PSEUDO BL-ALGEBRAS AND $DR\ell$ -MONOIDS

JAN KÜHR, Olomouc

(Received March 1, 2002)

Abstract. It is shown that pseudo BL-algebras are categorically equivalent to certain bounded $DR\ell$ -monoids. Using this result, we obtain some properties of pseudo BL-algebras, in particular, we can characterize congruence kernels by means of normal filters. Further, we deal with representable pseudo BL-algebras and, in conclusion, we prove that they form a variety.

 $\mathit{Keywords}\colon$ pseudo BL-algebra, $DR\ell\text{-monoid},$ filter, polar, representable pseudo BL-algebra

MSC 2000: 06F05, 03G25

1. Connections between pseudo BL-algebras and $DR\ell$ -monoids

Recently, pseudo BL-algebras were introduced by A. Di Nola, G. Georgescu and A. Iorgulescu in [3] as a noncommutative extension of Hájek's BL-algebras (see [6]).

An algebra $\mathfrak{A}=(A,\vee,\wedge,\odot,\rightarrow,\leadsto,0,1)$ of type $\langle 2,2,2,2,2,0,0\rangle$ is called a *pseudo BL-algebra* iff $(A,\vee,\wedge,0,1)$ is a bounded lattice, $(A,\odot,1)$ is a monoid and the following conditions are satisfied for all $x,y,z\in A$:

- (1) $x \odot y \leqslant z$ iff $x \leqslant y \rightarrow z$ iff $y \leqslant x \rightsquigarrow z$,
- (2) $x \wedge y = (x \rightarrow y) \odot x = x \odot (x \rightsquigarrow y)$,
- (3) $(x \rightarrow y) \lor (y \rightarrow x) = (x \rightsquigarrow y) \lor (y \rightsquigarrow x) = 1.$

By [3, Corollary 3.29], pseudo BL-algebras satisfying the identity

$$(x \leadsto 0) \to 0 = (x \to 0) \leadsto 0 = x$$

are the duals of pseudo MV-algebras.

In the same way, (noncommutative) $DR\ell$ -monoids extend Swamy's $DR\ell$ -semi-groups which were introduced in [12] as a common generalization of abelian ℓ -groups and Brouwerian algebras.

An algebra $\mathfrak{A} = (A, +, 0, \vee, \wedge, \rightarrow, \leftarrow)$ of type $\langle 2, 0, 2, 2, 2, 2 \rangle$ is a dually residuated lattice ordered monoid, or simply a $DR\ell$ -monoid, iff

(1) $(A, +, 0, \vee, \wedge)$ is an ℓ -monoid, that is, (A, +, 0) is a monoid, (A, \vee, \wedge) is a lattice and, for any $x, y, s, t \in A$, the following distributive laws are satisfied:

$$s + (x \lor y) + t = (s + x + t) \lor (s + y + t),$$

 $s + (x \land y) + t = (s + x + t) \land (s + y + t);$

- (2) for any $x, y \in A$, $x \rightharpoonup y$ is the least $s \in A$ such that $s + y \geqslant x$, and $x \leftarrow y$ is the least $t \in A$ such that $y + t \geqslant x$;
- (3) A fulfils the identities

$$((x \rightharpoonup y) \lor 0) + y \leqslant x \lor y, \ y + ((x \leftarrow y) \lor 0) \leqslant x \lor y,$$
$$x \rightharpoonup x \geqslant 0, \ x \leftarrow x \geqslant 0.$$

Note that the inequalities $x \rightharpoonup x \geqslant 0$ and $x \leftarrow x \geqslant 0$ can be omitted, and the condition (2) is equivalent to the system of identities (see [10])

$$(x \rightharpoonup y) + y \geqslant x, \ y + (x \leftarrow y) \geqslant x,$$
$$x \rightharpoonup y \leqslant (x \lor z) \rightharpoonup y, \ x \leftarrow y \leqslant (x \lor z) \leftarrow y,$$
$$(x + y) \rightharpoonup y \leqslant x, \ (y + x) \leftarrow y \leqslant x.$$

In [11], mutual relationships between BL-algebras and bounded representable commutative $DR\ell$ -monoids are described.

