is also shown in Figure 6. Each vertex of D is labeled with its 3 -strong eccentricity. Thus the vertices x, y, z are the 3 -strong central vertices of D. The 3 -strong center $S C_{3}(D)$ of D is a 3 -cycle as shown in Figure 6.

Figure 6. The 3 -strong center of a strong digraph D
It was shown in [3] that every 2 -strong center of every strong oriented graph D lies in a block of the underlying graph of D. However, it is not true in general for $k \geqslant 3$. For example, although the 3 -strong center of the strong oriented graph D in Figure 6 lies in a block of the underlying graph of D, the 4 -strong center of D is D itself and D is not a block. On the other hand, as Hedetniemi (see [1]) showed that every graph is the center of some connected graph, it was also shown in [3] that every oriented graph is the 2 -strong center of some strong digraph. We now extend this result by showing that, for each integer $k \geqslant 2$, every oriented graph is the k-strong center of some strong digraph.

Theorem 3.1. Let $k \geqslant 2$ be an integer. Then every oriented graph is the k-strong center of some strong digraph.

Proof. For an oriented graph D, we construct a strong oriented graph D^{*} from D by adding the $3 k$ new vertices $u_{i}, v_{i}, w_{i}(1 \leqslant i \leqslant k)$ and $\operatorname{arcs}(1)\left(w_{i}, v_{i}\right),\left(v_{i}, u_{i}\right)$, and $\left(u_{i}, w_{i}\right)$ for all i with $1 \leqslant i \leqslant k$ and (2) $\left(u_{i}, x\right)$ and $\left(x, v_{i}\right)$ for all $x \in V(D)$ and for all i with $1 \leqslant i \leqslant k$. The oriented graph D^{*} is shown in Figure 7. Certainly, D^{*} is strong. Next, we show that D is the k-strong center of D^{*}.

Figure 7. A strong oriented graph D^{*} containing D as its k-strong center
Let $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}, V=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, and $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$. For each $x \in V(D)$, let $S(x)=\{x\} \cup\left(W-\left\{w_{k}\right\}\right)$. Then $\operatorname{se}_{k}(x)=d(S)=6(k-1)$. For each $u_{i} \in U$, where $1 \leqslant i \leqslant k$, let $S\left(u_{i}\right)=\left\{u_{i}\right\} \cup\left(W-\left\{w_{i}\right\}\right)$. Then $\operatorname{se}_{k}\left(u_{i}\right)=$
$d(S)=6(k-1)+3$ for $1 \leqslant i \leqslant k$. For each $v_{i} \in V$, where $1 \leqslant i \leqslant k$, let $S\left(v_{i}\right)=\left\{v_{i}\right\} \cup\left(W-\left\{w_{i}\right\}\right)$. Then $\operatorname{se}_{k}\left(v_{i}\right)=d(S)=6(k-1)+3$ for $1 \leqslant i \leqslant k$. For each $w_{i} \in W$, where $1 \leqslant i \leqslant k$, let $S=W$. Then $\operatorname{se}_{k}\left(w_{i}\right)=d(S)=6 k$ for $1 \leqslant i \leqslant k$. Since $\operatorname{se}_{k}(x)=6(k-1)$ for all $x \in V(D)$ and $\operatorname{se}_{k}(v)>6(k-1)$ for all $v \in V\left(D^{*}\right)-V(D)$, it follows that D is the k-strong center of D^{*}, as desired.

Independently, V. Castellana and M. Raines also discovered Theorem 3.1 (personal communication). A vertex v in a strong digraph D is called a k-strong peripheral vertex if $\operatorname{se}_{k}(v)=\operatorname{sdiam}_{k}(D)$, while the subgraph induced by the k-strong peripheral vertices of D is the k-strong periphery $S P_{k}(D)$ of D. Also, these concepts were first introduced in [3] for $k=2$. A strong digraph D and its 3 -strong periphery are shown in Figure 8. The following result appeared in [3].

Figure 8. The 3 -strong periphery of a strong digraph

Theorem A. If D is an oriented graph with $\operatorname{srad}_{2}(D)=3$ and $\operatorname{sdiam}_{2}(D)>3$, then D is not the 2-strong periphery of any oriented graph.

