ON k-STRONG DISTANCE IN STRONG DIGRAPHS

PING ZHANG, Kalamazoo

(Received January 15, 2001)

Abstract. For a nonempty set S of vertices in a strong digraph D, the strong distance d(S) is the minimum size of a strong subdigraph of D containing the vertices of S. If S contains k vertices, then d(S) is referred to as the k-strong distance of S. For an integer $k \ge 2$ and a vertex v of a strong digraph D, the k-strong eccentricity $\operatorname{se}_k(v)$ of v is the maximum k-strong distance d(S) among all sets S of k vertices in D containing v. The minimum k-strong eccentricity among the vertices of D is its k-strong radius $\operatorname{srad}_k D$ and the maximum k-strong eccentricity is its k-strong diameter $\operatorname{sdiam}_k D$. The k-strong center (k-strong periphery) of D is the subdigraph of D induced by those vertices of k-strong eccentricity $\operatorname{srad}_k(D)$ ($\operatorname{sdiam}_k(D)$). It is shown that, for each integer $k \ge 2$, every oriented graph is the k-strong center of some strong oriented graph. A strong oriented graph D is called strongly k-self-centered if D is its own k-strong center. For every integer $r \ge 6$, there exist infinitely many strongly 3-self-centered oriented graphs of 3-strong radius r. The problem of determining those oriented graphs that are k-strong peripheries of strong oriented graphs is studied.

Keywords: strong distance, strong eccentricity, strong center, strong periphery

MSC 2000: 05C12, 05C20

1. INTRODUCTION

The familiar distance d(u, v) between two vertices u and v in a connected graph is the length of a shortest u - v path in G. Equivalently, this distance is the minimum size of a connected subgraph of G containing u and v. This concept was extended in [2] to connected digraphs, in particular to strongly connected (strong) oriented graphs. We refer to [4] for graph theory notation and terminology not described here.

Research supported in part by the Western Michigan University Arts and Sciences Teaching and Research Award Program.

A digraph D is strong if for every pair u, v of distinct vertices of D, there is both a directed u - v path and a directed v - u path in D. A digraph D is an oriented graph if D is obtained by assigning a direction to each edge of a graph G. The graph G is referred to as the underlying graph of D. In this paper we will be interested in strong oriented graphs. The underlying graph of a strong oriented graph is necessarily 2-edge-connected. Let D be a strong oriented graph of order $n \ge 3$ and size m. For two vertices u and v of D, the strong distance $\operatorname{sd}(u, v)$ between u and v is defined in [2] as the minimum size of a strong subdigraph of D containing u and v. If $u \ne v$, then $3 \le \operatorname{sd}(u, v) \le m$. In the strong oriented graph D of Figure 1, $\operatorname{sd}(v, w) = 3$, $\operatorname{sd}(u, y) = 4$, and $\operatorname{sd}(u, x) = 5$.

Figure 1. A strong oriented graph

A generalization of distance in graphs was introduced in [5]. For a nonempty set S of vertices in a connected graph G, the Steiner distance d(S) of S is the minimum size of a connected subgraph of G containing S. Necessarily, each such subgraph is a tree and is called a Steiner tree with respect to S. We now extend this concept to connected strong digraphs. For a nonempty set S of vertices in a strong digraph D, the strong Steiner distance d(S) is the minimum size of a strong subdigraph of D containing S. We will refer to such a subgraph as a Steiner subdigraph with respect to S, or, simply, S-subdigraph. Since D itself is strong, d(S) is defined for every nonempty set S of vertices of D. We denote the size of a digraph D by m(D). If |S| = k, then d(S) is referred to as the k-strong Steiner distance (or simply k-strong distance) of S. Thus $3 \leq d(S) \leq m(D)$ for each set S of vertices in a strong digraph D with $|S| \ge 2$. Then the 2-strong distance is the strong distance studied in [2], [3]. For example, in the strong oriented graph D of Figure 1, let $S_1 = \{u, v, x\}$, $S_2 = \{u, v, y\}$, and $S_3 = \{v, w, y\}$. Then the 3-strong distances of S_1 , S_2 , and S_3 are $d(S_1) = 5$, $d(S_2) = 4$, and $d(S_3) = 3$.

It was shown in [2] that strong distance is a metric on the vertex set of a strong oriented graph D. As such, certain properties are satisfied. Among these are: (1) $sd(u, v) \ge 0$ for vertices u and v of D and sd(u, v) = 0 if and only if u = v and (2) $sd(u, w) \le sd(u, v) + sd(v, w)$ for vertices u, v, w of D. These two properties can be considered in a different setting. Let D be a strong oriented graph and let $S \subseteq V(D)$, where $S \neq \emptyset$. Then $d(S) \ge 0$ and d(S) = 0 if and only if |S| = 1, which is property (1). Let $S_1 = \{u, w\}, S_2 = \{u, v\}, \text{ and } S_3 = \{v, w\}$. Then the triangle inequality $sd(u, w) \le sd(u, v) + sd(v, w)$ given in (2) can be restated as $d(S_1) \le d(S_2) + d(S_3)$,

where, of course, $|S_i| = 2$ for $1 \leq i \leq 3$, $S_1 \subseteq S_2 \cup S_3$ and $S_2 \cap S_3 \neq \emptyset$. We now describe an extension of (2).