Theorem 1.1. Let $\mathfrak{A}=(A,\vee,\wedge,\odot,\rightarrow,\leadsto,0,1)$ be a pseudo *BL*-algebra. If we set

$$x + y := x \odot y, \ x \vee_d y := x \wedge y, \ x \wedge_d y := x \vee y,$$
$$x \rightharpoonup y := y \rightarrow x, \ x \leftarrow y := y \rightsquigarrow x, \ 0_d := 1, \ 1_d := 0$$

for any $x, y \in A$, then $\mathfrak{A}_d = (A, +, 0_d, \vee_d, \wedge_d, \rightharpoonup, \smile)$ is a bounded $DR\ell$ -monoid with the greatest element 1_d . In addition, this $DR\ell$ -monoid satisfies the identities

$$(x \rightharpoonup y) \land_d (y \rightharpoonup x) = 0_d,$$
$$(x \multimap y) \land_d (y \multimap x) = 0_d.$$

Proof. Since $(A, \odot, 1, \vee, \wedge)$ is an ℓ -monoid, by [3, Propositions 3.3, 3.9], so is $(A, +, 0_d, \vee_d, \wedge_d)$. The rest follows directly by the definitions. Note that if a $DR\ell$ -monoid \mathfrak{A}_d contains the greatest element 1_d then 0_d is its least element, by [8, Theorem 1.2.3].

In view of Theorem 1.1, it is easily seen that in the definition of a pseudo BL-algebra, the condition (1) can be equivalently replaced by the following identities:

$$\begin{split} (x \to y) \odot x \leqslant y, \ x \odot (x \leadsto y) \leqslant y, \\ x \to y \geqslant x \to (y \land z), \ x \leadsto y \geqslant x \leadsto (y \land z), \\ y \to (x \odot y) \geqslant x, \ y \leadsto (y \odot x) \geqslant x. \end{split}$$

Consequently, pseudo BL-algebras form a variety of algebras of type (2, 2, 2, 2, 2, 0, 0). This variety is arithmetical; in accordance with [8, Theorem 3.1.1], the Pixley term of the variety of pseudo BL-algebras can be taken as follows:

$$p(x, y, z) = ((x \leadsto y) \to z) \land ((z \leadsto y) \to x) \land (x \lor z).$$

Theorem 1.2. Let $\mathfrak{A} = (A, +, 0, \vee, \wedge, \rightarrow, \leftarrow)$ be a $DR\ell$ -monoid with the greatest element 1. For any $x, y \in A$ set

$$x \odot y := x + y, \ x \vee_d y := x \wedge y, \ x \wedge_d y := x \vee y,$$
$$x \rightarrow y := y \rightharpoonup x, \ x \leadsto y := y \leftarrow x, \ 0_d := 1, \ 1_d := 0.$$

Then $\mathfrak{A}_d = (A, \vee_d, \wedge_d, \odot, \rightarrow, \leadsto, 0_d, 1_d)$ is a pseudo BL-algebra if and only if \mathfrak{A} satisfies (*).

Proof. In any $DR\ell$ -monoid we have

$$x \vee y = ((y \rightharpoonup x) \vee 0) + x = x + ((y \leftarrow x) \vee 0).$$

Since \mathfrak{A} is bounded, that is, $0 \leq x \leq 1$ for any $x \in A$, it follows that

$$x \wedge_d y = (x \to y) \odot x = x \odot (x \leadsto y).$$

The rest is obvious.

Let \mathcal{PBL} be the category of pseudo BL-algebras, that is, the category whose objects are pseudo BL-algebras and morphisms are homomorphisms of pseudo BL-algebras. Let $\mathcal{DRL}_{1(*)}$ be the category of bounded $DR\ell$ -monoids satisfying (*). Its morphisms are homomorphisms of $DR\ell$ -monoids which preserve also 1, thus in the sequel, bounded $DR\ell$ -monoids are regarded as algebras $(A, +, 0, \vee, \wedge, \rightarrow, \leftarrow, 1)$ of type (2, 0, 2, 2, 2, 2, 2, 0).

Theorem 1.3. The categories \mathcal{PBL} and $\mathcal{DRL}_{1(*)}$ are equivalent.

Proof. Theorems 1.1 and 1.2 enable us to define a functor $\mathcal{F} \colon \mathcal{PBL} \to \mathcal{DRL}_{1(*)}$ as follows: (i) $\mathcal{F}(\mathfrak{A}) = \mathfrak{A}_d$ for any pseudo BL-algebra \mathfrak{A} , and (ii) $\mathcal{F}(h) = h$ for any pseudo BL-homomorphism h. It is easy to see that \mathcal{F} is really a categorical equivalence.

