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Abstract. Motivated by the concept of tangent measures and by H. Fürstenberg’s defi-
nition of microsets of a compact set A we introduce micro tangent sets and central micro
tangent sets of continuous functions. It turns out that the typical continuous function has
a rich (universal) micro tangent set structure at many points. The Brownian motion, on
the other hand, with probability one does not have graph like, or central graph like micro
tangent sets at all. Finally we show that at almost all points Takagi’s function is graph
like, and Weierstrass’s nowhere differentiable function is central graph like.
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1. Introduction

In Mathematical Reviews 97j:28009, the reviewer (Joan Verdera) wrote the follow-

ing: “Tangent measures play, with respect to measures, the same role that deriva-

tives play with respect to functions. Given a measure µ (locally finite Borel measure

on  n ) and a point, one looks at the measure in a small neighborhood of the point,

blows it up, normalizes suitably and takes a weak star limit in the space of measures.

The result is a tangent measure for µ at the given point.”

In this paper we return from measures to continuous functions and we see that

this concept of blowing up and taking suitable limits, this time in the Hausdorff
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metric, might be useful to obtain information about tangential “regularity” of irreg-

ular functions. To do so we will introduce the concept of micro tangent sets of a

continuous function. If the function is differentiable then the only micro tangent set

we can obtain at a point is a straight line segment with the slope of the derivative.

This shows that we have a generalization of the derivative.

For more irregular functions a much wider class of micro tangent sets may exist for

many points. First we consider the typical continuous functions, then the Brownian

motion.

It turns out that the micro tangent structure of the typical (in the sense of Baire

category) f ∈ C[0, 1] for almost every x ∈ [0, 1] is universal. Nonetheless, UMT (f),

the set of points (x; f(x)) which are universal, has some paradoxical properties. Its

projection onto the y-axis is of measure zero and it is of σ-finite one dimensional

Hausdorff measure while the graph of the typical continuous function is of non-σ-

finite one dimensional Hausdorff measure. We also show that the packing dimension

of UMT (f) is two, which is also the packing dimension of the graph of the typical

continuous function. We remark that differentiability properties of typical continuous

functions were studied for a long time and still are subject of current research, see

for example Zajíček [20], Zajíček and Preiss [18] and the references in these papers.

The Brownian motion turns out to be wilder than the typical continuous function.

With probability one the Brownian pathW (t) has no universal micro tangent points.

If vertical distortion is allowed in taking the weak limits of tangent spaces of random

processes, see also the recent papers of K.Falconer [4], [5]. We introduce some weaker

conditions than universality, called graph like, or central graph like points, but the

Brownian motion path is not behaving well with respect to these concepts either.

In Theorem 2 we see that on the graph of any continuous function the set of graph

or central graph like points is of σ-finite H 1-measure.

Finally, we look at two examples of “irregular functions”: Takagi’s function and

Weierstrass’s nowhere differentiable function. We see that these nowhere differen-

tiable functions are tamer than the Brownian motion and almost every point is

graph like for Takagi’s function and central graph like for Weierstrass’s nowhere dif-

ferentiable function. Takagi’s function has also a property which we call “micro-self

similarity”. This means that at almost every point the graph of the original function

is a micro tangent set. The universality of typical continuous functions implies that

they are also “micro-self similar”.

We denote by Q(m) the closed unit cube of  m .

Working with a compact subset A ⊂  m in his talk [6] H. Fürstenberg defined the

microsets of A in the following way: A′ is a microset of A if there exist sequences of

scaling constants γn ∈  and translation vectors tn ∈  m such that γnA + tn ∩Q(m)

converges to A′ in the Hausdorff metric.
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In this paper we will deal with special compact sets of  2 , namely with graphs of

continuous functions defined on [0, 1]. This definition and the definition of tangent

measures (see Preiss [17], Mattila [15], and Falconer [3] Ch. 9) have motivated our

concept of micro tangent (M -tangent) sets of continuous functions.

2. Notation and basic definitions

Points in  2 will be denoted by (x; y) while the open interval with endpoints x

and y will be denoted by (x, y).

Given A ⊂  2 , by |A|, int(A), and cl(A) we mean its diameter, interior, and

closure, respectively.

The closed cube of side length 2δ > 0 centered at (x; y) will be denoted by

Q((x; y), δ), that is, Q((x; y), δ) = {(x′; y′) : |x′ − x| 6 δ and |y′ − y| 6 δ}. Let
Q2 be the closed cube of side length 2, centered at (0; 0), that is, Q((0; 0), 1).

If F ⊂  2 then we denote by CENT (F ) the connected component of F ∩ Q2

which contains (0; 0), this component is the central component of F in Q2.

The projections of the coordinate plane onto the x, or y axis are denoted by πx,

or πy, respectively.

By distH (A, B) we mean the Hausdorff distance of two compact sets A and B.

The one-dimensional Hausdorff measure in  2 will be denoted by H 1, the

Lebesgue measure on  will be denoted by λ.

It is not difficult to see that Vitali’s covering theorem is also valid for coverings

by closed squares, that is, the following variant of Theorem 2.8 of [14] holds.

Theorem 1. Let µ be a Radon measure on  2 , A ⊂  2 and Q a family of closed

squares such that each point of A is the centre of arbitrarily small squares of Q, that

is,

inf{r : Q((x; y), r) ∈ Q} = 0 for (x; y) ∈ A.

Then there are disjoint squares Qi ∈ Q such that

µ

(
A \

⋃

i

Qi

)
= 0.

By C[−1, 1]0 we mean the set of those functions g in C[−1, 1] for which g(0) = 0.

