REGULAR, INVERSE, AND COMPLETELY REGULAR CENTRALIZERS OF PERMUTATIONS

Janusz Konieczny, Fredericksburg

(Received January 21, 2002)

Abstract

For an arbitrary permutation σ in the semigroup T_{n} of full transformations on a set with n elements, the regular elements of the centralizer $C(\sigma)$ of σ in T_{n} are characterized and criteria are given for $C(\sigma)$ to be a regular semigroup, an inverse semigroup, and a completely regular semigroup.

Keywords: semigroup of full transformations, permutation, centralizer, regular, inverse, completely regular

MSC 2000: 20M20

1. Introduction

Let $X_{n}=\{1,2, \ldots, n\}$. The full transformation semigroup T_{n} is the set of all mappings from X_{n} to X_{n} with composition as the semigroup operation. It has the symmetric group S_{n} of permutations on X_{n} as its group of units and it is a subsemigroup of the semigroup $P T_{n}$ of partial transformations on X_{n}. (A partial transformation on X_{n} is a mapping from a subset of X_{n} to X_{n}.)

Let S be a semigroup and $a \in S$. The centralizer of a relative to S is defined as

$$
C(a)=\{b \in S: a b=b a\} .
$$

It is clear that $C(a)$ is a subsemigroup of S.
Centralizers in T_{n} were studied by Higgins [1], Liskovec and Feĭnberg [6], [7], and Weaver [8]. The author studied centralizers in the semigroup $P T_{n}$ [3], [4], [5].

In [3], the author determined Green's relations and studied regularity of the centralizers of permutations in the semigroup $P T_{n}$. The purpose of this paper is to obtain the corresponding regularity results for the centralizers of permutations in the semigroup T_{n}.

2. Elements of $C(\sigma)$

For $\alpha \in T_{n}$ we denote the kernel of α (the equivalence relation $\left\{(x, y) \in X_{n} \times X_{n}\right.$: $x \alpha=y \alpha\}$) by $\operatorname{Ker}(\alpha)$ and the image of α by $\operatorname{Im}(\alpha)$. For $Y \subseteq X_{n}, Y \alpha$ will denote the image of Y under α, that is, $Y \alpha=\{x \alpha: x \in Y\}$. As customary in transformation semigroup theory, we write transformations on the right (that is, $x \alpha$ instead of $\alpha(x)$). For a cycle $a=\left(x_{0} x_{1} \ldots x_{k-1}\right)$ we denote $\left\{x_{0}, x_{1}, \ldots, x_{k-1}\right\}$ by $\operatorname{span}(a)$.

For $\sigma \in S_{n}, C(\sigma)$ will denote the centralizer of σ in T_{n}, that is,

$$
C(\sigma)=\left\{\alpha \in T_{n}: \sigma \alpha=\alpha \sigma\right\} .
$$

Throughout the paper, we shall use the following characterization of the elements of $C(\sigma)\left(\sigma \in S_{n}\right)$, which is a special case of [5, Theorem 5].

Theorem 1. Let $\sigma \in S_{n}$ and $\alpha \in T_{n}$. Then $\alpha \in C(\sigma)$ if and only if for every cycle $\left(x_{0} x_{1} \ldots x_{k-1}\right)$ in σ there is a cycle $\left(y_{0} y_{1} \ldots y_{m-1}\right)$ in σ such that m divides k and for some index i,

$$
x_{0} \alpha=y_{i}, x_{1} \alpha=y_{i+1}, x_{2} \alpha=y_{i+2}, \ldots,
$$

where the subscripts on the y 's are calculated modulo m.
Let $\sigma \in S_{n}$ and $\alpha \in C(\sigma)$. It follows from Theorem 1 that for every cycle a in σ there is a cycle b in σ such that $(\operatorname{span}(a)) \alpha=\operatorname{span}(b)$. This justifies the following definition.

