SUBTRACTION ALGEBRAS AND $B C K$-ALGEBRAS

Young Hee Kim, Chongju, Hee Sik Kim, Seoul

(Received May 16, 2001)

Abstract

In this note we show that a subtraction algebra is equivalent to an implicative $B C K$-algebra, and a subtraction semigroup is a special case of a $B C I$-semigroup.

Keywords: subtraction algebra, subtraction semigroup, implicative $B C K$-algebra, $B C I$ semigroup

MSC 2000: 06F35

B. M. Schein ($[9]$) considered systems of the form $(\Phi ; \circ, \backslash)$, where Φ is a set of functions closed under the composition "०" of functions (and hence ($\Phi ; \circ$) is a function semigroup) and the set theoretic subtraction " \backslash " (and hence $(\Phi ; \backslash)$ is a subtraction algebra in the sense of [2]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B. Zelinka ([11]) discussed a problem proposed by B. M. Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. In this note we show that a subtraction algebra is equivalent to an implicative $B C K$-algebra, and a subtraction semigroup is a special case of a $B C I$-semigroup which is a generalization of a ring.
By a $B C I$-algebra ([7]) we mean an algebra $(X, *, 0)$ of type $(2,0)$ satisfying the following axioms for all $x, y, z \in X$:
(i) $((x * y) *(x * z)) *(z * y)=0$,
(ii) $(x *(x * y)) * y=0$,
(iii) $x * x=0$,
(iv) $x * y=0$ and $y * x=0$ imply $x=y$.

A $B C K$-algebra is a $B C I$-algebra satisfying the axiom:
(v) $0 * x=0$ for all $x \in X$.

We can define a partial ordering \leqslant on X by $x \leqslant y$ if and only if $x * y=0$. In any $B C I$-algebra X, we have
(1) $x * 0=x$,
(2) $(x * y) * z=(x * z) * y$,
(3) $x \leqslant y$ imply $x * z \leqslant y * z$ and $z * y \leqslant z * x$,
(4) $(x * z) *(y * z) \leqslant x * y$
for any $x, y, z \in X$.
A subtraction algebra is a groupoid ($X ;-$) where "-" is a binary operation, called a subtraction; this subtraction satisfies the following axioms: for any $x, y, z \in X$,
(I) $x-(y-x)=x$;
(II) $x-(x-y)=y-(y-x)$;
(III) $(x-y)-z=(x-z)-y$.

Note that a subtraction algebra is the dual of the implication algebra defined by J. C. Abbott ([1]), by simply exchanging $x-y$ by $y x$. If to a subtraction algebra ($X ;-$) a semigroup multiplication is added safisfying the distributive laws

$$
\begin{aligned}
& x \cdot(y-z)=x \cdot y-x \cdot z, \\
& (y-z) \cdot x=y \cdot x-z \cdot x
\end{aligned}
$$

then the resulting algebra $(X ; \cdot,-)$ is called a subtraction semigroup. In [9] it is mentioned that in every subtraction algebra $(X ;-)$ there exists an element 0 such that $x-x=0$ for any $x \in X$. The proof is given by J. C. Abbott ([1], Theorem 1). Note that $x-0=x$ for any x in a subtraction algebra $(X ;-, 0)$. H. Yutani ([10]) obtained equivalent simple axioms for an algebra $(X ;-, 0)$ to be a commutative $B C K$-algebra.

Theorem 1 ([10]). An algebra $(X ;-, 0)$ is a commutative $B C K$-algebra if and only if it satisfies
(II) $x-(x-y)=y-(y-x)$;
(III) $(x-y)-z=(x-z)-y$;
(IV) $x-x=0$;
(V) $x-0=x$
for any $x, y, z \in X$.
A $B C K$-algebra $(X ;-, 0)$ is said to be implicative if $(\mathrm{I}) x-(y-x)=x$ for any $x, y \in$ X. Using this concept and comparing the axiom system of the subtraction algebra with the characterizing equalities of the implicative $B C K$-algebra (by H. Yutani), we summarize to obtain the main result of this paper.