Definition 1. The micro tangent (M -tangent) set system of f ∈ C[0, 1] at the

point x0 ∈ (0, 1) will be denoted by fMT (x0) and it is defined as follows.
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For δn > 0 we put

(1) F (f, x0, δn) =
1

δn
((graph(f) ∩ Q((x0; f(x0)), δn)) − (x0; f(x0))),

that is, F (f, x0, δn) is the 1/δn-times enlarged part of graph(f) belonging to

Q((x0; f(x0)), δn) translated into Q2.

The set F is a micro tangent set (M -tangent set) of f at x0, that is, F ∈ fMT (x0)

if there exists δn ↘ 0 such that F (f, x0, δn) converges to F in the Hausdorff metric.

The set F is a central-micro tangent set (CM -tangent set) of f at x0, that is

F ∈ fCMT (x0) if there exists δn ↘ 0 such that CENT (F (f, x0, δn)) converges to F

in the Hausdorff metric.

It is easy to see that if f is differentiable at x0 then fMT (x0) = fCMT (x0) consists

of one line segment of slope f ′(x0) passing through the origin.

Definition 2. We say that x0 is a graph like, or a central graph like MT -point for

f if there exists g ∈ C[−1, 1]0 such that graph(g)∩Q2 ∈ fMT (x0), or graph(g)∩Q2 ∈
fCMT (x0), respectively. We denote byGLMT (f), or by CGLMT (f) the set of graph

like micro tangent points, or the set of central graph like micro tangent points of f ,

that is, the set of those (x0; f(x0)) for which x0 is a graph like, or central graph like

MT -point of f , respectively.

Clearly, CGLMT (f) ⊃ GLMT (f).

Definition 3. We say that x0 is a universal MT -point for f if graph(g) ∩ Q2 ∈
fMT (x0) for every g ∈ C[−1, 1]0.

The collection of those points (x0; f(x0)) for which x0 is a universal MT -point of

f will be denoted by UMT (f).

Definition 4. We denote by GLMTg(f), or by CGLMTg(f) for a fixed g ∈
C[−1, 1]0 the set of those (x0; f(x0)) for which graph(g) ∩ Q2 belongs to fMT (x0),

or CENT (graph(g) ∩ Q2) belongs to fCMT (x0), respectively.

Clearly, GLMTg(f) ⊂ GLMT (f), GLMTg(f) ⊂ CGLMTg(f). Using the

fact that we can always find a g1 ∈ C[−1, 1]0 for which graph(g1) ∩ Q2 =

CENT (graph(g) ∩ Q2) we also have CGLMTg(f) ⊂ CGLMT (f).
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3. Typical continuous functions

We start with a result which is valid for an arbitrary continuous function. Theo-

rem 2 shows that on the graph of f the set of graph like or central graph like points

cannot be too large.

Theorem 2. For any function f ∈ C[0, 1] the sets GLMT (f) and CGLMT (f)

are of σ-finite H 1-measure.

���������
. By CGLMT (f) ⊃ GLMT (f) it is enough to prove the theorem for

CGLMT (f). Given δ, ε > 0 denote by Eδ,ε the set of those (x0; f(x0)) for which

CENT (F (f, x0, δ)) does not intersect the line segments L1,ε = {(t; 1) : |t| 6 ε} and
L−1,ε = {(t;−1) : |t| 6 ε}.
Using the facts that f is continuous and that L1,ε ∪ L−1,ε is a closed set one can

easily see that Eδ,ε is a relatively open subset of graph(f).

Next, assume that g ∈ C[−1, 1]0 and graph(g) ∩ Q2 ∈ fCMT (x0). Then there

exists ε > 0 such that graph(g) ∩ (L1,ε ∪ L−1,ε) = ∅. Since graph(g) ∩ Q2 and

L1,ε ∪ L−1,ε are both compact, by the triangle inequality there exists ε′ > 0 such

that if distH (graph(g)∩Q2, CENT (F (f, x0, δ))) < ε′ then CENT (F (f, x0, δ)) does

not intersect L1,ε ∪ L−1,ε. Using the definition of fCMT (x0) we can choose δn ↘ 0

such that CENT (F (f, x0, δn)) does not intersect L1,ε ∪ L−1,ε.

Hence,

(x0; f(x0)) ∈
∞⋂

n=1

⋃

0<δ<1/n

Eδ,ε.

Therefore, from (x0; f(x0)) ∈ CGLMT (f) it follows that

(x0; f(x0)) ∈
∞⋃

m=1

∞⋂

n=1

⋃

0<δ<1/n

Eδ,1/m = H0.

Next, we verify that H =
∞⋂

n=1

⋃
0<δ<1/n

Eδ,1/m is of σ-finite H 1-measure for every

m ∈ � . This will imply that H0, and hence CGLMT (f), is also of σ-finite H 1-

measure.

Clearly, H0 and H are Borel sets.

Proceeding towards a contradiction assume that H 1(H) = ∞. Then by [2] Theo-

rem 4.10 and Exercise 4.8 for any fixed c we can choose a Borel subset Hc ⊂ H such

thatH 1(Hc) = c. Assume η > 0 is given. Now, considering for each (x0; f(x0)) ∈ Hc

those squares Q((x0; f(x0)), δn,x0
) for which CENT (F (f, x0, δn,x0

)) does not inter-

sect L1,1/m ∪ L−1,1/m and δn,x0
< η we obtain a Vitali covering Q of Hc. Hence
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by Vitali’s covering theorem used with the Radon measure µ(A) = H 1(A ∩ Hc),

one can choose a system (xk; f(xk)) ∈ Hc with a δk ∈ (0, η) such that the squares

Qk = Q((xk ; f(xk)), δk) are disjoint, are of diameter less than 2
√

2η, and H 1
(
Hc \

⋃
k

Qk

)
= 0.