We now extend Theorem A to the k-strong periphery of a strong oriented graph for $k \geqslant 3$ and show that not all oriented graphs are the k-strong peripheries of strong oriented graphs.

Theorem 3.2. Let $k \geqslant 3$ be an integer. If D is an oriented graph with $\operatorname{sdiam}_{k}(D)>\operatorname{srad}_{k}(D)$, then D is not the k-strong periphery of any oriented graph.

Proof. Let D satisfy the conditions of the theorem. Assume, to the contrary, that D is the k-strong periphery of some oriented graph D^{\prime}. Assume that $\operatorname{srad}_{k}(D)=$ r and $\operatorname{sdiam}_{k}(D)=d$. So $d>r \geqslant 3$. Let u be a k-strong central vertex of D. Since $\operatorname{sdiam}_{k}(D)=d>r$, we have $\operatorname{sdiam}_{k}\left(D^{\prime}\right)=d^{\prime} \geqslant d>r$. Moreover, since D is the k-strong periphery of D^{\prime} and $u \in V(D)$, it follows that D^{\prime} contains a set $S=\left\{u, v_{1}, v_{2}, \ldots, v_{k-1}\right\}$ such that $d(S)=\operatorname{sdiam}_{k}\left(D^{\prime}\right)=d^{\prime}$. Because u is a k-strong central vertex of D, that is, u has k-strong eccentricity r in D, and $r<d^{\prime}$, at least one vertex from $\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}$ does not belong to $V(D)$. Assume, without loss of generality, that $v_{1} \notin V(D)$. Then the k-strong eccentricity $\operatorname{se}_{k}\left(v_{1}\right)$ of v_{1} in D^{\prime} is
at least $d(S)$ and so $\mathrm{se}_{k}\left(v_{1}\right) \geqslant d(S)=d^{\prime}$. Thus $\mathrm{se}_{k}\left(v_{1}\right)=d^{\prime}$, which implies that v_{1} is a k-strong peripheral vertex of D^{\prime}. Since $v_{1} \notin V(D)$, it follows that D is not the k-strong periphery of D^{\prime}, which is a contradiction.

In [3], a sufficient condition was established for an oriented graph D to be the 2 -strong periphery of some oriented graph D^{\prime}, which we state next.

Theorem B. Let D be an oriented graph of order n with strong diameter at least 4. If id $v+\operatorname{od} v<n-1$ for every vertex v of D, then D is the 2-strong periphery of some oriented graph D^{\prime}.

Observe that if v is a vertex of an oriented graph D of order n such that id $v+\operatorname{od} v<$ $n-1$, then there is a vertex $u \in V(D)$ such that v and u are nonadjacent vertices of D, that is, v belongs to an independent set, namely $\{u, v\}$, of cardinality 2 in D. Thus the sufficient condition given in Theorem B is equivalent to that every vertex in D belongs to an independent set of cardinality 2 in D. We now extend Theorem B to obtain a sufficient condition for an oriented digraph D to be the k-strong periphery of some oriented graph D^{\prime} for all integers $k \geqslant 2$.

Theorem 3.3. Let $k \geqslant 2$ be an integer and let D be a connected oriented graph. If every vertex of D belongs to an independent set of cardinality k in D, then D is the k-strong periphery of some oriented graph D^{\prime}.

Proof. By Theorem B the result holds for $k=2$. So we assume that $k \geqslant 3$. Let D be an oriented graph of order n which satisfies the conditions of the theorem and let $V(D)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. We construct a new oriented graph D^{\prime} of order $2 n+2$ with $V\left(D^{\prime}\right)=V(D) \cup\left\{v_{1}, v_{2}, \ldots, v_{n}, x, y\right\}$ such that the arc set of D^{\prime} consists of $E(D)$ together with $\operatorname{arcs}(1)\left(u_{i}, v_{i}\right)$ and $\left(v_{i}, u_{j}\right)$ for $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant n$, (2) $\left(v_{i}, v_{j}\right)$ for $1 \leqslant i<j \leqslant n$, and (3) $(y, x),\left(v_{i}, x\right),\left(x, u_{i}\right),\left(u_{i}, y\right),\left(y, v_{i}\right)$ for $1 \leqslant i \leqslant n$. The oriented graph D^{\prime} is shown in Figure 9. We claim that D is the k-strong periphery of D^{\prime}. We will show it only for $k=3$ since the argument for $k \geqslant 4$ is similar.