Proposition 1.1. For an integer $k \ge 2$, let S_1, S_2, S_3 be sets of k vertices in a strong oriented graph with $|S_i| = k$ for $1 \le i \le 3$. If $S_1 \subseteq S_2 \cup S_3$ and $S_2 \cap S_3 \neq \emptyset$, then

$$d(S_1) \leqslant d(S_2) + d(S_3).$$

Proof. Let D_i be an S_i -digraph of size $d(S_i)$ for i = 1, 2, 3. Define a digraph D'to be the subdigraph of D with vertex set $V(D_2) \cup V(D_3)$ and arc set $E(D_2) \cup E(D_3)$. Since $S_2 \cap S_3 \neq \emptyset$ and D_2 and D_3 are strong subdigraphs of D, it follows that D' is also a strong subdigraph of D with $S_1 \subseteq V(D')$. Thus $m(D_1) \leq m(D')$. Therefore,

$$d(S_1) = m(D_1) \leqslant m(D') \leqslant m(D_2) + m(D_3) = d(S_2) + d(S_3),$$

as desired.

As an example, consider the strong oriented graph D of Figure 2. Let $S_1 = \{s, v, x\}, S_2 = \{v, x, z\}, \text{ and } S_3 = \{s, x, y\}.$ Then $|S_i| = 3$ for $1 \leq i \leq 3$, where $S_1 \subseteq S_2 \cup S_3$ and $S_2 \cap S_3 \neq \emptyset$. For each i with $1 \leq i \leq 3$, let D_i be an S_i -subdigraph of size $d(S_i)$ in D, which is also shown in Figure 2. Hence $d(S_1) = 3$, $d(S_2) = 4$, and $d(S_3) = 5$. Note that the subdigraph D' of D described in the proof of Proposition 1.1 has size 6. Thus $d(S_1) \leq m(D') \leq d(S_2) + d(S_3)$.

Figure 2. An example of an extension of (2)

The extended triangle inequality $d(S_1) \leq d(S_2) + d(S_3)$ stated in Proposition 1.1 suggests a generalization of strong distance in strong oriented graphs, which we introduce in this paper.

2. On k-strong eccentricity, radius, and diameter

Let v be a vertex of a strong oriented graph D of order $n \ge 3$ and let k be an integer with $2 \le k \le n$. The k-strong eccentricity $\operatorname{se}_k(v)$ is defined by

$$\operatorname{se}_k(v) = \max\{d(S); \ S \subseteq V(D), v \in S, |S| = k\}.$$

The k-strong diameter $\operatorname{sdiam}_k(D)$ is

$$\operatorname{sdiam}_k(D) = \max\{\operatorname{se}_k(v); v \in V(D)\};\$$

while the k-strong radius $\operatorname{srad}_k(D)$ is defined by

$$\operatorname{srad}_k(D) = \min\{\operatorname{se}_k(v); v \in V(D)\}.$$

To illustrate these concepts, consider the strong oriented graph D of Figure 3. The 3-strong eccentricity of each vertex of D is shown in Figure 3. Thus $\operatorname{srad}_3(D) = 8$ and $\operatorname{sdiam}_3(D) = 12$.

Figure 3. A strong oriented graph D with $\operatorname{srad}_3(D) = 8$ and $\operatorname{sdiam}_3(D) = 12$

For a nontrivial strong oriented graph D of order n, the radius sequence $S_r(D)$ of D is defined as

 $\mathcal{S}_r(D)$: srad₂(D), srad₃(D), srad₄(D), ..., srad_n(D)

and the diameter sequence $\mathcal{S}_d(D)$ of D is defined as

 $\mathcal{S}_d(D)$: sdiam₂(D), sdiam₃(D), sdiam₄(D), ..., sdiam_n(D).

For example, the strong oriented graph D in Figure 4 has order 9. Since $\operatorname{srad}_2(D) = 6$, $\operatorname{srad}_3(D) = 9$, and $\operatorname{srad}_k(D) = 12$ for $4 \leq k \leq 9$, it follows that $\mathcal{S}_r(D)$: $6, 9, 12, 12, \ldots, 12$. Moreover, $\operatorname{sdiam}_2(D) = 9$ and $\operatorname{sdiam}_k(D) = 12$ for $3 \leq k \leq 9$.

Figure 4. A strong oriented graph

Thus $S_d(D)$: 9,12,12,...,12. Note that both $S_r(D)$ and $S_d(D)$ are nondecreasing sequences. This is no coincidence, as we now see.