We have (x; f(x)) ∈ Qk = Q((xk ; f(xk)), δk) for x ∈ [xk − (1/m)δk, xk +(1/m)δk].

Hence, for k 6= k′ the intervals [xk−(1/m)δk, xk +(1/m)δk] and [xk′ −(1/m)δk′ , xk′ +

(1/m)δk′ ] are disjoint subintervals of [0, 1]. This implies
∑
k

(2/m)δk 6 1 and

∑
k

|Qk| =
∑
k

2
√

2δk 6
√

2m and our cover of Hc ∩
⋃
k

Qk by
⋃
k

Qk consists of squares

of diameter less than 2
√

2η. On the other hand, H 1
(
Hc \

⋃
k

Qk

)
= 0 implies that

∑
k

|Qk| > c/2 for small values of η, which is impossible when c > 2
√

2m. �

By a result of R.D.Mauldin and S.C.Williams ([16] Theorem 2) the graph of

the typical continuous function is of Hausdorff dimension one, but is not of σ-finite

H 1-measure. So, Theorem 2 says that most points in the sense of H 1-measure

on the graph of the typical continuous function are neither graph nor central graph

like. The next lemma implies that despite this relative smallness of GLMT (f) and

CGLMT (f) the projection of these sets onto the x-axis is of full measure and, as

we will see in Theorem 5 below, the projection of UMT (f) onto the x-axis is also of

full measure.

Lemma 3. For a fixed g ∈ C[−1, 1]0 the set of those functions f ∈ C[0, 1] for

which λ(πx(GLMTg(f))) = λ(πx(CGLMTg(f))) = 1 = λ([0, 1]) is a dense Gδ set in

C[0, 1].

���������
. From GLMTg(f) ⊂ CGLMTg(f) it follows that it is sufficient to show

λ(πx(GLMTg(f))) = 1 for any f ∈ G for a dense Gδ set G of C[0, 1].

First choose and fix a countable dense subset {fm}∞m=1 in C[0, 1].

Assume n ∈ � is fixed. Our goal is to choose functions f̂m,n and numbers η̂m,n > 0

such that if f ∈ B(f̂m,n, η̂m,n) then there exists a set Xm,n ⊂ [0, 1] such that

• λ([0, 1] \ Xm,n) < 2−n,

• for any x0 ∈ Xm,n there exists δx0
∈ (0, 1/n) for which distH (F (f, x0, δx0

),

graph(g) ∩ Q2) < 1/n, and

• B(f̂m,n, η̂m,n) ⊂ B(fm, 1/mn).

Then we set Gn =
⋃
m

B(f̂m,n, η̂m,n) and G =
∞⋂

n=1
Gn.

Now, Gn is a dense open set in C[0, 1] and if f ∈ G then there exist sequences

{f̂mn,n}∞n=1, {η̂mn,n}∞n=1 such that f ∈ B(f̂mn,n, η̂mn,n). Since λ([0, 1] \ Xmn,n) <

2−n, by the Borel-Cantelli lemma almost every x0 ∈ [0, 1] belongs to finitely many

152



sets of [0, 1] \ Xmn,n. Hence for almost every x0 ∈ [0, 1] there exists an Nx0
such

that x0 ∈ Xmn,n for n > Nx0
. This implies graph(g) ∩ Q2 ∈ fMT (x0), that is,

(x0; f(x0)) ∈ GLMTg(f).

Therefore, to complete the proof of this lemma it is sufficient to show how to find

f̂m,n and η̂m,n for fixed m, n ∈ � .
Set f∗

1 = fm,n, η1 = 1/mn, X∗
1 = ∅ and τ1 = 1.

Put

g1(x) =





g(x) if − 1 6 x 6 1;

g(−1) if x 6 −1;

g(1) if x > 1.

Since g ∈ C[−1, 1]0 we can choose and fix M such that |g|, |g1| < M.

Without loss of generality we can also suppose that M > 1.

As a small perturbation of g1 choose a function g2 ∈ C(  ) such that
• g2(0) = 0,

• |g2| < M ,

• g2 is continuously differentiable,

• there is no interval on which g2 is constant,

• we have

(2)
distH (graph (g2) ∩ Q2, graph(g) ∩ Q2)

= distH (F (g2, 0, 1), graph(g) ∩ Q2) <
1

2n
,

• g2 has no extrema on the boundary of Q
2, and

• g2 does not go through any vertex of Q
2.

Using the above properties and the uniform continuity of g2 on bounded intervals

choose γ ∈ (0, 1/2) and η∗ > 0 such that for all g∗ ∈ B(g2, η
∗)

distH (F (g∗, x, 1), F (g2, 0, 1)) <
1

2n
if |x| 6 γ.

(We need the properties of g2 because intervals of constancy, local extrema etc. on

the boundary of Q2 might cause “jumps” in the Hausdorff metric when we move

from g2 to a nearby function g∗ or move from 0 to x.) This by (2) implies for all

g∗ ∈ B(g2, η
∗)

(3) distH (F (g∗, x, 1), graph(g) ∩ Q2) <
1

n
if |x| 6 γ.

Suppose f∗
j , ηj , X

∗
j are given for a j > 1.

We will assume that X∗
j when j > 2 is the union of finitely many disjoint closed

intervals and each maximal subinterval of [0, 1] \ Xj is of length at least τj .
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Next, choose a large natural number κj such that it is divisible by four,

(4) 1/κj < min(τj/8, ηj/6M),

and the oscillation of f∗
j on an interval of length 4/κj is less than ηj/3. Assume k is

an integer and (4k + 2)/κj ∈ [0, 1]. For x ∈ [(4k + 1)/κj , (4k + 3)/κj ] set

(5) f∗
j+1(x) = f∗

j

(4k + 2

κj

)
+

1

κj(1 + γ)
g2

(
κj(1 + γ)

(
x − 4k + 2

κj

))
.