Let $\sigma \in S_{n}$ and let A be the set of cycles in σ (including 1-cycles). For $\alpha \in C(\sigma)$, define a full transformation t_{α} on A by: for every cycle a in σ,

$$
a t_{\alpha}=\text { the cycle } b \text { in } \sigma \text { such that }(\operatorname{span}(a)) \alpha=\operatorname{span}(b) .
$$

For example, consider $\sigma=a b c=(12)(345)(6789) \in S_{9}$. Then for

$$
\alpha=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
2 & 1 & 4 & 5 & 3 & 1 & 2 & 1 & 2
\end{array}\right) \in C(\sigma), \quad t_{\alpha}=\left(\begin{array}{ccc}
a & b & c \\
a & b & a
\end{array}\right) .
$$

We shall frequently use the following lemma. For a cycle a in $\sigma \in S_{n}$ we denote by $\ell(a)$ the length of a.

Lemma 2. If $\sigma \in S_{n}, a$ and b are cycles in σ and $\alpha, \beta \in C(\sigma)$ then:
(1) $t_{\alpha \beta}=t_{\alpha} t_{\beta}$.
(2) If $a t_{\alpha}=b$ then $\ell(b)$ divides $\ell(a)$.
(3) $a t_{\alpha}=b t_{\alpha}$ if and only if $x \alpha=y \alpha$ for some $x \in \operatorname{span}(a)$ and some $y \in \operatorname{span}(b)$.

Proof. Immediate by the definition of t_{α} and Theorem 1 .

3. Regular $C(\sigma)$

An element a of a semigroup S is called regular if $a=a x a$ for some $x \in S$. If all elements of S are regular, we say that S is a regular semigroup [2, p.50].

The regular elements of the centralizer of $\sigma \in S_{n}$ relative to the semigroup $P T_{n}$ of partial transformations on X_{n} are described in [3, Lemma 4.1]. This result carries over to the semigroup T_{n} with slight modifications of the proof.

Let $\sigma \in S_{n}$ and $\alpha \in C(\sigma)$. For a cycle b in σ we denote by $t_{\alpha}^{-1}(b)$ the inverse image of b under t_{α}, that is, the set of all cycles a in σ such that $a t_{\alpha}=b$.

Theorem 3. Let $\sigma \in S_{n}$ and $\alpha \in C(\sigma)$. Then α is regular if and only if for every $b \in \operatorname{Im}\left(t_{\alpha}\right)$ there is $a \in t_{\alpha}^{-1}(b)$ such that $\ell(a)=\ell(b)$.

Proof. Suppose α is regular, that is, $\alpha=\alpha \beta \alpha$ for some $\beta \in C(\sigma)$. Let $b \in \operatorname{Im}\left(t_{\alpha}\right)$ and select $c \in t_{\alpha}^{-1}(b)$. Since $t_{\alpha}=t_{\alpha} t_{\beta} t_{\alpha}$ (by (1) of Lemma 2) and $c t_{\alpha}=b$, there is a cycle a in σ such that $c t_{\alpha}=b, b t_{\beta}=a$ and $a t_{\alpha}=b$. Then $a \in t_{\alpha}^{-1}(b)$ and, by (2) of Lemma $2, \ell(c) \geqslant \ell(b) \geqslant \ell(a) \geqslant \ell(b)$, implying $\ell(a)=\ell(b)$.

Conversely, suppose that the given condition is satisfied. We define $\beta \in C(\sigma)$ such that $\alpha=\alpha \beta \alpha$. Let $b=\left(y_{0} y_{1} \ldots y_{m-1}\right)$ be a cycle in σ. If $b \notin \operatorname{Im}\left(t_{\alpha}\right)$, define $y_{i} \beta=y_{i}$ for $i=0,1, \ldots, m-1$. Suppose $b \in \operatorname{Im}\left(t_{\alpha}\right)$. Then, by the given condition, there is a cycle $a=\left(x_{0} x_{1} \ldots x_{m-1}\right)$ in σ such that $a t_{\alpha}=b$. By Theorem 1, there is $i \in\{0,1, \ldots, m-1\}$ such that

$$
x_{0} \alpha=y_{i}, x_{1} \alpha=y_{i+1}, x_{2} \alpha=y_{i+2}, \ldots,
$$

where the subscripts on the y 's are calculated modulo m. Define

$$
y_{i} \beta=x_{0}, y_{i+1} \beta=x_{1}, y_{i+2} \beta=x_{2}, \ldots,
$$

where the subscripts on the y 's and x 's are calculated modulo m. By the construction of β and Theorem 1 we have $\beta \in C(\sigma)$ and $\alpha=\alpha \beta \alpha$, which implies that α is regular.