Theorem 2. A subtraction algebra is equivalent to an implicative $B C K$-algebra.

The notion of a BCI-semigroup was introduced by Y. B. Jun et al. ([5]), and studied by many researchers ([3], [4], [6], [8]). A BCI-semigroup (or shortly, IS-algebra) is a non-empty set X with two binary operations "-" and "." and a constant 0 satisfying the axioms (i) $(X ;-0)$ is a $B C I$-algebra; (ii) $(X ; \cdot)$ is a semigroup; (iii) $x \cdot(y-z)=x \cdot y-x \cdot z,(x-y) \cdot z=x \cdot z-y \cdot z$ for all $x, y, z \in X$.

Example 3 ([3]). If we define two binary operations "*" and "." on a set $X:=\{0,1,2,3\}$ by

$*$	0	1	2	3
0	0	0	2	2
1	1	0	3	2
2	2	2	0	0
3	3	2	1	0

\cdot	0	1	2	3
0	0	0	0	0
1	0	1	0	1
2	0	0	2	2
3	0	1	2	3

then $(X ; *, \cdot, 0)$ is a $B C I$-semigroup.
Every p-semisimple $B C I$-algebra turns into an abelian group by defining $x+y:=$ $x *(0 * y)$, and hence a p-semisimple $B C I$-semigroup leads to the ring structure. On the other hand, every ring turns into a $B C I$-algebra by defining $x * y:=x-y$ and hence we can construct a $B C I$-semigroup. This means that the category of p semisimple BCI-semigroups is equivalent to the category of rings. In Example 3, we can see that $2+3=0 \neq 1=3+2$ and $3+2=1=3+3$, hence $(X ;+)$ is not a group. This means that there exist $B C I$-semigroups which cannot be derived from rings. Hence the BCI-semigroup is a generalization of the ring.

Since an implicative $B C K$-algebra is a special case of a $B C I$-algebra, we conclude that a subtraction semigroup is a special case of a BCI-semigroup.

Acknowledgement. The authors are deeply grateful to the referee for the valuable suggestions and help.

References

[1] J. C. Abbott: Semi-Boolean Algebras. Matemat. Vesnik 4 (1967), 177-198.
[2] J. C. Abbott: Sets, Lattices and Boolean Algebras. Allyn and Bacon, Boston, 1969.
[3] S. S. Ahn, H. S. Kim: A note on I-ideals in BCI-semigroups. Comm. Korean Math. Soc. 11 (1996), 895-902.
[4] Y. B. Jun, S. S. Ahn, J. Y. Kim, H. S. Kim: Fuzzy I-ideals in BCI-semigroups. Southeast Asian Bull. Math. 22 (1998), 147-153.
[5] Y. B. Jun, S. M. Hong, E. H. Roh: BCI-semigroups. Honam Mathematical J. 15 (1993), 59-64.
[6] Y. B. Jun, J. Y. Kim, Y. H. Kim, H.S. Kim: Fuzzy commutative I-ideals in BCI-semigroups. J. Fuzzy Math. 5 (1997), 889-898.
[7] J. Meng, Y. B. Jun: BCK-algebras. Kyung Moon Sa Co., Seoul, 1994.
[8] E. H. Roh, S. Y. Kim, W. H. Shim: a\&I-ideals on IS-algebras. Sci. Math. Japonicae Online 4 (2001), 21-25.
[9] B. M. Schein: Difference semigroups. Commun. Algebra 20 (1992), 2153-2169.
[10] H. Yutani: On a system of axioms of a commutative $B C K$-algebras. Math. Seminar Notes 5 (1977), 255-256.
[11] B. Zelinka: Subtraction semigroups. Math. Bohem. 120 (1995), 445-447.
Authors' addresses: Young Hee Kim, Department of Mathematics, Chungbuk National University, Chongju 361-763, Korea, e-mail: yhkim@cbucc.chungbuk.ac.kr; Hee Sik Kim, Department of Mathematics, Hanyang University, Seoul 133-791, Korea, e-mail: heekim@hanyang.ac.kr.