Then our assumptions on M and κj imply that

(6) |f∗
j+1(x) − f∗

j (x)| < ηj for x ∈
[4k + 1

κj
,
4k + 3

κj

]
.

Next, extend the definition of f∗
j+1 onto intervals of the form [4k/κj , (4k + 1)/κj)

and ((4k + 3)/κj , 4k/κj ] so that (6) holds on these intervals as well and f ∗
j+1 is

continuous on [0, 1].

Using (3) and (5) choose ηj+1 such that for any f ∈ B(f∗
j+1, ηj+1) we have

distH

(
F

(
f, x,

1

κj(1 + γ)

)
, graph(g) ∩ Q2

)
<

1

n

if x ∈
[4k + 2

κj
− γ

κj(1 + γ)
,
4k + 2

κj
+

γ

κj(1 + γ)

]

and B(f∗
j+1, ηj+1) ⊂ B(f∗

j , ηj).

Set

X∗
j+1 = X∗

j ∪
⋃

k∈ �

[4k + 2

κj
− γ

κj(1 + γ)
,
4k + 2

κj
+

γ

κj(1 + γ)

]
∩ [0, 1].

From (4) and the definition of τj it follows that any interval contiguous to Xj

contains at least one complete interval of the form [4k/κj , 4(k + 1)/κj ]. Thus there

exists a constant γ∗ depending only on γ and not depending on j such that

H
1([0, 1] \ X∗

j+1) < (1 − γ∗)H 1([0, 1] \ X∗
j ).

Hence, repeating the above procedure, there exists j such thatH 1([0, 1]\X∗
j ) < 2−n.

Then we stop and set f̂m,n = f∗
j , η̂m,n = ηj and Xm,n = X∗

j . �
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Lemma 4. If g ∈ C[−1, 1]0 and f ∈ C[0, 1] then GLMTg(f) is a Gδ set in the

relative topology of graph(f).

���������
. For a given ε > 0 set

E′
q,ε = {(x0; f(x0)) : distH (F (f, x0, q), graph(g) ∩ Q2) < ε}.

Denote by Eq,ε the interior of E
′
q,ε in the relative topology of the graph of f . Then

clearly

GLMTg(f) ⊃
⋂

n∈ �
⋂

m∈ �
⋃

q<1/m

Eq,1/n.

On the other hand, if (x0; f(x0)) ∈ GLMTg(f) and n, m ∈ � are given using the
definition of GLMTg(f), choose δ < 1/m such that

distH (F (f, x0, δ), graph(g) ∩ Q2) <
1

n
.

Recall that f has only countably many intervals of constancy and countably many

strict local extreme values. By choosing a slightly larger q ∈ (δ, 1/m), for which we

still have

(7) distH (F (f, x0, q), graph(g) ∩ Q2) <
1

n
,

we can assume that f is not constant and has no extreme values on the boundary of

Q((x0; f(x0)), q). Then by the continuity of f at x0 and by (7) one can choose a δ′ ∈
(0, q−δ) such that for any x′ ∈ (x0−δ′, x0+δ′) we have distH (F (f, x′, q), graph(g)∩
Q2) < 1/n and hence (x0; f(x0)) belongs to Eq,1/n. Therefore,

GLMTg(f) =
⋂

n∈ �
⋂

m∈ �
⋃

q<1/m

Eq,1/n.

�

Theorem 5. There is a dense Gδ set G of C[0, 1] such that λ(πx(UMT (f))) = 1

for all f ∈ G . Furthermore, UMT (f) is a dense Gδ subset in the relative topology of

graph(f). Hence, for the typical continuous function in C[0, 1] almost every x ∈ [0, 1]

is a universal MT -point and a typical point on the graph of f is in UMT (f).

���������
. Choose a countable dense system {gn}∞n=1 in C[−1, 1]0. By Lemma 3 for

each gn there exists a dense Gδ set G n in C[0, 1] such that λ(πx(GLMTgn
(f))) = 1

for any f ∈ G n. Set G =
∞⋂

n=1
G n.
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Assume f ∈ G and g ∈ C[−1, 1]0 are given. We need to show that graph(g) ∩
Q2 ∈ fMT (x0) for almost every x0 ∈ [0, 1]. Set X =

∞⋂
n=1

πx(GLMTgn
(f)) =

πx

( ∞⋂
n=1

GLMTgn
(f)

)
. Then λ(X) = 1.

Suppose x0 ∈ X and ε > 0 are given. Choose gn such that

(8) distH (graph(gn) ∩ Q2, graph(g) ∩ Q2) <
ε

2
.

Since x0 ∈ X and f ∈
∞⋂

m=1
G m ⊂ G n we can choose δ ∈ (0, ε) such that

(9) distH (F (f, x0, δ), graph(gn) ∩ Q2) <
ε

2
.

Hence, for any ε > 0 there exists δ ∈ (0, ε) such that

distH (F (f, x0, δ), graph(g) ∩ Q2) < ε.

Therefore, graph(g) ∩ Q2 ∈ fMT (x0).

In fact, above we have shown that if (x0; f(x0)) ∈
∞⋂

n=1
GLMTgn

(f) then (x0; f(x0))

∈ UMT (f). The other inclusion being obvious, we have

∞⋂

n=1

GLMTgn
(f) = UMT (f).

Since f is continuous, by virtue of λ(X) = 1 the set
∞⋂

n=1
GLMTgn

(f) is dense on the

graph of f . From Lemma 4 it follows that
∞⋂

n=1
GLMTgn

(f) is a dense Gδ subset of

graph(f). Hence, UMT (f) is also a dense Gδ subset of graph(f). �

Let g0 denote the identically zero function in [−1, 1]. Then CGLMTg0
(f) =

GLMTg0
(f).