The following theorem characterizes the permutations $\sigma \in S_{n}$ for which the semigroup $C(\sigma)$ is regular. (See [3, Theorem 4.2] for the corresponding result in $P T_{n}$.) For positive integers m and k we write $m \mid k$ if m divides k.

Theorem 4. Let $\sigma \in S_{n}$. Then $C(\sigma)$ is a regular semigroup if and only if there are no distinct cycles a, b and c in σ such that $\ell(c)|\ell(b)| \ell(a)$ and $\ell(b)<\ell(a)$.

Proof. Suppose there are distinct cycles

$$
a=\left(x_{0} x_{1} \ldots x_{k-1}\right), \quad b=\left(y_{0} y_{1} \ldots y_{m-1}\right) \text { and } c=\left(z_{0} z_{1} \ldots z_{p-1}\right)
$$

in σ such that $p|m| k$ and $m<k$. Define $\alpha \in T_{n}$ by

$$
x_{0} \alpha=y_{0}, x_{1} \alpha=y_{1}, x_{2} \alpha=y_{2}, \ldots ; \quad y_{0} \alpha=z_{0}, y_{1} \alpha=z_{1}, y_{2} \alpha=z_{2}, \ldots
$$

where the subscripts on the y 's are calculated modulo m and the subscripts on the z 's are calculated modulo p, and $x \alpha=x$ for any other $x \in X_{n}$. By the construction of α and Theorem 1, $\alpha \in C(\sigma)$ and $t_{\alpha}^{-1}(b)=\{a\}$. Since $\ell(a)=k>m=\ell(b)$, it follows by Theorem 3 that α is not regular, and so $C(\sigma)$ is not a regular semigroup.

Conversely, suppose that $C(\sigma)$ is not a regular semigroup. Let $\alpha \in C(\sigma)$ be a nonregular element. By Theorem 3, there is $b \in \operatorname{Im}\left(t_{\alpha}\right)$ such that there is no $a \in t_{\alpha}^{-1}(b)$ with $\ell(a)=\ell(b)$. Select $a \in t_{\alpha}^{-1}(b)$. Then, by (2) of Lemma 2 and the fact that $\ell(a) \neq \ell(b)$, we have $\ell(b) \mid \ell(a)$ and $\ell(b)<\ell(a)$. Note that $a \neq b$. Let $c=b t_{\alpha}$. Then $\ell(c) \mid \ell(b), c \neq a($ since $\ell(c) \mid \ell(b)$ and $\ell(b)<\ell(a))$ and $c \neq b$ (since $\left.b \notin t_{\alpha}^{-1}(b)\right)$. Thus a, b and c are distinct cycles in σ such that $\ell(c)|\ell(b)| \ell(a)$ and $\ell(b)<\ell(a)$. This concludes the proof.

For example, for $\sigma=(1)(23)(45)(678)$ and $\varrho=(12)(34)(5678)$ in $S_{8}, C(\sigma)$ is a regular semigroup, whereas $C(\varrho)$ is not regular. We note that it follows from [3, Theorem 4.2] that the centralizer of σ relative to $P T_{n}$ is not a regular semigroup.

4. Inverse $C(\sigma)$ and completely regular $C(\sigma)$

Inverse semigroups and completely regular semigroups are two important classes of regular semigroups.

An element a^{\prime} in a semigroup S is called an inverse of $a \in S$ if $a=a a^{\prime} a$ and $a^{\prime}=a^{\prime} a a^{\prime}$. If every element of S has exactly one inverse then S is called an inverse semigroup [2, p. 145].