Figure 9. An oriented graph D^{\prime} containing D as its k-strong periphery

We first show that $\mathrm{se}_{3}\left(u_{i}\right)=6$ in D^{\prime} for all i with $1 \leqslant i \leqslant n$. Without loss of generality, we consider only $u_{1} \in V(D)$ and show that $\operatorname{se}_{3}\left(u_{1}\right)=6$. Let $S_{0}=$ $\left\{u_{1}, u_{p}, u_{q}\right\}$ be an independent set of three vertices in D^{\prime}, where $2 \leqslant p<q \leqslant n$. Then the size of a strong subdigraph containing S_{0} is at least 6 . On the other hand, the directed 6 -cycle C shown in Figure 10 contains S_{0}. Thus $d\left(S_{0}\right)=6$ and so $\operatorname{se}_{3}\left(u_{1}\right) \geqslant 6$.

Figure 10. A directed 6 -cycle C in D^{\prime} containing S_{0}

To show that $\operatorname{se}_{3}\left(u_{1}\right) \leqslant 6$. Let S be a set of three vertices of D containing u_{1}. Then the only possible choices for S are $S_{1}=\left\{u_{1}, u_{i}, u_{j}\right\}$, where $2 \leqslant i<j \leqslant n$, $S_{2}=\left\{u_{1}, v_{i}, v_{j}\right\}$, where $1 \leqslant i<j \leqslant n, S_{3}=\left\{u_{1}, u_{i}, v_{j}\right\}$, where $i \geqslant 2$ and $1 \leqslant j \leqslant n$, $S_{4}=\left\{u_{1}, x, y\right\}, S_{5}=\left\{u_{1}, u_{i}, y\right\}$, where $2 \leqslant i \leqslant n, S_{6}=\left\{u_{1}, u_{i}, x\right\}$, where $2 \leqslant i \leqslant n$, $S_{7}=\left\{u_{1}, v_{i}, y\right\}$, and $S_{8}=\left\{u_{1}, v_{i}, x\right\}$, where $1 \leqslant i \leqslant n$. If $S=S_{1}$, then the directed 6 -cycle $u_{1}, v_{1}, u_{i}, v_{i}, u_{j}, v_{j}, u_{1}$ is a strong subdigraph of D^{\prime} containing S and so $d(S) \leqslant 6$. Let $S=S_{2}=\left\{u_{1}, v_{i}, v_{j}\right\}$, where $1 \leqslant i<j \leqslant n$. If $i=1$, then the directed 4-cycle $u_{1}, v_{1}, u_{j}, v_{j}, u_{1}$ is a strong subdigraph of D^{\prime} containing S and so $d(S) \leqslant 4$. If $i \geqslant 2$, then the directed 4 -cycle $u_{1}, y, v_{i}, v_{j}, u_{1}$ is a strong subdigraph of D^{\prime} containing S and so $d(S) \leqslant 4$. Let $S=S_{3}=\left\{u_{1}, u_{i}, v_{j}\right\}$, where $i \geqslant 2$ and $1 \leqslant j \leqslant n$. If $j=1$ or $j=i$, say $j=1$, then the directed 4 -cycle u_{1}, v_{1}, u_{1}, v_{i}, u_{1} is a strong subdigraph of D^{\prime} containing S and so $d(S) \leqslant 4$; Otherwise, the directed 5 -cycle $u_{1}, y, v_{j}, u_{i}, v_{i}, u_{1}$ is a strong subdigraph of D^{\prime} containing S and so $d(S) \leqslant 5$. If $S=S_{4}$, then the directed 3 -cycle u_{1}, y, x, u_{1} is a strong subdigraph of D^{\prime} containing S and so $d(S) \leqslant 3$. If $S=S_{5}$ (or $S=S_{6}$), then the directed 5-cycle $u_{1}, v_{1}, u_{i}, y, v_{i}, u_{1}$ contains S (or the directed 5 -cycle $u_{1}, v_{1}, x, u_{i}, v_{i}, u_{1}$ contains S). Thus $d(S) \leqslant 5$. Let $S=S_{7}=\left\{u_{1}, v_{i}, y\right\}$ or $S=S_{8}=\left\{u_{1}, v_{i}, x\right\}$, where $1 \leqslant i \leqslant n$. If $i=1$, then directed 4 -cycle $u_{1}, y, v_{1}, x, u_{1}$ contains S and $d(S) \leqslant 4$. If $i \geqslant 2$, then either the directed 5 -cycle $u_{1}, v_{1}, u_{i}, y, v_{i}, u_{1}$ contains S or the directed 5 -cycle u_{1}, $v_{1}, x, u_{i}, v_{i}, u_{1}$ contains S. Thus $d(S) \leqslant 5$. Hence $d(S) \leqslant 6$ for all possible choices for S and so $\mathrm{se}_{3}\left(u_{1}\right) \leqslant 6$. Therefore, $\mathrm{se}_{3}\left(u_{1}\right)=6$. Similarly, $\operatorname{se}_{3}\left(u_{i}\right)=6$ for all i with $2 \leqslant i \leqslant n$.