Lemma 6. We have λ(πy(GLMTg0
(f))) = 0 for any f ∈ C[0, 1].

���������
. By Lemma 4, GLMTg0

(f) is a Borel set. We use the notation in-

troduced in the proof of Theorem 2. For g0 we choose ε = 1 and observe that for

ε′ ∈ (0, 1] it follows from distH (F (f, x0, δ), graph(g0)∩Q2) < ε′ that F (f, x0, δ) does

not intersect L1,1∪L−1,1, moreover |f(x)−f(x0)| < ε′δ holds for x ∈ [x0 −δ, x0 +δ].

It follows that GLMTg0
(f) ⊂ H =

∞⋂
n=1

⋃
0<δ<1/n

Eδ,1 where Eδ,ε was defined at the
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beginning of the proof of Theorem 2. Hence, by the argument of this proof H is of

finite H 1-measure, which implies that GLMTg0
(f) is also of finite H 1-measure.

Next, for any fixed ε′ > 0, considering for each (x0; f(x0)) ∈ GLMTg0
(f) those

cubes Q((x0; f(x0)), δ) for which

(10) |f(x) − f(x0)| < ε′δ for x ∈ [x0 − δ, x0 + δ],

we obtain a Vitali cover of GLMTg0
(f). By the Vitali covering theorem one

can choose (xk, f(xk)) ∈ GLMTg0
(f) and δk > 0 such that the cubes Qk =

Q((xk ; f(xk)), δk) are disjoint and H 1(GLMTg0
(f) \⋃

k

Qk) = 0. Then

(11) λ

(
πy

(
GLMTg0

(f) \
⋃

k

Qk

))
= 0

holds as well. Now the disjointness of Qk and Qk′ for k 6= k′ implies that [xk −
δk, xk + δk] and [xk′ − δk′ , xk′ + δk′ ] are also disjoint. Hence

∑
k

2δk < 1 and by

(10) we obtain λ
(
πy

(
graph(f) ∩ ⋃

k

Qk

))
< εgr′

∑
k

2δk < ε′. Using this and (11)

we obtain that λ(πy(GLMTg0
(f))) < ε′ holds for any ε′ > 0 and this concludes the

proof. �

The next theorem shows that though UMT (f) has large x-projection, it has small

y-projection.

Theorem 7. There is a dense Gδ set G of C[0, 1] such that λ(πy(UMT (f))) = 0

for all f ∈ G . Hence any preimage of almost every y in the range of the typical

continuous function is not a UMT -point.

���������
. Since UMT (f) ⊂ GLMTg0

(f) the theorem follows from Lemma 6. �

For the definition of the packing dimension we will use the notation introduced in

[2] 3.4 p. 47, or [3] 2.1 pp. 22–23 and we recall that

P
s
δ (Fi) = sup

{ ∑

j

|Bj |s : {Bj} is a collection of disjoint

balls of radii at most δ with centers in Fi

}

and Ps
0(Fi) = lim

δ→0
Ps

δ (Fi). Finally, in the definition of Ps(F ), the s-dimensional

packing measure of the Borel set F , one needs to set

(12) P
s(F ) = inf

{ ∑

i

P
s
0(Fi) : F ⊂

⋃

i

Fi

}
.
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We also recall that by a result of P.Humke and G.Petruska ([9]) the packing

dimension of the typical continuous function equals two. Next we see that from

the packing dimension point of view UMT (f) is sufficiently large for the typical

continuous function.

By considering typical restrictions of functions in C[0, 1] onto intervals [a, b] ⊂ [0, 1]

with rational endpoints one can easily see that the graph of the typical continuous

function f ∈ C[0, 1] restricted onto any interval [a, b], (a < b) is of packing dimension

two.

Theorem 8. For the typical continuous function f ∈ C[0, 1] the packing dimen-

sion of UMT (f) equals two.

���������
. We will work in the relative topology of graph(f) for an f ∈ C[0, 1].

Assume that UMT (f) is a dense Gδ subset of graph(f) and Ps(UMT (f)) < ∞
for an s < 2.

Next we show that there exists an interval [a, b] on which the graph of f is of

packing dimension less than or equal to s. From (12) and Baire’s Category Theorem

applied to the graph of f it follows that there exists an Fi in a countable covering

of F for which Ps
0(Fi) < ∞ and Fi is dense in a portion of graph(f). From now

on we assume that this Fi is fixed. Choose an interval [a, b] ⊂ [0, 1] (a < b) such

that Fi is dense in the set S = graph(f |[a,b]). Since Fi ∩ S is dense in S we have

Ps
0(Fi ∩ S) = Ps

0(S). Thus Ps
0(S) < ∞, which implies Ps(S) < ∞ and hence the

packing dimension of S is less than two, but by the Humke-Petruska result for the

typical continuous function graph(f |[a,b]) is of packing dimension two. This implies

the statement of Theorem 8. �

4. Brownian motion

In this section instead of working with C[0, 1] we will work with C[0, +∞], our

definitions concerning micro tangent sets being generalized to this case in the obvious

way. We use the notation of [1] Chapter 7.

Assume that [W (t) : t > 0] denotes the Brownian motion. By [1] 37.14, p. 505 if

Xn,k = max

{∣∣∣∣W
(k + 1

2n

)
− W

( k

2n

)∣∣∣∣,
∣∣∣∣W

(k + 2

2n

)
− W

(k + 1

2n

)∣∣∣∣,
∣∣∣∣W

(k + 3

2n

)
− W

(k + 2

2n

)∣∣∣∣
}
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then P [Xn,k 6 ε] 6 (2 · 2n/2 · ε)3 (where P [Xn,k 6 ε] denotes the probability that

Xn,k 6 ε). Hence if Yn = min
k6n·2n

Xn,k then

(13) P [Yn 6 ε] 6 n · 2n(2 · 2n/2ε)3.