Proposition 2.1. For a nontrivial strong oriented graph D of order n and every integer k with $2 \leq k \leq n-1$,

(a)
$$\operatorname{srad}_k(D) \leq \operatorname{srad}_{k+1}(D)$$
 and (b) $\operatorname{sdiam}_k(D) \leq \operatorname{sdiam}_{k+1}(D)$.

Proof. To verify (a), let u and v be two vertices of D with $\operatorname{se}_k(u) = \operatorname{srad}_k(D)$ and $\operatorname{se}_{k+1}(v) = \operatorname{srad}_{k+1}(D)$. Let S be a set of k vertices of D such that $\operatorname{se}_k(u) = d(S) = \operatorname{srad}_k(D)$. Now let x be a vertex of D such that x = v if $v \notin S$ and $x \in V(D) - S$ if $v \in S$. Let $S' = \{x\} \cup S$. Since $S \subseteq S'$, it follows that $d(S) \leq d(S')$. Moreover, S' is a set of k + 1 vertices of D containing v and so $d(S') \leq \operatorname{se}_{k+1}(v)$. Thus

$$\operatorname{srad}_k(D) = d(S) \leqslant d(S') \leqslant \operatorname{se}_{k+1}(v) = \operatorname{srad}_{k+1}(D)$$

and so (a) holds. To verify (b), let S be a set of k vertices of D with $d(S) = \operatorname{sdiam}_k(D)$. If S' is any set of k + 1 vertices of D with $S \subseteq S'$, then

$$\operatorname{sdiam}_k(D) = d(S) \leqslant d(S') \leqslant \operatorname{sdiam}_{k+1}(D)$$

and so (b) holds.

Equalities in (a) and (b) of Proposition 2.1 hold for certain strong oriented graphs, for example, the directed *n*-cycle $\overrightarrow{C_n}$ for $n \ge 3$. In fact, $\operatorname{srad}_k(\overrightarrow{C_n}) = \operatorname{sdiam}_k(\overrightarrow{C_n}) = n$ for all k with $2 \le k \le n$. As another example, let D be the strong oriented graph of order $n \ge 3$ with $V(D) = \{v_1, v_2, \ldots, v_n\}$ such that for $1 \le i < j \le n$, $(v_i, v_j) \in$ E(D), except when i = 1 and j = n, and $(v_n, v_1) \in E(D)$ (see Figure 5). Then $\operatorname{srad}_k(D) = \operatorname{sdiam}_k(D) = n$ for all k with $2 \le k \le n$. In fact, there are many other strong oriented graphs D with the property that $\operatorname{srad}_k(D) = \operatorname{sdiam}_k(D)$.

Figure 5. A strong oriented graph D of order n with $\mathrm{srad}_k(D)=\mathrm{sdiam}_k(D)$ for $2\leqslant k\leqslant n$

561

On the other hand, for a strong oriented graph D, the difference between $\operatorname{srad}_{k+1}(D)$ and $\operatorname{srad}_k(D)$ (or $\operatorname{sdiam}_{k+1}(D)$ and $\operatorname{sdiam}_k(D)$) can be arbitrarily large for some k.

Proposition 2.2. For every integer $N \ge 3$, there exist a strong oriented graph D and an integer k such that

$$\operatorname{srad}_{k+1}(D) - \operatorname{srad}_k(D) \ge N$$
 and $\operatorname{sdiam}_{k+1}(D) - \operatorname{sdiam}_k(D) \ge N$.

Proof. Let $\ell \ge 3$ be an integer. For each i with $1 \le i \le \ell$, let D_i be a copy of the directed N-cycle $\overrightarrow{C_N}$ and let $v_i \in V(D_i)$. Now let D be the strong oriented graph obtained from the digraphs D_i $(1 \le i \le \ell)$ by identifying the ℓ vertices v_1, v_2, \ldots, v_ℓ . It can be verified that $\operatorname{srad}_{k+1}(D) - \operatorname{srad}_k(D) = N$ and $\operatorname{sdiam}_{k+1}(D) - \operatorname{sdiam}_k(D) =$ N for all k with $2 \le k \le \ell - 1$.

For an integer $k \ge 2$, the k-strong radius and k-strong diameter of a strong oriented graph satisfy familiar inequalities, which are verified with familiar arguments.

Proposition 2.3. Let $k \ge 2$ be an integer. For every strong oriented graph D,

 $\operatorname{srad}_k(D) \leq \operatorname{sdiam}_k(D) \leq 2\operatorname{srad}_k(D).$

Proof. The inequality $\operatorname{srad}_k(D) \leq \operatorname{sdiam}_k(D)$ follows directly from the definitions. It was shown in [2] that result is true for k = 2. So we may assume that $k \geq 3$. Let $S_1 = \{w_1, w_2, \ldots, w_k\}$ be a set of vertices of D with $d(S) = \operatorname{sdiam}_k(D)$ and let v be a vertex of D with $\operatorname{se}_k(v) = \operatorname{srad}_k(D)$. Define $S_2 = \{v, w_1, w_2, \ldots, w_{k-1}\}$ and $S_3 = \{v, w_2, w_3, \ldots, w_k\}$. Thus $S_1 \subseteq S_2 \cup S_3$ and $S_2 \cap S_3 \neq \emptyset$. It then follows from Proposition 1.1 that

$$\operatorname{sdiam}_k(D) = d(S_1) \leqslant d(S_2) + d(S_3) \leqslant 2\operatorname{srad}_k(D),$$

producing the desired result.