Next we show that $\operatorname{se}(x) \leqslant 5$ and $\operatorname{se}(y) \leqslant 5$ in D^{\prime}. Let S be a set of three vertices in D^{\prime} containing x. Then the only possible choices for S are $S_{1}=\left\{x, u_{i}, u_{j}\right\}$, where
$1 \leqslant i<j \leqslant n, S_{2}=\left\{x, v_{i}, v_{j}\right\}$, where $1 \leqslant i<j \leqslant n, S_{3}=\left\{x, u_{i}, v_{j}\right\}$, where $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant n, S_{4}=\left\{x, y, u_{i}\right\}$, where $1 \leqslant i \leqslant n$, and $S_{5}=\left\{x, y, v_{i}\right\}$, where $1 \leqslant i \leqslant n$. For $S=S_{1}, S_{2}, S_{3}$, the directed 5-cycle $u_{i}, v_{i}, x, u_{j}, v_{j}, u_{i}$ contains S and so $d(S) \leqslant 5$. For $S=S_{4}$, the directed 3 -cycle x, u_{i}, y, x contains S and so $d(S) \leqslant 3$. For $S=S_{5}$, the directed 4 -cycle $u_{1}, y, v_{i}, x, v_{1}$ contains S and so $d(S) \leqslant 4$. Therefore, $\operatorname{se}(x) \leqslant 5$. Similarly, $\operatorname{se}(y) \leqslant 5$.

Finally, we show that $\operatorname{se}\left(v_{i}\right) \leqslant 5$ in D^{\prime} for all i with $1 \leqslant i \leqslant n$. Without loss of generality, let $v_{i}=v_{1}$ and let S be a set of three vertices in D^{\prime} containing v_{1}. Then the only possible choices for S are $S_{1}=\left\{v_{1}, u_{i}, u_{j}\right\}$, where $1 \leqslant i<j \leqslant n$, $S_{2}=\left\{v_{1}, v_{i}, v_{j}\right\}$, where $2 \leqslant i<j \leqslant n, S_{3}=\left\{v_{1}, u_{i}, v_{j}\right\}$, where $1 \leqslant i \leqslant n$ and $j \geqslant 2$, $S_{4}=\left\{v_{1}, u_{i}, x\right\}$, where $1 \leqslant i \leqslant n, S_{5}=\left\{v_{1}, v_{i}, x\right\}$, where $2 \leqslant i \leqslant n, S_{6}=\left\{v_{1}, u_{i}, y\right\}$, where $1 \leqslant i \leqslant n$, and $S_{7}=\left\{v_{1}, v_{i}, y\right\}$, where $2 \leqslant i \leqslant n$. An argument similar to the one above shows that $d(S) \leqslant 5$ for each choice of S and $\operatorname{so~se}_{3}\left(v_{1}\right) \leqslant 5$.