If every element of a semigroup S is in some subgroup of S then S is called a completely regular semigroup [2, p. 103].
In the class of centralizers of permutations relative to $P T_{n}$, inverse semigroups and completely regular semigroups coincide [3, Theorem 4.3]. We find that in the class of centralizers of permutations relative to T_{n}, the subclass of inverse semigroups is properly included in the subclass of completely regular semigroups.

To prove the next theorem we use the result that a semigroup S is an inverse semigroup if and only if it is regular and its idempotents commute [2, Theorem 5.1.1]. (An element $e \in S$ is called an idempotent if $e e=e$.) Let $\varepsilon \in T_{n}$ be an idempotent. Then for every $x \in X_{n},(x \varepsilon) \varepsilon=x(\varepsilon \varepsilon)=x \varepsilon$. It follows that any idempotent in T_{n} fixes every element of its image.

Theorem 5. Let $\sigma \in S_{n}$. Then $C(\sigma)$ is an inverse semigroup if and only if there are no distinct cycles a and b in σ such that either $\ell(b)=\ell(a)$ or $1<\ell(b)<\ell(a)$ and $\ell(b) \mid \ell(a)$.

Proof. Let a and b be distinct cycles in σ. Suppose $\ell(b)=\ell(a)$ with $a=$ $\left(x_{0} x_{1} \ldots x_{k-1}\right)$ and $b=\left(y_{0} y_{1} \ldots y_{k-1}\right)$. Define $\varepsilon, \xi \in T_{n}$ by $x_{i} \varepsilon=y_{i}, y_{i} \varepsilon=y_{i}$, $y_{i} \xi=x_{i}, x_{i} \xi=x_{i}(0 \leqslant i \leqslant k-1)$, and $x \varepsilon=x \xi=x$ for any other $x \in X_{n}$. Note that $x_{0}(\varepsilon \xi)=x_{0}$ and $x_{0}(\xi \varepsilon)=y_{0}$.

Suppose $a=\left(x_{0} x_{1} \ldots x_{k-1}\right)$ and $b=\left(y_{0} y_{1} \ldots y_{m-1}\right)$ with $1<m<k$ and $m \mid k$. Define $\varepsilon, \xi \in T_{n}$ by

$$
x_{0} \varepsilon=y_{0}, x_{1} \varepsilon=y_{1}, x_{2} \varepsilon=y_{2}, \ldots ; \quad x_{0} \xi=y_{1}, x_{1} \xi=y_{2}, x_{2} \xi=y_{3}, \ldots,
$$

where the subscripts on the y 's are calculated modulo m, and $x \varepsilon=x \xi=x$ for any other $x \in X_{n}$. Note that $x_{0}(\varepsilon \xi)=y_{0}$ and $x_{0}(\xi \varepsilon)=y_{1}$.

In both cases, by the construction of ε and ξ and Theorem 1 , we have that ε and ξ are idempotents in $C(\sigma)$ such that $\varepsilon \xi \neq \xi \varepsilon$. Thus, since idempotents in an inverse semigroup commute, the existence of distinct cycles a and b in σ with either $\ell(b)=\ell(a)$ or $1<\ell(b)<\ell(a)$ and $\ell(b) \mid \ell(a)$ implies that $C(\sigma)$ is not an inverse semigroup.