Now we can formulate the main theorem of this section.

Theorem 9. For almost every Brownian motion path W (t), from F ∈ WCMT (t)

(t > 0) it follows that F ⊂ S0
def
= {(0; y) : |y| 6 1}. Therefore, CGLMT (W ) = ∅ and

UMT (W ) = ∅ with probability one.
���������

. We want to show that for any η ∈ (0, 1) with probability one for the

Brownian motion path at any t > 0 there exists δt,η > 0 such that for any δ ∈ (0, δt,η)

(14) CENT (F (W, t, δ)) ⊂ Sη
def
= {(x; y) : |x| 6 η, |y| 6 1}.

This will imply that if F ∈ WCMT (t) then F ⊂ Sη for all η > 0, that is, F ⊂ S0 =⋂
η>0

Sη.

To verify (14) it is sufficient to show that for any t > 0 there exists δt,η > 0 such

that for any δ ∈ (0, δt,η) one can find t− ∈ [t − ηδ, t] and t+ ∈ [t, t + ηδ] satisfying

(15) |f(t−) − f(t)| > δ and |f(t+) − f(t)| > δ.

Set

(16) Kη = 32/η and εn = Kη · 2−n.

From (13) applied with ε = εn it follows that

P [Yn 6 Kη2−n] 6 n · 2n(2 · 2n/2Kη · 2−n)3 = n · 2n(2Kη)32−3n/2.

Thus
∑
n

P [Yn 6 Kη2−n] < ∞ and by the Borel-Cantelli lemma with probability one
we have Yn 6 Kη2−n for only finitely many n’s for a Brownian motion path W .

Assume that for W under consideration N0 is chosen such that Yn > Kη2−n if

n > N0. For a fixed t > 0 we can assume that N0 is chosen to be so large that

t ∈ (0, N0/2).

Choose δt,η > 0 such that

(17) 2N0 <
4

ηδt,η
and δt,η < t.
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Then for a δ ∈ (0, δt,η) choose n such that

(18) 4 · 2−n < ηδ 6 8 · 2−n.

This implies 4/ηδt,η < 4/ηδ < 2n and by (17) we have n > N0. By the definition of

Yn in any subinterval of length 4 · 2−n in [0, n] one can choose two points t1, t2 such

that

(19) |f(t1) − f(t2)| > Kη2−n > (Kη/8)ηδ > 2δ

where the last inequality follows from (16). By virtue of (18) from (19) we conclude

that one can find t1, t2 either in [t− ηδ, t], or in [t, t + ηδ] such that (19) holds. This

implies (14). �

5. Specific functions

The behavior experienced at the Brownian motion is in a certain aspect the worst

possible, the function is central graph like at no point. In this section we want to

illustrate that there are other examples of non-differentiable functions for which one

can find a lot of points where GLMT (f) and/or CGLMT (f) is non-trivial. To

illustrate the applicability of micro tangent sets here we discuss two such examples.

(Of course, exact determination of the micro tangent properties of other functions

and classes of functions can be subject of further research.) The first example is

Takagi’s function, T (x).

Figure 1. Takagi’s function
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Let Φ(x)
def
=dist(x, � ) and set

T (x) =

∞∑

n=0

2−nΦ(2nx).

This is one of the well-known examples of nowhere differentiable functions, however,

its Hölder spectrum is very simple, it is a monofractal, [10] Section 6.

Theorem 10. For almost every x0 ∈  , (x0, T (x0)) is a graph like micro tangent

point of Takagi’s function, T (x). In fact, this function is “micro self-similar” in the

sense that if we take g = T |[−1,1] then graph(g) ∈ TMT (x0) for almost every x0 ∈  .
(We remind the reader that fMT (x0) was defined in Definition 1.)
���������

. By inspecting the graph of T (x) (see Figure 1) and doing some ele-

mentary estimates of the first few terms of the sum defining T (x) one can see that

if x0 ∈ [0.49, 0.51] and δ = 0.25 then

(20) (x; T (x)) ∈ Q((x0; T (x0)), δ) for x ∈ [x0 − δ, x0 + δ].

It is well-known that for almost every x ∈ [0, 1] the number of zeros and ones in the

dyadic expansion of x is the same infinitely often. (The corresponding symmetric

random walk model, where an n’th digit 0 means a unit step in the negative and

an n’th digit 1 means a unit step in the positive direction, is persistent by Pólya’s

theorem (p. 118 of [1]), that is, the particle doing the random walk returns infinitely

often to the origin.)

For an x ∈  we will consider the dyadic “expansion”

(21) x = [x] +

∞∑

j=1

rj(x)2−j , where rj(x) ∈ {0, 1}

and [x] is the integer part of x. Since we work with almost every x we can exclude

the dyadic rationals and hence the rj(x)’s are unique. Denote by X∞ the set of

those x ∈  for which the number of zeros and ones in the above dyadic expansion is
infinitely often the same. To make this more precise, set E(x, 0) = 0, and if E(x, k)

for a k > 0 is given then let E(x, k + 1) be the least n > E(x, k) for which

#{j : rj(x) = 0, 1 6 j 6 n} = #{j : rj(x) = 1, 1 6 j 6 n}.

For an η ∈ (0, 0.001) we will denote by X∗
∞,η the set of those x ∈ X∞ for which there

are infinitely many k(j, x, η)’s (j = 1, 2, . . .) such that

(22)
∣∣∣dist

(
x, 2−E(x,k(j,x,η)) � )

− 1

2
· 2−E(x,k(j,x,η))

∣∣∣ < η · 2−E(x,k(j,x,η)).
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Next we show that for any η ∈ (0, 0.001) almost every x ∈ X∞ belongs to X∗
∞,η. Set

Ψm =
{
x :

∣∣∣dist(x, 2−m � )− 1

2
2−m

∣∣∣ < η2−m, and ∃k ∈ � , E(x, k) = m
}
.