Since $\operatorname{se}_{3}(v)=6$ for all $v \in V(D)$ and $\mathrm{se}_{3}(v) \leqslant 5$ for all $v \in V\left(D^{\prime}\right)-V(D)$, it follows that D is the 3 -strong periphery of the oriented graph D^{\prime}. In general, for $k \geqslant 3$, we have $\operatorname{se}_{k}(v)=2 k$ for all $v \in V(D)$ and $\operatorname{se}_{k}(v) \leqslant 2 k-1$ for all $v \in V\left(D^{\prime}\right)-V(D)$. Therefore, D is the k-strong periphery of the oriented graph D^{\prime}.

4. On STRONGLY k-SELF-CENTERED ORIENTED GRAPHS

Let D be a nontrivial strong digraph of order n and let k be an integer with $2 \leqslant k \leqslant n$. Then D is called strongly k-self-centered if $\operatorname{srad}_{k} D=\operatorname{sdam}_{k} D$, that is, if D is its own k-strong center. For example, the directed n-cycle $\overrightarrow{C_{n}}$ and the strong digraph D in Figure 5 are k-self-centered for all k with $2 \leqslant k \leqslant n$. The 2 -self-centered digraph was studied in [3]. The following result was established in [3].

Theorem C. For every integer $r \geqslant 3$, there exist infinitely many strongly 2 -selfcentered oriented graphs of strong radius r.

We now extend Theorem C to strongly 3 -self-centered oriented graphs.

Theorem 4.1. For every integer $r \geqslant 6$, there exist infinitely many strongly 3-self-centered oriented graphs of strong radius r.

Proof. For each integer $r \geqslant 6$, we construct an infinite sequence $\left\{D_{n}\right\}$ of strongly 3 -self-centered oriented graphs of strong radius r. We consider two cases, according to whether r is even or r is odd.

Case 1. r is even. Let $r=2 p$, where $p \geqslant 3$. Let D_{1} be the digraph obtained from the directed p-cycle $C_{p}: w_{1}, w_{2}, \ldots, w_{p}$ by adding the $2(p-1)$ new vertices u_{1}, u_{2}, \ldots,
u_{p-1} and $v_{1}, v_{2}, \ldots, v_{p-1}$ and the new $\operatorname{arcs}(1)\left(u_{i}, u_{i+1}\right),\left(v_{i}, v_{i+1}\right)$ for $1 \leqslant i \leqslant p-2$ and (2) $\left(v, u_{1}\right),\left(u_{p-1}, v\right),\left(v, v_{1}\right)$, and $\left(v_{p-1}, v\right)$ for all $v \in V\left(C_{p}\right)$. The digraph D_{1} is shown in Figure 11 for $r=6$. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{p-1}\right\}, V=\left\{v_{1}, v_{2}, \ldots, v_{p-1}\right\}$, and $W=\left\{w_{1}, w_{2}, \ldots, w_{p}\right\}$. We show that D_{1} is a strongly 3 -self-centered digraph with 3 -strong radius r.

Figure 11. The digraph D_{1} in Case 1 for $r=6$
First, we make an observation. If $S=\{u, v, w\}$, where $u \in U, v \in V$, and $w \in W$, then $d(S) \geqslant r$ by the construction of D_{1}. On the other hand, let D_{S} be the strong subdigraph in D_{1} consisting of two p-cycles $w, v_{1}, v_{2}, \ldots, v_{p-1}, w$ and $w, u_{1}, u_{2}, \ldots, u_{p-1}, w$. Since D_{S} contains S and has size $2 p=r$, it follows that $d(S)=r$. Therefore, for every vertex x of $V\left(D_{1}\right)$, there is a set S of three vertices of D_{1} such that S contains x and $d(S)=r$. This implies that $\mathrm{se}_{3}(x) \geqslant r$ for all $x \in V\left(D_{1}\right)$. So it remains to show that $\mathrm{se}_{3}(x) \leqslant r$ for all $x \in V\left(D_{1}\right)$. There are two subcases.