Conversely, suppose that there are no distinct cycles a and b in σ satisfying the given condition (either $\ell(b)=\ell(a)$ or $1<\ell(b)<\ell(a)$ and $\ell(b) \mid \ell(a)$). Then there are no distinct cycles a, b and c in σ satisfying the condition given in Theorem 4 $(\ell(c)|\ell(b)| \ell(a)$ and $\ell(b)<\ell(a))$, and so $C(\sigma)$ is a regular semigroup.
Let $\varepsilon, \xi \in C(\sigma)$ be idempotents. Let $a=\left(x_{0} x_{1} \ldots x_{k-1}\right)$ be a cycle in σ. If there is no cycle b in σ such that $b \neq a$ and $\ell(b) \mid \ell(a)$ then, by Theorem $1,(\operatorname{span}(a)) \varepsilon=$ $(\operatorname{span}(a)) \xi=\operatorname{span}(a)$, and so $x_{0} \varepsilon=x_{0} \xi=x_{0}$ (since any idempotent in T_{n} fixes every element of its image).
Suppose there is a cycle b in σ such that $b \neq a$ and $\ell(b) \mid \ell(a)$. Then, since the given condition is satisfied, b must be a 1-cycle, say $b=\left(y_{0}\right)$, and b is the only 1-cycle in σ. Thus, by Theorem 1 and the fact that ε is an idempotent, $y_{0} \varepsilon=y_{0}$ and either $x_{0} \varepsilon=x_{0}$ or $x_{0} \varepsilon=y_{0}$. Similarly, $y_{0} \xi=y_{0}$ and either $x_{0} \xi=x_{0}$ or $x_{0} \xi=y_{0}$. If $x_{0} \varepsilon=x_{0} \xi=x_{0}$ then $x_{0}(\varepsilon \xi)=x_{0}=x_{0}(\xi \varepsilon)$. In any of the three remaining cases, $x_{0}(\varepsilon \xi)=x_{0}(\xi \varepsilon)=y_{0}$.

Since a was an arbitrary cycle in σ and x_{0} was an arbitrary element in $\operatorname{span}(a)$, it follows that $\varepsilon \xi=\xi \varepsilon$. Thus $C(\sigma)$ is a regular semigroup in which idempotents commute, and so it is an inverse semigroup.
E. g., for the permutations $\sigma=(1)(234)(5678), \varrho=(1)(23)(45)(678)$ and $\delta=(12)(345678)$ in $S_{8}, C(\sigma)$ is an inverse semigroup, whereas $C(\varrho)$ and $C(\delta)$
are regular but not inverse semigroups. We note that it follows from [3, Theorem 4.3] that the centralizer of σ relative to $P T_{n}$ is not an inverse semigroup.

To determine the permutations $\sigma \in S_{n}$ for which $C(\sigma)$ is a completely regular semigroup, we need a characterization of Green's \mathcal{H}-relation in $C(\sigma)$.

If S is a semigroup and $a, b \in S$, we say that $a \mathcal{H} b$ if $a S^{1}=b S^{1}$ and $S^{1} a=S^{1} b$, where S^{1} is S with an identity adjoined. In other words, $a, b \in S$ are \mathcal{H}-related if and only if they generate the same right ideal and the same left ideal. The relation \mathcal{H} is one of the five equivalences on S known as Green's relations [2, p. 45]. If an \mathcal{H}-class H contains an idempotent then H is a maximal subgroup of S [2, Corollary 2.2.6]. Note that it follows that completely regular semigroups are semigroups in which every \mathcal{H}-class is a group.
The following theorem was proved in [3, Corollary 3.5] for partial transformations. However, the result is also true for full transformations (with slight modifications of the proof).

Theorem 6. Let $\sigma \in S_{n}$ and let $\alpha, \beta \in C(\sigma)$. Then $\alpha \mathcal{H} \beta$ if and only if $\operatorname{Ker}(\alpha)=\operatorname{Ker}(\beta), \operatorname{Im}\left(t_{\alpha}\right)=\operatorname{Im}\left(t_{\beta}\right)$, and for every $c \in \operatorname{Im}\left(t_{\alpha}\right)$ we have
(a) if $a \in t_{\alpha}^{-1}(c)$ then there is $b \in t_{\beta}^{-1}(c)$ such that $\ell(b)$ divides $\ell(a)$; and
(b) if $a \in t_{\beta}^{-1}(c)$ then there is $b \in t_{\alpha}^{-1}(c)$ such that $\ell(b)$ divides $\ell(a)$.

Theorem 7. Let $\sigma \in S_{n}$. Then $C(\sigma)$ is a completely regular semigroup if and only if there are no distinct cycles a, b and c in σ such that $\ell(c)|\ell(b)| \ell(a)$.

Proof. We shall use the result that a semigroup S is completely regular if and only if for every $a \in S, a$ and a^{2} are \mathcal{H}-related [2, Theorem 2.2.5 and Proposition 4.1.1].