If E(x, k) = m and the interval I = [i2−m, (i + 1)2−m], i ∈ � contains x then

(23) λ(I ∩ Ψm)/λ(I) = 2η.

Set LM =
∞⋃

m=M

Ψm. From (23) it follows that the upper Lebesgue density of LM

at any x ∈ X∞ is positive and hence by Lebesgue’s density theorem almost every

x ∈ X∞ is a density point of LM , which implies λ(X∞ \ LM ) = 0. Therefore,

λ
(
X∞ \

∞⋂
M=1

LM

)
= 0 and X∗

∞,η =
∞⋂

M=1

LM is of full measure and almost every

x ∈ X∞ belongs to X∗
∞,η.

We claim that if x0 ∈ X∗
∞,η then there exists τ∗

η ∈ [−4η, 4η] such that if gη(x) is

the restriction of T (x+ τ∗
η )−T (τ∗

η ) onto [−1, 1] then graph(gη) = graph(gη)∩Q2 ∈
fMT (x0).

Denote by Ij the interval of length lj
def
=2−E(x0,k(j,x0,η)) containing x0 and with

endpoints in lj � . If mj equals the midpoint of Ij then by (22)

(24) |x0 − mj | < η · lj .

Put TN (x) =
N∑

n=0
2−nΦ(2nx) and T ∗

N (x) =
∞∑

n=N+1

2−nΦ(2nx). Set Nj,η = E(x0,

k(j, x0, η)) − 1 and observe that TNj,η
(x) is constant on Ij and T ∗

Nj,η
(x) is an lj-

times rescaled (in both x and y directions) copy of T (x).

Hence, it follows from (20) and (24) that setting δj = 0.25lj we have (x; T (x)) ∈
Q((x0; T (x0)), δj) for x ∈ [x0 − δj , x0 + δj ] and

F (T , x0, δj) = graph(T (x + τj) − T (τj)) ∩ Q2

where the translation vector τj ∈ [−4η, 4η]. By compactness there exists τ ∗
η ∈

[−4η, 4η] to which a suitable subsequence of {τj} converges. Then for this sub-
sequence F (T , x0, δj) converges to graph(gη) ∩ Q2 in the Hausdorff metric. This

implies that graph(gη) ∈ fMT (x0), as we have claimed.

Next, letting ηK = 1/K, clearly τ∗
ηK

→ 0 and almost every x0 ∈  belongs
to X∗

∞

def
=

∞⋂
K=1

X∗
∞,ηK

. If x0 ∈ X∗
∞ then one can easily choose a sequence δ′K → 0

such that F (T , x0, δ
′
K) converges in the Hausdorff metric to the graph of g(x) =

T (x)|[−1,1] = lim
K→∞

gηK
(x). Hence graph(g) belongs to TMT (x0). �
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Our final example will be one of the simplest cases of Weierstrass’s nowhere differ-

entiable function. Probably the most famous detailed study of this type of functions

is Hardy’s paper [8]. We will take Ψ(x) = sin(2 � x) and consider

W (x) =

∞∑

n=0

2−nΨ(2nx).

A similar, but a little more complicated argument works if one takesΨ(x) = cos(2 � x).

For the partial and tail sums we will again use the notation

WN (x) =

N∑

n=0

2−nΨ(2nx) and W
∗

N (x) =

∞∑

n=N+1

2−nΨ(2nx).

Theorem 11. For almost every x0 ∈  , (x0, W (x0)) is a central graph like micro

tangent point of Weierstrass’s function W (x).

To prove this theorem we need the following lemma, which seems to be quite

natural.

Lemma 12. For almost every x0 ∈  we can find a strictly monotone increasing
sequence {N(j, x0)}∞j=1 such that W ′

N(j,x0)−1(x0) and W ′
N(j,x0)

(x0) are of opposite

signs, which implies

(25) |W ′
N(j,x0)

(x0)| =

∣∣∣∣
N(j,x0)∑

n=0

2 � cos(2 � 2nx0)

∣∣∣∣ 6 2 � .

First we will prove Theorem 11 based on this lemma and finally we will provide a

proof of Lemma 12.

�����������������! "�#�$ "%
11. Since W ′′

N(j,x0)
(x) =

N(j,x0)∑
n=0

−4 � 22n sin(2 � 2nx) we

have |W ′′
N(j,x0)

(x)| < 8 � 22N(j,x0). Hence, setting δj = 2−N(j,x0)−1 and Ij = [x0 −
δj , x0 + δj ], by using Lagrange’s mean value theorem and (25) we obtain

(26) |W ′
N(j,x0)

(x)| < 5 � 2 for x ∈ Ij .

The “Q2 rescaled” copies of the partial and tail sums of W will be denoted by

UN(j,x0)(x) =
1

δj
(WN(j,x0)(δjx + x0) − WN(j,x0)(x0))
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and

U∗
N(j,x0)

(x) =
1

δj
(W ∗

N(j,x0)
(δjx + x0) − W

∗
N(j,x0)

(x0)).

Clearly,

Wx0,δj
(x)

def
=

1

δj
(W (δjx + x0) − W (x0)) = UN(j,x0)(x) + U∗

N(j,x0)
(x)

and

F (W , x0, δj) = graph(Wx0,δj
) ∩ Q2.

From (26) it follows that

(27) |U ′
N(j,x0)

(x)| 6 5 � 2 for x ∈ [−1, 1].