Subcase 1.1. $x \in U$ or $x \in V$. Without loss of generality, assume that $x \in U$. We will only consider $x=u_{1} \in U$ since the proofs for other vertices are similar. Let S be a set of three vertices in D_{1} containing u_{1}. If $S \cap V \neq \emptyset$ and $S \cap W \neq \emptyset$, then $d(S)=r$ by the observation above. So we may assume that S is one of the following sets: $S_{1}=\left\{u_{1}, u_{i}, u_{j}\right\}$, where $2 \leqslant i<j \leqslant p-1, S_{2}=\left\{u_{1}, u_{i}, w_{j}\right\}$, where $2 \leqslant i \leqslant p-1$ and $1 \leqslant j \leqslant p, S_{3}=\left\{u_{1}, u_{i}, v_{j}\right\}$, where $2 \leqslant i \leqslant p-1$ and $1 \leqslant j \leqslant p-1, S_{4}=$ $\left\{u_{1}, v_{i}, v_{j}\right\}$, where $1 \leqslant i<j \leqslant p-1$, and $S_{5}=\left\{u_{1}, w_{i}, w_{j}\right\}$, where $1 \leqslant i<j \leqslant p$. If $S=S_{1}, S_{2}$, then the directed p-cycle $w_{j}, u_{1}, u_{2}, \ldots, u_{p-1}, w_{j}$ is a strong subdigraph in D_{1} containing S and so $d(S) \leqslant p$. If $S=S_{3}, S_{4}$, then the strong subdigraph D_{S} in D_{1} consisting of two p-cycles $w_{1}, v_{1}, v_{2}, \ldots, v_{p-1}, w_{1}$ and $w_{1}, u_{1}, u_{2}, \ldots, u_{p-1}, w_{1}$ contains S and so $d(S) \leqslant 2 p=r$. If $S=S_{5}$, then the strong subdigraph consisting of two p-cycles $w_{i}, v_{1}, v_{2}, \ldots, v_{p-1}, w_{i}$ and $w_{j}, u_{1}, u_{2}, \ldots, u_{p-1}, w_{j}$ contains S and so $d(S) \leqslant 2 p=r$.

Subcase 1.2. $x \in W$. We may assume that $x=w_{1} \in W$ and let S be a set of three vertices in D_{1} containing w_{1}. Again, if $S \cap V \neq \emptyset$ and $S \cap U \neq \emptyset$, then $d(S)=r$ by the observation above. So we may assume that S is one of the following sets $S_{1}=\left\{w_{1}, w_{i}, w_{j}\right\}$, where $2 \leqslant i<j \leqslant p, S_{2}=\left\{w_{1}, w_{i}, u_{j}\right\}$, where $2 \leqslant i \leqslant p$ and $1 \leqslant j \leqslant p-1, S_{3}=\left\{w_{1}, w_{i}, v_{j}\right\}$, where $2 \leqslant i \leqslant p$ and $1 \leqslant j \leqslant p-1, S_{4}=\left\{w_{1}, u_{i}, u_{j}\right\}$,
where $1 \leqslant i<j \leqslant p-1$, and $S_{5}=\left\{w_{1}, v_{i}, v_{j}\right\}$, where $1 \leqslant i<j \leqslant p-1$. An argument similar to the one in Subcase 1.1 shows that $d(S) \leqslant r$ for all possible choices for S.

Therefore, $\operatorname{se}_{3}(x)=r$ for all $x \in V\left(D_{1}\right)$ and so D_{1} is a strongly 3 -self-centered digraph with 3 -strong radius r.
For $n \geqslant 1$, we define the strong digraph D_{n+1} recursively from D_{n} by adding the $2(p-1)$ new vertices $x_{1}, x_{2}, \ldots, x_{p-1}$ and $y_{1}, y_{2}, \ldots, y_{p-1}$ and the new arcs (1) $\left(x_{i}, x_{i+1}\right),\left(y_{i}, y_{i+1}\right)$ for $1 \leqslant i \leqslant p-2$ and $(2)\left(v, x_{1}\right),\left(x_{p-1}, v\right),\left(v, y_{1}\right)$, and $\left(y_{p-1}, v\right)$ for all $v \in V\left(D_{n}\right)$. The digraph D_{n+1} is shown in Figure 12. We assume that D_{n} is a strongly 3 -self-centered oriented graph of 3 -strong radius r for some integer $n \geqslant 1$ and show that D_{n+1} is also a strongly 3 -self-centered oriented graph of 3 -strong radius r.