Suppose there are distinct cycles $a=\left(x_{0} x_{1} \ldots x_{k-1}\right), b=\left(y_{0} y_{1} \ldots y_{m-1}\right)$ and $c=\left(z_{0} z_{1} \ldots z_{p-1}\right)$ in σ such that $p|m| k$. Define $\alpha \in T_{n}$ by

$$
x_{0} \alpha=y_{0}, x_{1} \alpha=y_{1}, x_{2} \alpha=y_{2}, \ldots ; \quad y_{0} \alpha=z_{0}, y_{1} \alpha=z_{1}, y_{2} \alpha=z_{2}, \ldots
$$

where the subscripts on the y 's are calculated modulo m and the subscripts on the z 's are calculated modulo p, and $x \alpha=x$ for any other $x \in X_{n}$. By the construction of α and Theorem 1, $\alpha \in C(\sigma)$. Moreover, by Theorem 6, α and α^{2} are not \mathcal{H} related (since $b \in \operatorname{Im}\left(t_{\alpha}\right)$ and $\left.b \notin \operatorname{Im}\left(t_{\alpha^{2}}\right)\right)$. Thus $C(\sigma)$ is not a completely regular semigroup.

Conversely, suppose there are no distinct cycles a, b and c in σ such that $\ell(c) \mid$ $\ell(b) \mid \ell(a)$. Let $\alpha \in C(\sigma)$. We shall use Theorem 6 to prove that $\alpha \mathcal{H} \alpha^{2}$.

Let a and b be cycles in σ such that $b=a t_{\alpha}$. We claim that $b t_{\alpha}=a$ or $b t_{\alpha}=b$. Indeed, if $b=a$ then $b t_{\alpha}=a t_{\alpha}=b$. Suppose $b \neq a$ and let $c=b t_{\alpha}$. Then
$\ell(c)|\ell(b)| \ell(a)$ and so, by the given condition, a, b and c cannot be distinct. Thus, since $b \neq a$, we must have $c=a$ or $c=b$. Hence $b t_{\alpha}=a$ or $b t_{\alpha}=b$.

We show that $\operatorname{Ker}(\alpha)=\operatorname{Ker}\left(\alpha^{2}\right)$. It is clear that $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}\left(\alpha^{2}\right)$. For the reverse inclusion, suppose that $x, y \in X_{n}$ are such that $x \alpha^{2}=y \alpha^{2}$. Let a and a^{\prime} be the cycles in σ such that $x \in \operatorname{span}(a)$ and $y \in \operatorname{span}\left(a^{\prime}\right)$, and let $b=a t_{\alpha}$ and $b^{\prime}=a^{\prime} t_{\alpha}$. Note that $x \alpha \in \operatorname{span}(b)$ and $y \alpha \in \operatorname{span}\left(b^{\prime}\right)$. By the claim, $b t_{\alpha}=a$ or $b t_{\alpha}=b$. We consider two cases.

Case 1. $b t_{\alpha}=a$.
Then $a t_{\alpha}=b$ and $b t_{\alpha}=a$. Thus, by (2) of Lemma $2, \ell(a)=\ell(b)$, and so, by Theorem 1, α restricted to $\operatorname{span}(a)$ is one-to-one and α restricted to $\operatorname{span}(b)$ is one-to-one. Since $x \alpha^{2}=y \alpha^{2}$, we have $a\left(t_{\alpha} t_{\alpha}\right)=a t_{\alpha^{2}}=a^{\prime} t_{\alpha^{2}}=a^{\prime}\left(t_{\alpha} t_{\alpha}\right)$ (by (1) and (3) of Lemma 2). Thus $b^{\prime} t_{\alpha}=a^{\prime}\left(t_{\alpha} t_{\alpha}\right)=a\left(t_{\alpha} t_{\alpha}\right)=b t_{\alpha}=a$. Since $b^{\prime} t_{\alpha}=a^{\prime}$ or $b^{\prime} t_{\alpha}=b^{\prime}$ (by the claim), we have $a=a^{\prime}$ or $a=b^{\prime}$.