According to [3], a subset F of a pseudo BL-algebra $\mathfrak A$ with the following properties is said to be a *filter of* $\mathfrak A$:

- (F1) $1 \in F$;
- (F2) $\forall x, y \in F; x \odot y \in F;$
- (F3) $\forall x \in F \ \forall y \in A; x \leqslant y \Longrightarrow y \in F.$

For any subset $M \subseteq A$, the intersection of all filters containing M is called a *filter* generated by M and denoted by [M). It is clear that

$$[M) = \{x \in A; \ x \geqslant a_1 \odot ... \odot a_n \text{ for some } a_1, ..., a_n \in M \text{ and } n \geqslant 1\},$$

and if we write briefly [a) for $[\{a\}]$ then

$$[a) = \{x \in A; \ x \geqslant a^n \text{ for some } n \geqslant 1\}.$$

In Section 1, we have already proved that $DR\ell$ -monoids include the duals of pseudo BL-algebras. It is obvious that $F \subseteq A$ is a filter of a pseudo BL-algebra \mathfrak{A} iff it is an ideal of the induced bounded $DR\ell$ -monoid \mathfrak{A}_d , that is,

- (I1) $0_d \in F$;
- (I2) $\forall x, y \in F; x + y \in F;$
- (I3) $\forall x \in F \ \forall y \in A; x \geqslant_d y \Longrightarrow y \in F.$

Ideals of noncommutative $DR\ell$ -monoids were studied in [9]. Considering the above facts, we immediately obtain the following results.

Proposition 2.1. The set of all filters of any pseudo BL-algebra \mathfrak{A} , ordered by set inclusion, is an algebraic Brouwerian lattice. For any filters F, G of \mathfrak{A} , the relative pseudocomplement of F with respect to G is given by

$$F * G = \{a \in A; \ a \lor x \in G \text{ for all } x \in F\}.$$

Let \mathfrak{A} be a pseudo BL-algebra and $X \subseteq A$. The set

$$X^{\perp} = \{ a \in A; \ a \lor x = 1 \text{ for any } x \in X \}$$

is called the *polar of* X. For any $x \in A$ we write x^{\perp} instead of $\{x\}^{\perp}$.

A subset X of A is a polar in $\mathfrak A$ iff $X = Y^{\perp}$ for some $Y \subseteq A$.

Proposition 2.2 [3, Propositions 4.38, 4.39]. For all subsets X, Y of a pseudo BL-algebra \mathfrak{A} , (i) X^{\perp} is a filter of \mathfrak{A} , (ii) $X \subseteq X^{\perp \perp}$, (iii) $X \subseteq Y$ implies $Y^{\perp} \subseteq X^{\perp}$, (iv) $X^{\perp} = X^{\perp \perp \perp}$.

Proposition 2.3. For any subset X of a pseudo BL-algebra \mathfrak{A} , X is a polar in \mathfrak{A} iff $X = X^{\perp \perp}$.

Proof. Let
$$X = Y^{\perp}$$
; then $X^{\perp \perp} = Y^{\perp \perp \perp} = Y^{\perp} = X$.

By Proposition 2.1, the pseudocomplement of a filter F is

$$F^* = \{ a \in A; \ a \lor x = 1 \text{ for any } x \in F \}.$$

Moreover, it is clear that $F^{\perp} = F^*$ whenever F is a filter, and conversely, any polar is the pseudocomplement of some filter; in fact, $X = (X^{\perp})^*$. Thus the polars in any pseudo BL-algebra are precisely the pseudocomplements in the lattice of its filters. Therefore, by the Glivenko-Frink Theorem, we directly obtain

Theorem 2.4. The set of all polars in any pseudo BL-algebra, ordered by set inclusion, is a complete Boolean algebra.

A filter F of a pseudo BL-algebra $\mathfrak A$ is said to be *normal* iff it satisfies the following condition for each $x,y\in A$:

$$x \to y \in F \iff x \leadsto y \in F.$$

Proposition 2.5. For any filter F, the following conditions are equivalent:

- (i) F is normal;
- (ii) $x \odot F = F \odot x$ for each $x \in A$.

Proposition 2.6. If F and G are normal filters of $\mathfrak A$ then

$$F \vee G = \{x \in A; \ x \geqslant a \odot b \text{ for some } a \in F, b \in G\}.$$

In addition, $F \vee G$ is a normal filter. Consequently, normal filters of any pseudo BL-algebra form a complete sublattice of the lattice of all its filters.