3. On k-strong centers and peripherals

A vertex v in a strong digraph D is a k-strong central vertex if $se_k(v) = \operatorname{srad}_k(G)$, while the k-strong center $SC_k(D)$ of D is the subgraph induced by the k-strong central vertices of D. These concepts were first introduced in [3] for k = 2. For example, consider the strong digraph D of Figure 4, which is also shown in Figure 6. Each vertex of D is labeled with its 3-strong eccentricity. Thus the vertices x, y, zare the 3-strong central vertices of D. The 3-strong center $SC_3(D)$ of D is a 3-cycle as shown in Figure 6.

Figure 6. The 3-strong center of a strong digraph D

It was shown in [3] that every 2-strong center of every strong oriented graph D lies in a block of the underlying graph of D. However, it is not true in general for $k \ge 3$. For example, although the 3-strong center of the strong oriented graph D in Figure 6 lies in a block of the underlying graph of D, the 4-strong center of D is D itself and D is not a block. On the other hand, as Hedetniemi (see [1]) showed that every graph is the center of some connected graph, it was also shown in [3] that every oriented graph is the 2-strong center of some strong digraph. We now extend this result by showing that, for each integer $k \ge 2$, every oriented graph is the k-strong center of some strong digraph.

Theorem 3.1. Let $k \ge 2$ be an integer. Then every oriented graph is the k-strong center of some strong digraph.

Proof. For an oriented graph D, we construct a strong oriented graph D^* from D by adding the 3k new vertices u_i, v_i, w_i $(1 \le i \le k)$ and arcs (1) $(w_i, v_i), (v_i, u_i)$, and (u_i, w_i) for all i with $1 \le i \le k$ and (2) (u_i, x) and (x, v_i) for all $x \in V(D)$ and for all i with $1 \le i \le k$. The oriented graph D^* is shown in Figure 7. Certainly, D^* is strong. Next, we show that D is the k-strong center of D^* .

Figure 7. A strong oriented graph D^* containing D as its k-strong center

Let $U = \{u_1, u_2, \dots, u_k\}$, $V = \{v_1, v_2, \dots, v_k\}$, and $W = \{w_1, w_2, \dots, w_k\}$. For each $x \in V(D)$, let $S(x) = \{x\} \cup (W - \{w_k\})$. Then $se_k(x) = d(S) = 6(k-1)$. For each $u_i \in U$, where $1 \leq i \leq k$, let $S(u_i) = \{u_i\} \cup (W - \{w_i\})$. Then $se_k(u_i) =$

 $d(S) = 6(k-1) + 3 \text{ for } 1 \leq i \leq k. \text{ For each } v_i \in V, \text{ where } 1 \leq i \leq k, \text{ let}$ $S(v_i) = \{v_i\} \cup (W - \{w_i\}). \text{ Then } \operatorname{se}_k(v_i) = d(S) = 6(k-1) + 3 \text{ for } 1 \leq i \leq k.$ For each $w_i \in W$, where $1 \leq i \leq k$, let S = W. Then $\operatorname{se}_k(w_i) = d(S) = 6k$ for $1 \leq i \leq k.$ Since $\operatorname{se}_k(x) = 6(k-1)$ for all $x \in V(D)$ and $\operatorname{se}_k(v) > 6(k-1)$ for all $v \in V(D^*) - V(D)$, it follows that D is the k-strong center of D^* , as desired. \Box

Independently, V. Castellana and M. Raines also discovered Theorem 3.1 (personal communication). A vertex v in a strong digraph D is called a k-strong peripheral vertex if $\operatorname{se}_k(v) = \operatorname{sdiam}_k(D)$, while the subgraph induced by the k-strong peripheral vertices of D is the k-strong periphery $SP_k(D)$ of D. Also, these concepts were first introduced in [3] for k = 2. A strong digraph D and its 3-strong periphery are shown in Figure 8. The following result appeared in [3].

Figure 8. The 3-strong periphery of a strong digraph

Theorem A. If D is an oriented graph with $\operatorname{srad}_2(D) = 3$ and $\operatorname{sdiam}_2(D) > 3$, then D is not the 2-strong periphery of any oriented graph.

We now extend Theorem A to the k-strong periphery of a strong oriented graph for $k \ge 3$ and show that not all oriented graphs are the k-strong peripheries of strong oriented graphs.