Suppose $a=a^{\prime}$. Then $b^{\prime}=a^{\prime} t_{\alpha}=a t_{\alpha}=b$, and so $x \alpha, y \alpha \in \operatorname{span}(b)$. Hence, since $(x \alpha) \alpha=(y \alpha) \alpha$ and α restricted to span (b) is one-to-one, we have $x \alpha=y \alpha$.

Suppose $a=b^{\prime}$. Then, since $b=a t_{\alpha}$ and $b^{\prime}=a^{\prime} t_{\alpha}$, we have $\ell(b)|\ell(a)| \ell\left(a^{\prime}\right)$, and so the cycles a^{\prime}, a and b cannot be distinct. That is, $a^{\prime}=a$ or $a^{\prime}=b$ or $a=b$. If $a^{\prime}=a$ then $b=a t_{\alpha}=a^{\prime} t_{\alpha}=b^{\prime}=a$, and so $x \alpha, y \alpha \in \operatorname{span}(a)$. If $a^{\prime}=b$ then $a=b t_{\alpha}=a\left(t_{\alpha} t_{\alpha}\right)=a^{\prime}\left(t_{\alpha} t_{\alpha}\right)=b\left(t_{\alpha} t_{\alpha}\right)=a t_{\alpha}=b$, and so $x \alpha, y \alpha \in \operatorname{span}(a)$. If $a=b$ then clearly $x \alpha, y \alpha \in \operatorname{span}(a)$. Thus, since $(x \alpha) \alpha=(y \alpha) \alpha$ and α restricted to $\operatorname{span}(a)$ is one-to-one, we have $x \alpha=y \alpha$.

Case $2 . b t_{\alpha}=b$.
As in Case 1, we have $a\left(t_{\alpha} t_{\alpha}\right)=a^{\prime}\left(t_{\alpha} t_{\alpha}\right)$. Thus $b^{\prime} t_{\alpha}=a^{\prime}\left(t_{\alpha} t_{\alpha}\right)=a\left(t_{\alpha} t_{\alpha}\right)=b t_{\alpha}=$ b. Recall that $b^{\prime} t_{\alpha}=a^{\prime}$ or $b^{\prime} t_{\alpha}=b^{\prime}$. In the latter case, $b^{\prime}=b^{\prime} t_{\alpha}=b$. If $b^{\prime} t_{\alpha}=a^{\prime}$ then $b^{\prime}=a^{\prime} t_{\alpha}=\left(b^{\prime} t_{\alpha}\right) t_{\alpha}=b t_{\alpha}=b$. Thus in any case $b^{\prime}=b$ and so $x \alpha, y \alpha \in \operatorname{span}(b)$. Since $b t_{\alpha}=b$, it follows by Theorem 1 that α restricted to $\operatorname{span}(b)$ is one-to-one. Hence, since $(x \alpha) \alpha=(y \alpha) \alpha$, we have $x \alpha=y \alpha$.

Thus in every case $x \alpha=y \alpha$, implying $\operatorname{Ker}\left(\alpha^{2}\right) \subseteq \operatorname{Ker}(\alpha)$. Hence $\operatorname{Ker}(\alpha)=$ $\operatorname{Ker}\left(\alpha^{2}\right)$.

Next we show that $\operatorname{Im}\left(t_{\alpha}\right)=\operatorname{Im}\left(t_{\alpha^{2}}\right)$. By (1) of Lemma 2, $\operatorname{Im}\left(t_{\alpha^{2}}\right)=\operatorname{Im}\left(t_{\alpha} t_{\alpha}\right) \subseteq$ $\operatorname{Im}\left(t_{\alpha}\right)$. Let $b \in \operatorname{Im}\left(t_{\alpha}\right)$, that is, $b=a t_{\alpha}$ for some cycle a in σ. By the claim, $b t_{\alpha}=a$ or $b t_{\alpha}=b$. In the former case, $b t_{\alpha^{2}}=b\left(t_{\alpha} t_{\alpha}\right)=a t_{\alpha}=b$. In the latter case, $a t_{\alpha^{2}}=a\left(t_{\alpha} t_{\alpha}\right)=b t_{\alpha}=b$. Thus $b \in \operatorname{Im}\left(t_{\alpha^{2}}\right)$. It follows that $\operatorname{Im}\left(t_{\alpha}\right)=\operatorname{Im}\left(t_{\alpha^{2}}\right)$.