Theorem 2.7. In any pseudo BL-algebra, there is a one-to-one correspondence between the normal filters and the congruence relations. In fact, F corresponds to $\Theta(F)$ defined by

$$\langle x, y \rangle \in \Theta(F) = \Theta_1(F) \iff (x \to y) \land (y \to x) \in F,$$

or equivalently,

$$\langle x, y \rangle \in \Theta(F) = \Theta_2(F) \iff (x \leadsto y) \land (y \leadsto x) \in F.$$

As proved in [3], and in general for noncommutative $DR\ell$ -monoids in [9], if F is not a normal filter then the binary relations defined in the previous theorem, $\Theta_1(F)$ and $\Theta_2(F)$, are two distinct congruence relations on the distributive lattice $\mathfrak{L}(\mathfrak{A}) = (A, \vee, \wedge, 0, 1)$. In the quotient lattices $\mathfrak{L}(\mathfrak{A})/\Theta_1(F)$ and $\mathfrak{L}(\mathfrak{A})/\Theta_2(F)$ we have

$$(2.1) [x]\Theta_1(F) \leqslant [y]\Theta_1(F) \iff x \to y \in F$$

and

$$(2.2) [x]\Theta_2(F) \leqslant [y]\Theta_2(F) \iff x \leadsto y \in F,$$

respectively.

Let \mathfrak{A} be a pseudo BL-algebra. A filter F of \mathfrak{A} is said to be *prime* if it is a finitely meet-irreducible element in the lattice of filters of \mathfrak{A} .

By [3, Theorem 4.28], for any filter F of a pseudo BL-algebra $\mathfrak A$ and for each ideal I of the lattice $\mathfrak L(\mathfrak A)$, if $F \cap I = \emptyset$ then there exists a prime filter P of $\mathfrak A$ with $F \subseteq P$ and $P \cap I = \emptyset$. Consequently, every proper filter is the intersection of all prime filters including it. In particular, the intersection of all prime filters is equal to $\{1\}$.

Theorem 2.8. For any filter F of a pseudo BL-algebra \mathfrak{A} , the following conditions are equivalent:

- (i) F is prime;
- (ii) for all filters G, H of $\mathfrak{A}, G \cap H \subseteq F$ implies $G \subseteq F$ or $H \subseteq F$;
- (iii) for any $x, y \in A$, $x \vee y \in F$ implies $x \in F$ or $y \in F$;
- (iv) for any $x, y \in A$, $x \vee y = 1$ implies $x \in F$ or $y \in F$;
- (v) for any $x, y \in A$, $x \to y \in F$ or $y \to x \in F$;
- (vi) for any $x, y \in A$, $x \rightsquigarrow y \in F$ or $y \rightsquigarrow x \in F$;
- (vii) $\mathfrak{L}(\mathfrak{A})/\Theta_1(F)$ is totally ordered;
- (viii) $\mathfrak{L}(\mathfrak{A})/\Theta_2(F)$ is totally ordered;
- (ix) the set of all filters including F is totally ordered under set inclusion.

Remark. The equivalence of (iii), (v), (vi), (vii) and (viii) is due to [3, Proposition 4.25].

Proof. (i) \Rightarrow (ii): Using the distributivity of the lattice of filters, $G \cap H \subseteq F$ implies $F = F \vee (G \cap H) = (F \vee G) \cap (F \vee H)$, whence $F = F \vee G$ or $F = F \vee H$, that is, $F \supset G$ or $F \supset H$.

- (ii) \Rightarrow (iii): Obviously, $x \lor y \in F$ yields $[x) \cap [y] = [x \lor y] \subseteq F$. Hence, by (ii), $[x) \subseteq F$ or $[y) \subseteq F$ and thus $x \in F$ or $y \in F$.
 - (iii) \Rightarrow (iv): This is evident since $1 \in F$.

 $(iv) \Rightarrow (v)$ and $(iv) \Rightarrow (vi)$: By the definition of a pseudo BL-algebra,

$$(x \to y) \lor (y \to x) = (x \leadsto y) \lor (y \leadsto x) = 1,$$

which implies the assertion by (iv).

- $(v) \Rightarrow (vii)$ and $(vi) \Rightarrow (viii)$: This is obvious from (2.1) and (2.2), respectively.
- (vii) \Rightarrow (ix): If $F \subseteq G$, H and neither $G \subseteq H$ nor $H \subseteq G$ then there exist $a, b \in A$ with $a \in G \setminus H$ and $b \in H \setminus G$. For instance, let $a \to b \in F$. Then $b \geqslant a \land b = (a \to b) \odot a \in G$, whence $b \in G$; a contradiction. Similarly (viii) \Rightarrow (ix).
- (ix) \Rightarrow (i): $F = G \cap H$ entails F = G or F = H, because either $G \subseteq H$ or $H \subset G$.