Theorem 3.2. Let $k \ge 3$ be an integer. If D is an oriented graph with $\operatorname{sdiam}_k(D) > \operatorname{srad}_k(D)$, then D is not the k-strong periphery of any oriented graph.

Proof. Let D satisfy the conditions of the theorem. Assume, to the contrary, that D is the k-strong periphery of some oriented graph D'. Assume that $\operatorname{srad}_k(D) = r$ and $\operatorname{sdiam}_k(D) = d$. So $d > r \ge 3$. Let u be a k-strong central vertex of D. Since $\operatorname{sdiam}_k(D) = d > r$, we have $\operatorname{sdiam}_k(D') = d' \ge d > r$. Moreover, since D is the k-strong periphery of D' and $u \in V(D)$, it follows that D' contains a set $S = \{u, v_1, v_2, \ldots, v_{k-1}\}$ such that $d(S) = \operatorname{sdiam}_k(D') = d'$. Because u is a k-strong central vertex of D, that is, u has k-strong eccentricity r in D, and r < d', at least one vertex from $\{v_1, v_2, \ldots, v_{k-1}\}$ does not belong to V(D). Assume, without loss of generality, that $v_1 \notin V(D)$. Then the k-strong eccentricity $\operatorname{se}_k(v_1)$ of v_1 in D' is

at least d(S) and so $\operatorname{se}_k(v_1) \ge d(S) = d'$. Thus $\operatorname{se}_k(v_1) = d'$, which implies that v_1 is a k-strong peripheral vertex of D'. Since $v_1 \notin V(D)$, it follows that D is not the k-strong periphery of D', which is a contradiction.

In [3], a sufficient condition was established for an oriented graph D to be the 2-strong periphery of some oriented graph D', which we state next.

Theorem B. Let *D* be an oriented graph of order *n* with strong diameter at least 4. If idv + odv < n - 1 for every vertex *v* of *D*, then *D* is the 2-strong periphery of some oriented graph *D'*.

Observe that if v is a vertex of an oriented graph D of order n such that id v+od v < n-1, then there is a vertex $u \in V(D)$ such that v and u are nonadjacent vertices of D, that is, v belongs to an independent set, namely $\{u, v\}$, of cardinality 2 in D. Thus the sufficient condition given in Theorem B is equivalent to that every vertex in D belongs to an independent set of cardinality 2 in D. We now extend Theorem B to obtain a sufficient condition for an oriented digraph D to be the k-strong periphery of some oriented graph D' for all integers $k \ge 2$.

Theorem 3.3. Let $k \ge 2$ be an integer and let D be a connected oriented graph. If every vertex of D belongs to an independent set of cardinality k in D, then D is the k-strong periphery of some oriented graph D'.

Proof. By Theorem B the result holds for k = 2. So we assume that $k \ge 3$. Let D be an oriented graph of order n which satisfies the conditions of the theorem and let $V(D) = \{u_1, u_2, \ldots, u_n\}$. We construct a new oriented graph D' of order 2n + 2 with $V(D') = V(D) \cup \{v_1, v_2, \ldots, v_n, x, y\}$ such that the arc set of D' consists of E(D) together with arcs (1) (u_i, v_i) and (v_i, u_j) for $1 \le i \le n$ and $1 \le j \le n$, (2) (v_i, v_j) for $1 \le i < j \le n$, and (3) $(y, x), (v_i, x), (x, u_i), (u_i, y), (y, v_i)$ for $1 \le i \le n$. The oriented graph D' is shown in Figure 9. We claim that D is the k-strong periphery of D'. We will show it only for k = 3 since the argument for $k \ge 4$ is similar.

Figure 9. An oriented graph D' containing D as its k-strong periphery

We first show that $se_3(u_i) = 6$ in D' for all i with $1 \leq i \leq n$. Without loss of generality, we consider only $u_1 \in V(D)$ and show that $se_3(u_1) = 6$. Let $S_0 = \{u_1, u_p, u_q\}$ be an independent set of three vertices in D', where $2 \leq p < q \leq n$. Then the size of a strong subdigraph containing S_0 is at least 6. On the other hand, the directed 6-cycle C shown in Figure 10 contains S_0 . Thus $d(S_0) = 6$ and so $se_3(u_1) \geq 6$.