Finally we show that (a) and (b) of Theorem 6 are satisfied for every $c \in \operatorname{Im}\left(t_{\alpha}\right)$. Let $c \in \operatorname{Im}\left(t_{\alpha}\right)$. To prove (a), let $a \in t_{\alpha}^{-1}(c)$, that is, $a t_{\alpha}=c$. By the claim, $c t_{\alpha}=a$ or $c t_{\alpha}=c$. Suppose $c t_{\alpha}=a$. Then $c t_{\alpha^{2}}=c\left(t_{\alpha} t_{\alpha}\right)=a t_{\alpha}=c$. Thus $c \in t_{\alpha^{2}}^{-1}(c)$ and $\ell(c) \mid \ell(a)$ (since $a t_{\alpha}=c$). If $c t_{\alpha}=c$ then $a t_{\alpha^{2}}=a\left(t_{\alpha} t_{\alpha}\right)=c t_{\alpha}=c$, and so $a \in t_{\alpha^{2}}^{-1}(c)$. It follows that (a) of Theorem 6 is satisfied.

To prove (b), let $a \in t_{\alpha^{2}}^{-1}(c)$, that is, $a t_{\alpha^{2}}=c$. Thus, by (1) of Lemma 2, $a\left(t_{\alpha} t_{\alpha}\right)=$ c, and so there is a cycle b in σ such that $a t_{\alpha}=b$ and $b t_{\alpha}=c$. Then $\ell(b) \mid \ell(a)$ and $b \in t_{\alpha}^{-1}(c)$. It follows that (b) of Theorem 6 is satisfied.

Thus, by Theorem $6, \alpha$ and α^{2} are \mathcal{H}-related, and so $C(\sigma)$ is a completely regular semigroup.

Note that the condition in Theorem 5 (no distinct cycles a and b in σ such that either $\ell(b)=\ell(a)$ or $1<\ell(b)<\ell(a)$ and $\ell(b) \mid \ell(a))$ is stronger than the condition in Theorem 7 (no distinct cycles a, b and c in σ such that $\ell(c)|\ell(b)| \ell(a)$). Thus in the class of centralizers of permutations relative to T_{n}, the subclass of inverse semigroups is included in the subclass of completely regular semigroups.

The inclusion is proper. For example, for $\sigma=(12)(345)(678) \in S_{8}, C(\sigma)$ is a completely regular semigroup but not an inverse semigroup.

References

[1] Higgins, P. M.: Digraphs and the semigroup of all functions on a finite set. Glasgow Math. J. 30 (1988), 41-57.
[2] Howie, J. M.: Fundamentals of Semigroup Theory. Oxford University Press, New York, 1995.
[3] Konieczny, J.: Green's relations and regularity in centralizers of permutations. Glasgow Math. J. 41 (1999), 45-57.
[4] Konieczny, J.: Semigroups of transformations commuting with idempotents. Algebra Colloq. 9 (2002), 121-134.
[5] Konieczny, J., Lipscomb, S.: Centralizers in the semigroup of partial transformations. Math. Japon. 48 (1998), 367-376.
[6] Liskovec, V. A., Feĭnberg, V. Z.: On the permutability of mappings. Dokl. Akad. Nauk BSSR 7 (1963), 366-369. (In Russian.)
[7] Liskovec, V. A., Feinnberg, V. Z.: The order of the centralizer of a transformation. Dokl. Akad. Nauk BSSR 12 (1968), 596-598. (In Russian.)
[8] Weaver, M. W.: On the commutativity of a correspondence and a permutation. Pacific J. Math. 10 (1960), 705-711.

Author's address: Janusz Konieczny, Department of Mathematics, Mary Washington College, Fredericksburg, VA 22401, U.S.A., e-mail: jkoniecz@mwc.edu.