For each j there exists τj ∈ [−1, 1] such that U∗
N(j,x0)

(x) = W (x + τj) − W (τj). By

UN(j,x0)(0) = 0 and (27) the family of functions UN(j,x0)(x) is uniformly bounded

and equicontinuous, so by the Arzela-Ascoli theorem (see, for example, [7] 1.6.9 p. 37)

there exists a subsequence {UN(jk,x0)(x)} which uniformly converges to a function
Ux0

(x). From (27) it also follows that

(28) |Ux0
(x) − Ux0

(y)| 6 5 � 2 for x, y ∈  .

By turning to a subsequence, if necessary, we can also assume that τjk
→ τ∗ ∈ [−1, 1].

Hence,

(29) Wx0,δjk
(x) converges uniformly to g(x)

def
=Ux0

(x) + W (x + τ∗) − W (τ∗).

Since W is nowhere differentiable, by (28) there is no interval on which g is constant.

Local extrema of g on the boundary of Q2 might cause some minor problems, this is

why we introduce g1 below.

It follows also from (28) and (29) that we can choose g1 ∈ C[−1, 1]0 such that

• CENT (graph(g)) ⊃ CENT (graph(g1)) ⊃ cl(CENT (int(Q2) ∩ graph(g))),

• CENT (graph(g1)) ∈ WCMT (x0), and

• |g1(x)| > 1 if (x; g1(x)) 6∈ CENT (graph(g1)).

This shows that x0 is a central graph like micro tangent point of f . �

Finally, we prove Lemma 12.
���������&�'�)(* "%+%-,

12. Denote by X± the set of those x’s in  for which
the sequence {W ′

N (x)}∞N=1 changes its sign infinitely often. We need to show that

λ(Xc
±) = 0, where we use the notation Ac for the complement of A ⊂  .
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Proceeding towards a contradiction assume that λ(Xc
±) > 0. Set λ± = λ(Xc

± ∩
[0, 1]). Since for all N ’s W ′

N is periodic by one we have λ± > 0.

For x ∈  we use the dyadic expansion of the form (21). Denote by X0,∞ the set

of those x in  \ . for which we have arbitrarily long blocks of 0’s in the sequence
{rj(x)}∞j=1. It is well-known (and not difficult to see) that λ(Xc

0,∞) = 0.

Clearly, {W ′
N (x)}∞N=1 is not bounded if x ∈ X0,∞.

Set

Xa = {x ∈  : {W ′
N(x)}∞N=1 is bounded from above}.

By periodicity it follows that for any k ∈ � from x ∈ Xa, x ± 2−k is also in Xa.

Hence Xa is periodic by 2−k for all k ∈ � . Clearly, Xa is measurable and it is a

consequence of the Lebesgue density theorem that there is a zero-one law, that is,

λ(Xa) = 0 or λ(Xc
a) = 0. Similarly, letting

Xb = {x ∈  : {W ′
N(x)}∞N=1 is bounded from below}

one can see that λ(Xb) = 0 or λ(Xc
b ) = 0.

From λ(Xc
0,∞) = 0 it follows that λ(Xc

a) = 0 and hence λ(Xc
b ) = 0 is impossible.

If λ(Xa) = 0 and λ(Xb) = 0 then λ(Xc
±) = 0 and this contradicts λ± > 0.

Assume

(30) λ(Xa) = 0 and λ(Xc
b ) = 0

(a similar argument works if λ(Xc
a) = 0 and λ(Xb) = 0). Our goal is again to obtain

a contradiction.

Set

XK
b = {x ∈  : W

′
N (x) > −K for all N ∈ � }.

Then XK
b is periodic by one, measurable,

∞⋃
K=1

XK
b = Xb and λ(Xb ∩ [0, 1)) = 1.

Hence there exists K such that λ(XK
b ∩ [0, 1)) > 0.9. For j = 0, 1, 2 put

XK
b,j = {x ∈  : x − j

3 ∈ XK
b }.

Then XK
b,j is periodic by one and λ(XK

b,j ∩ [0, 1)) > 0.9. Set Y =
3⋂

j=1

XK
b,j . Then Y is

also periodic by one, λ(Y ∩ [0, 1)) > 0.7 and W ′
N (x − (j/3)) > −K for every x ∈ Y

and N ∈ � . Recall that
2∑

j=0

cos(2 � (θ − (−1)n(j/3))) = 0 for any n ∈ � and θ ∈  .
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Therefore,

2∑

j=0

W
′

N

(
x − j

3

)
=

2∑

j=0

N∑

n=0

2 � cos

(
2 � 2n

(
x − j

3

))

=

N∑

n=0

2 �
2∑

j=0

cos

(
2 � 2nx − 2 � (3 − 1)n

3
j

)
=

N∑

n=0

2 �
2∑

j=0

cos
(
2 � 2nx − 2 � (−1)n

3
j
)

= 0.

Hence for x ∈ Y we have

W
′

N (x) = −
(

W
′

N

(
x − 1

3

)
+ W

′
N

(
x − 2

3

))
< 2K.

This would imply Y ⊂ Xa and λ(Y ) 6= 0, which contradicts (30). �

For further information about distribution of values of trigonometric polynomials

considered in Lemma 12 we refer to [11] and [12]; one can prove this lemma basing

on these results as well, but the treatment given here seemed to be more elementary.

The author would like to thank S.Konyagin for his suggestion of a simplified

version of the proof of Lemma 12 and for pointing out references [11], [12] and [13].

Our original “real analysis” version of the proof was based on the idea that if the

sequence W ′
N(x) is not changing for almost every x its sign infinitely often then

W ′(x) would equal +∞ or −∞ almost everywhere, which contradicts [19] Ch. IX.

(4.4) Theorem (the first version of this result, valid for continuous functions, is due

to N. N. Luzin [13]).
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