Figure 10. A directed 6-cycle C in D' containing S_0

To show that $se_3(u_1) \leq 6$. Let S be a set of three vertices of D containing u_1 . Then the only possible choices for S are $S_1 = \{u_1, u_i, u_j\}$, where $2 \leq i < j \leq n$, $S_2 = \{u_1, v_i, v_j\}$, where $1 \leq i < j \leq n$, $S_3 = \{u_1, u_i, v_j\}$, where $i \geq 2$ and $1 \leq j \leq n$, $S_4 = \{u_1, x, y\}, S_5 = \{u_1, u_i, y\},$ where $2 \leq i \leq n, S_6 = \{u_1, u_i, x\},$ where $2 \leq i \leq n,$ $S_7 = \{u_1, v_i, y\}$, and $S_8 = \{u_1, v_i, x\}$, where $1 \leq i \leq n$. If $S = S_1$, then the directed 6-cycle $u_1, v_1, u_i, v_i, u_j, v_j, u_1$ is a strong subdigraph of D' containing S and so $d(S) \leq 6$. Let $S = S_2 = \{u_1, v_i, v_j\}$, where $1 \leq i < j \leq n$. If i = 1, then the directed 4-cycle u_1, v_1, u_j, v_j, u_1 is a strong subdigraph of D' containing S and so $d(S) \leq 4$. If $i \geq 2$, then the directed 4-cycle u_1, y, v_i, v_j, u_1 is a strong subdigraph of D' containing S and so $d(S) \leq 4$. Let $S = S_3 = \{u_1, u_i, v_j\}$, where $i \geq 2$ and v_i, u_1 is a strong subdigraph of D' containing S and so $d(S) \leq 4$; Otherwise, the directed 5-cycle $u_1, y, v_i, u_i, v_i, u_1$ is a strong subdigraph of D' containing S and so $d(S) \leq 5$. If $S = S_4$, then the directed 3-cycle u_1, y, x, u_1 is a strong subdigraph of D' containing S and so $d(S) \leq 3$. If $S = S_5$ (or $S = S_6$), then the directed 5-cycle $u_1, v_1, u_i, y, v_i, u_1$ contains S (or the directed 5-cycle $u_1, v_1, x, u_i, v_i, u_1$ contains S). Thus $d(S) \leq 5$. Let $S = S_7 = \{u_1, v_i, y\}$ or $S = S_8 = \{u_1, v_i, x\}$, where $1 \leq i \leq n$. If i = 1, then directed 4-cycle u_1, y, v_1, x, u_1 contains S and $d(S) \leq 4$. If $i \ge 2$, then either the directed 5-cycle $u_1, v_1, u_i, y, v_i, u_1$ contains S or the directed 5-cycle u_1 , v_1, x, u_i, v_i, u_1 contains S. Thus $d(S) \leq 5$. Hence $d(S) \leq 6$ for all possible choices for S and so $se_3(u_1) \leq 6$. Therefore, $se_3(u_1) = 6$. Similarly, $se_3(u_i) = 6$ for all i with $2 \leqslant i \leqslant n.$

Next we show that $se(x) \leq 5$ and $se(y) \leq 5$ in D'. Let S be a set of three vertices in D' containing x. Then the only possible choices for S are $S_1 = \{x, u_i, u_j\}$, where

 $1 \leq i < j \leq n, S_2 = \{x, v_i, v_j\}$, where $1 \leq i < j \leq n, S_3 = \{x, u_i, v_j\}$, where $1 \leq i \leq n$ and $1 \leq j \leq n, S_4 = \{x, y, u_i\}$, where $1 \leq i \leq n$, and $S_5 = \{x, y, v_i\}$, where $1 \leq i \leq n$. For $S = S_1, S_2, S_3$, the directed 5-cycle $u_i, v_i, x, u_j, v_j, u_i$ contains S and so $d(S) \leq 5$. For $S = S_4$, the directed 3-cycle x, u_i, y, x contains S and so $d(S) \leq 3$. For $S = S_5$, the directed 4-cycle u_1, y, v_i, x, v_1 contains S and so $d(S) \leq 4$. Therefore, $\operatorname{se}(x) \leq 5$. Similarly, $\operatorname{se}(y) \leq 5$.

Finally, we show that $se(v_i) \leq 5$ in D' for all i with $1 \leq i \leq n$. Without loss of generality, let $v_i = v_1$ and let S be a set of three vertices in D' containing v_1 . Then the only possible choices for S are $S_1 = \{v_1, u_i, u_j\}$, where $1 \leq i < j \leq n$, $S_2 = \{v_1, v_i, v_j\}$, where $2 \leq i < j \leq n$, $S_3 = \{v_1, u_i, v_j\}$, where $1 \leq i \leq n$ and $j \geq 2$, $S_4 = \{v_1, u_i, x\}$, where $1 \leq i \leq n$, $S_5 = \{v_1, v_i, x\}$, where $2 \leq i \leq n$, $S_6 = \{v_1, u_i, y\}$, where $1 \leq i \leq n$, and $S_7 = \{v_1, v_i, y\}$, where $2 \leq i \leq n$. An argument similar to the one above shows that $d(S) \leq 5$ for each choice of S and so $se_3(v_1) \leq 5$.

Since $se_3(v) = 6$ for all $v \in V(D)$ and $se_3(v) \leq 5$ for all $v \in V(D') - V(D)$, it follows that D is the 3-strong periphery of the oriented graph D'. In general, for $k \geq 3$, we have $se_k(v) = 2k$ for all $v \in V(D)$ and $se_k(v) \leq 2k - 1$ for all $v \in V(D') - V(D)$. Therefore, D is the k-strong periphery of the oriented graph D'.