Figure 12. The digraph D_{n+1} in Case 1

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{p-1}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{p-1}\right\}$. For $v \in V\left(D_{n+1}\right)$, let S be a set of three vertices in D_{n+1} containing v. If $v \in V\left(D_{n}\right)$ and $S=\left\{v, x_{1}, y_{1}\right\}$, then $\operatorname{se}_{3}(v)=d(S)=r$. So we may assume that $v \in X \cup Y$, say $v=x_{1}$. Let $S=\left\{v, y_{1}, z\right\}$, where $z \in V\left(D_{n}\right)$. Then $d(S)=\operatorname{se}_{3}(v)=r$. Therefore, $\operatorname{se}_{3}(v)=r$ for all $v \in V\left(D_{n+1}\right)$ and so D_{n+1} is also a strongly 3 -self-centered oriented graph of 3 -strong radius r.

Case 2. r is odd. Let $r=2 p+1$, where $p \geqslant 3$. Let D_{1} be the digraph obtained from the directed $(p+1)$-cycle $C_{p+1}: w_{1}, w_{2}, w_{3}, w_{4}, w_{1}$ by adding the $p-1$ new vertices $u_{1}, u_{2}, \ldots, u_{p-1}$ and the new $\operatorname{arcs}(1)\left(u_{i}, u_{i+1}\right)$ for $1 \leqslant i \leqslant p-2$ and (2) $\left(v, u_{1}\right)$ and $\left(u_{p-1}, v\right)$ for all $v \in V\left(C_{p+1}\right)$. The digraph D_{1} is shown in Figure 13 for $r=7$.

Figure 13. The digraph D_{1} in Case 2 for $r=7$

For $n \geqslant 1$, we define D_{n+1} recursively from D_{n} by adding the $p-1$ new vertices $x_{1}, x_{2}, \ldots, x_{p-1}$ and the new $\operatorname{arcs}(1)\left(x_{i}, x_{i+1}\right)$, for $1 \leqslant i \leqslant p-2$ and (2) $\left(v, x_{1}\right)$ and $\left(x_{p-1}, v\right)$ for all $v \in V\left(D_{n}\right)$. The digraph D_{n+1} is shown in Figure 14.

Figure 14. The digraph D_{n+1} in Case 2

An argument similar to the one used in Case 1 shows that each strong digraph D_{n} is a strongly 3 -self-centered oriented graph of strong radius r for all $n \geqslant 1$.

Acknowledgments. The author is grateful to Professor Gary Chartrand for suggesting the concept of strong Steiner distance and kindly providing useful information on this topic.

References

[1] F. Buckley, Z. Miller, P. J. Slater: On graphs containing a given graph as center. J. Graph Theory 5 (1981), 427-434.
[2] G. Chartrand, D. Erwin, M. Raines, P. Zhang: Strong distance in strong digraphs. J. Combin. Math. Combin. Comput. 31 (1999), 33-44.
[3] G.Chartrand, D.Erwin, M. Raines, P. Zhang: On strong distance in strong oriented graphs. Congr. Numer. 141 (1999), 49-63.
[4] G. Chartrand, L. Lesniak: Graphs \& Digraphs, third edition. Chapman \& Hall, New York, 1996.
[5] G. Chartrand, O. R. Oellermann, S. Tian, H. B. Zou: Steiner distance in graphs. Cas. Pěst. Mat. 114 (1989), 399-410.

Author's address: Ping Zhang, Department of Mathematics and Statistics, Western Michigan University, Kalamazoo, MI 49008, USA, e-mail: ping.zhang@wmich.edu.

[^0]: Research supported in part by the Western Michigan University Arts and Sciences Teaching and Research Award Program.