3. Representable pseudo BL-algebras

Proposition 3.1. If P is a minimal prime filter of a pseudo BL-algebra $\mathfrak{A} \setminus P$ is a maximal ideal of the lattice $\mathfrak{L}(\mathfrak{A})$.

Proof. By Zorn's Lemma, there is a maximal ideal I of $\mathfrak{L}(\mathfrak{A})$ with $A \setminus P \subseteq I$. (Since P is also a prime filter of $\mathfrak{L}(\mathfrak{A})$, it follows that $A \setminus P$ is a prime ideal of $\mathfrak{L}(\mathfrak{A})$ which is included in some maximal (prime) ideal.) We will show that $I = A \setminus P$. Denote $Q = \bigcup \{a^{\perp}; \ a \in I\}$. We claim that P = Q.

If $x \in a^{\perp}$ for some $a \in I$, then $x \vee a = 1$ and $x \notin I$. Indeed, if $x \in I$ then $x \vee a \neq 1$ since $x \vee a = 1$ would mean I = A. Thus $x \in A \setminus I \subseteq A \setminus (A \setminus P) = P$, whence $a^{\perp} \subseteq A \setminus I \subseteq P$ and consequently, $Q \subseteq A \setminus I \subseteq P$.

We shall now prove that Q is a prime filter of \mathfrak{A} . (F1): Since any principal polar a^{\perp} contains 1, so does Q. (F2): If $x,y\in Q$, that is, $x\in a^{\perp},y\in b^{\perp}$ for some $a,b\in I$, then $a\vee b\in I$ and

$$(x \odot y) \lor a \lor b \geqslant (x \lor a \lor b) \odot (y \lor a \lor b) = 1 \odot 1 = 1.$$

Therefore $x \odot y \in (a \vee b)^{\perp} \subseteq Q$. (F3): It is obvious since a^{\perp} is a filter of \mathfrak{A} for each $a \in I$

To prove that Q is prime, suppose $x \vee y = 1$ and $x \notin Q$, that is, $x \vee a \neq 1$ for all $a \in I$. If $x \notin I$ then the ideal in the lattice $\mathfrak{L}(\mathfrak{A})$ generated by $I \cup \{x\}$, $(I \cup \{x\}]$, is proper, i.e., $A \setminus P \subseteq I \subset (I \cup \{x\}] \neq A$, since $(I \cup \{x\}] = A$ would entail $1 \leqslant x \vee a$ for some $a \in I$; a contradiction. Hence $x \in I$ and thus $y \in x^{\perp} \subseteq Q$, proving that Q is prime.

However, P is a minimal prime filter of \mathfrak{A} ; thus $Q \subseteq A \setminus I \subseteq P$ yields $Q = A \setminus I = P$ as claimed. Therefore $I = A \setminus P$.

Corollary 3.2. If P is a minimal prime filter then

$$P = \bigcup \{a^{\perp}; \ a \notin P\}.$$

Proof. By the proof of the previous proposition, $P = \bigcup \{a^{\perp}; a \in I\}$, where $I = A \setminus P$.

A pseudo BL-algebra is said to be *representable* if it is a subdirect product of linearly ordered pseudo BL-algebras.

By Theorems 2.7 and 2.8, subdirect representations by totally ordered pseudo BL-algebras are associated with families of normal prime filters whose intersections are precisely $\{1\}$. Therefore it is obvious that every BL-algebra is representable (see also [11]). In contrast, for pseudo BL-algebras, this assertion fails.

The following results generalize the similar properties of pseudo MV-algebras, [4, Theorem 2.20], [1, Theorem 5.9], and [2, Theorem 6.11].

Theorem 3.3. For any pseudo BL-algebra \mathfrak{A} , the following statements are equivalent.

- (i) A is representable.
- (ii) There exists a family $\{P_i\}_{i\in I}$ of normal prime filters of $\mathfrak A$ such that

$$\bigcap_{i \in I} P_i = \{1\}.$$

- (iii) Any polar of \mathfrak{A} is a normal filter of \mathfrak{A} .
- (iv) Any principal polar is a normal filter.
- (v) Any minimal prime filter is normal.

Proof. As argued above, the equivalence of (i) and (ii) is clear.