4. On strongly k-self-centered oriented graphs

Let D be a nontrivial strong digraph of order n and let k be an integer with $2 \leq k \leq n$. Then D is called strongly k-self-centered if $\operatorname{srad}_k D = \operatorname{sdiam}_k D$, that is, if D is its own k-strong center. For example, the directed n-cycle $\overrightarrow{C_n}$ and the strong digraph D in Figure 5 are k-self-centered for all k with $2 \leq k \leq n$. The 2-self-centered digraph was studied in [3]. The following result was established in [3].

Theorem C. For every integer $r \ge 3$, there exist infinitely many strongly 2-selfcentered oriented graphs of strong radius r.

We now extend Theorem C to strongly 3-self-centered oriented graphs.

Theorem 4.1. For every integer $r \ge 6$, there exist infinitely many strongly 3-self-centered oriented graphs of strong radius r.

Proof. For each integer $r \ge 6$, we construct an infinite sequence $\{D_n\}$ of strongly 3-self-centered oriented graphs of strong radius r. We consider two cases, according to whether r is even or r is odd.

Case 1. r is even. Let r = 2p, where $p \ge 3$. Let D_1 be the digraph obtained from the directed p-cycle $C_p: w_1, w_2, \ldots, w_p$ by adding the 2(p-1) new vertices u_1, u_2, \ldots, u_p

 u_{p-1} and $v_1, v_2, \ldots, v_{p-1}$ and the new arcs (1) $(u_i, u_{i+1}), (v_i, v_{i+1})$ for $1 \le i \le p-2$ and (2) $(v, u_1), (u_{p-1}, v), (v, v_1)$, and (v_{p-1}, v) for all $v \in V(C_p)$. The digraph D_1 is shown in Figure 11 for r = 6. Let $U = \{u_1, u_2, \ldots, u_{p-1}\}, V = \{v_1, v_2, \ldots, v_{p-1}\},$ and $W = \{w_1, w_2, \ldots, w_p\}$. We show that D_1 is a strongly 3-self-centered digraph with 3-strong radius r.

Figure 11. The digraph D_1 in Case 1 for r = 6

First, we make an observation. If $S = \{u, v, w\}$, where $u \in U, v \in V$, and $w \in W$, then $d(S) \ge r$ by the construction of D_1 . On the other hand, let D_S be the strong subdigraph in D_1 consisting of two *p*-cycles $w, v_1, v_2, \ldots, v_{p-1}, w$ and $w, u_1, u_2, \ldots, u_{p-1}, w$. Since D_S contains S and has size 2p = r, it follows that d(S) = r. Therefore, for every vertex x of $V(D_1)$, there is a set S of three vertices of D_1 such that S contains x and d(S) = r. This implies that $se_3(x) \ge r$ for all $x \in V(D_1)$. So it remains to show that $se_3(x) \le r$ for all $x \in V(D_1)$. There are two subcases.

Subcase 1.1. $x \in U$ or $x \in V$. Without loss of generality, assume that $x \in U$. We will only consider $x = u_1 \in U$ since the proofs for other vertices are similar. Let S be a set of three vertices in D_1 containing u_1 . If $S \cap V \neq \emptyset$ and $S \cap W \neq \emptyset$, then d(S) = r by the observation above. So we may assume that S is one of the following sets: $S_1 = \{u_1, u_i, u_j\}$, where $2 \leq i < j \leq p-1$, $S_2 = \{u_1, u_i, w_j\}$, where $2 \leq i \leq p-1$ and $1 \leq j \leq p$, $S_3 = \{u_1, u_i, v_j\}$, where $2 \leq i \leq p-1$ and $1 \leq j \leq p-1$, $S_4 = \{u_1, v_i, v_j\}$, where $1 \leq i < j \leq p-1$, and $S_5 = \{u_1, w_i, w_j\}$, where $1 \leq i < j \leq p$. If $S = S_1, S_2$, then the directed p-cycle $w_j, u_1, u_2, \ldots, u_{p-1}, w_j$ is a strong subdigraph in D_1 containing S and so $d(S) \leq p$. If $S = S_3, S_4$, then the strong subdigraph D_S in D_1 consisting of two p-cycles $w_1, v_1, v_2, \ldots, v_{p-1}, w_1$ and $w_1, u_1, u_2, \ldots, u_{p-1}, w_j$ contains S and so $d(S) \leq 2p = r$. If $S = S_5$, then the strong subdigraph consisting of two p-cycles $w_i, v_1, v_2, \ldots, v_{p-1}, w_i$ and $w_j, u_1, u_2, \ldots, u_{p-1}, w_j$ contains S and so $d(S) \leq 2p = r$.

Subcase 1.2. $x \in W$. We may assume that $x = w_1 \in W$ and let S be a set of three vertices in D_1 containing w_1 . Again, if $S \cap V \neq \emptyset$ and $S \cap U \neq \emptyset$, then d(S) = r by the observation above. So we may assume that S is one of the following sets $S_1 = \{w_1, w_i, w_j\}$, where $2 \leq i < j \leq p$, $S_2 = \{w_1, w_i, u_j\}$, where $2 \leq i \leq p$ and $1 \leq j \leq p-1$, $S_3 = \{w_1, w_i, v_j\}$, where $2 \leq i \leq p$ and $1 \leq j \leq p-1$, $S_4 = \{w_1, u_i, u_j\}$,

where $1 \leq i < j \leq p-1$, and $S_5 = \{w_1, v_i, v_j\}$, where $1 \leq i < j \leq p-1$. An argument similar to the one in Subcase 1.1 shows that $d(S) \leq r$ for all possible choices for S.

Therefore, $se_3(x) = r$ for all $x \in V(D_1)$ and so D_1 is a strongly 3-self-centered digraph with 3-strong radius r.

For $n \ge 1$, we define the strong digraph D_{n+1} recursively from D_n by adding the 2(p-1) new vertices $x_1, x_2, \ldots, x_{p-1}$ and $y_1, y_2, \ldots, y_{p-1}$ and the new arcs (1) $(x_i, x_{i+1}), (y_i, y_{i+1})$ for $1 \le i \le p-2$ and $(2), (v, x_1), (x_{p-1}, v), (v, y_1), (v, y_{p-1}, v)$ for all $v \in V(D_n)$. The digraph D_{n+1} is shown in Figure 12. We assume that D_n is a strongly 3-self-centered oriented graph of 3-strong radius r for some integer $n \ge 1$ and show that D_{n+1} is also a strongly 3-self-centered oriented graph of 3-strong radius r.

Figure 12. The digraph D_{n+1} in Case 1

Let $X = \{x_1, x_2, \dots, x_{p-1}\}$ and $Y = \{y_1, y_2, \dots, y_{p-1}\}$. For $v \in V(D_{n+1})$, let S be a set of three vertices in D_{n+1} containing v. If $v \in V(D_n)$ and $S = \{v, x_1, y_1\}$, then $se_3(v) = d(S) = r$. So we may assume that $v \in X \cup Y$, say $v = x_1$. Let $S = \{v, y_1, z\}$, where $z \in V(D_n)$. Then $d(S) = se_3(v) = r$. Therefore, $se_3(v) = r$ for all $v \in V(D_{n+1})$ and so D_{n+1} is also a strongly 3-self-centered oriented graph of 3-strong radius r.

Case 2. r is odd. Let r = 2p + 1, where $p \ge 3$. Let D_1 be the digraph obtained from the directed (p+1)-cycle C_{p+1} : w_1, w_2, w_3, w_4, w_1 by adding the p-1 new vertices $u_1, u_2, \ldots, u_{p-1}$ and the new arcs (1) (u_i, u_{i+1}) for $1 \leq i \leq p-2$ and (2) (v, u_1) and (u_{p-1}, v) for all $v \in V(C_{p+1})$. The digraph D_1 is shown in Figure 13 for r = 7.

Figure 13. The digraph D_1 in Case 2 for r = 7

For $n \ge 1$, we define D_{n+1} recursively from D_n by adding the p-1 new vertices $x_1, x_2, \ldots, x_{p-1}$ and the new arcs (1) (x_i, x_{i+1}) , for $1 \le i \le p-2$ and (2) (v, x_1) and (x_{p-1}, v) for all $v \in V(D_n)$. The digraph D_{n+1} is shown in Figure 14.

Figure 14. The digraph D_{n+1} in Case 2

An argument similar to the one used in Case 1 shows that each strong digraph D_n is a strongly 3-self-centered oriented graph of strong radius r for all $n \ge 1$. \Box

A cknowledgments. The author is grateful to Professor Gary Chartrand for suggesting the concept of strong Steiner distance and kindly providing useful information on this topic.

References

- F. Buckley, Z. Miller, P. J. Slater: On graphs containing a given graph as center. J. Graph Theory 5 (1981), 427–434.
- [2] G. Chartrand, D. Erwin, M. Raines, P. Zhang: Strong distance in strong digraphs. J. Combin. Math. Combin. Comput. 31 (1999), 33–44.
- [3] G. Chartrand, D. Erwin, M. Raines, P. Zhang: On strong distance in strong oriented graphs. Congr. Numer. 141 (1999), 49–63.
- [4] G. Chartrand, L. Lesniak: Graphs & Digraphs, third edition. Chapman & Hall, New York, 1996.
- [5] G. Chartrand, O. R. Oellermann, S. Tian, H. B. Zou: Steiner distance in graphs. Čas. Pěst. Mat. 114 (1989), 399–410.

Author's address: Ping Zhang, Department of Mathematics and Statistics, Western Michigan University, Kalamazoo, MI 49008, USA, e-mail: ping.zhang@wmich.edu.