(i) \Rightarrow (iii): Suppose that $\mathfrak A$ is a subdirect product of linearly ordered pseudo BL-algebras $\{\mathfrak A_i\}_{i\in I}$. Observe that

(3.1)
$$x \vee y = 1 \text{ iff } \{i \in I; \ x_i \neq 1_i\} \cap \{i \in I; \ y_i \neq 1_i\} = \emptyset$$

for all $x, y \in A$, since \mathfrak{A}_i are totally ordered.

Let now P be a polar in \mathfrak{A} , i.e. $P = P^{\perp \perp}$. Let $x \in A, a \in P$ and $y \in P^{\perp}$. Then $x \odot a \leqslant x$ implies $x \odot a = (x \odot a) \land x = (x \to (x \odot a)) \odot x$. Further, $\{i \in I; x_i \to (x_i \odot a_i) \neq 1_i\} \subseteq \{i \in I; a_i \neq 1_i\}$. Indeed, if $a_i = 1_i$ then $x_i \to (x_i \odot a_i) = x_i \to (x_i \odot 1_i) = x_i \to x_i = 1_i$. Hence we obtain

$$\{i \in I; \ x_i \to (x_i \odot a_i) \neq 1_i\} \cap \{i \in I; \ y_i \neq 1_i\} \subseteq \{i \in I; \ a_i \neq 1_i\} \cap \{i \in I; \ y_i \neq 1_i\} = \emptyset$$

by (3.1), since $a \in P$ and $y \in P^{\perp}$. Therefore $(x \to (x \odot a)) \lor y = 1$, and thus $x \to (x \odot a) \in P^{\perp \perp} = P$. Hence $x \odot a = (x \to (x \odot a)) \odot x \in P \odot x$, proving $x \odot P \subseteq P \odot x$.

- $(iii) \Rightarrow (iv)$: Obvious.
- (iv) \Rightarrow (v): By Corollary 3.2, $P = \bigcup \{a^{\perp}; \ a \notin P\}$ for any minimal prime filter P. If $x \to y \in P$ then there is $a \notin P$ with $x \to y \in a^{\perp}$ which is a normal filter, and hence $x \leadsto y \in a^{\perp} \subseteq P$. Summarizing, $x \to y \in P$ iff $x \leadsto y \in P$.
- $(v) \Rightarrow (i)$: Since any prime filter contains a minimal prime filter and the intersection of all prime filters of $\mathfrak A$ is obviously $\{1\}$, so does the intersection of minimal prime filters. Thus, by (ii), $\mathfrak A$ is representable.

Theorem 3.4. A pseudo BL-algebra is representable if and only if it satisfies the identities

$$(3.2) (y \to x) \lor (z \leadsto ((x \to y) \odot z)) = 1,$$

$$(3.3) (y \leadsto x) \lor (z \to (z \odot (x \leadsto y))) = 1.$$

Consequently, the class of representable pseudo BL-algebras is a variety.

Proof. In any linearly ordered pseudo BL-algebra \mathfrak{A} , either $y \to x = 1$ or $x \to y = 1$ (and also $y \leadsto x = 1$ or $x \leadsto y = 1$), and so it is easy to verify that \mathfrak{A} fulfils (3.2) and (3.3). Therefore the part "only if" is obvious.

Conversely, suppose that (3.2) and (3.3) are satisfied by \mathfrak{A} . In view of Theorem 3.3 (iv), it suffices to prove that any principal polar x^{\perp} is a normal filter of \mathfrak{A} .

Let $y \in x^{\perp}$, that is, $y \vee x = 1$. Observe that in this case

$$x = 1 \rightarrow x = (y \lor x) \rightarrow x = (y \rightarrow x) \land (x \rightarrow x) = (y \rightarrow x) \land 1 = y \rightarrow x$$

and similarly $y = x \rightarrow y$. Hence, by (3.2),

$$x \vee (z \leadsto (y \odot z)) = (y \to x) \vee (z \leadsto ((x \to y) \odot z)) = 1,$$

thus $z \leadsto (y \odot z) \in x^{\perp}$. Further, $y \odot z \leqslant z$ implies $y \odot z = (y \odot z) \land z = z \odot (z \leadsto (y \odot z)) \in z \odot x^{\perp}$, which shows $x^{\perp} \odot z \subseteq z \odot x^{\perp}$. The other inclusion follows similarly by (3.3).

References

- [1] A. Dvurečenskij: On pseudo MV-algebras. Soft Computing 5 (2001), 347–354.
- [2] A. Dvurečenskij: States on pseudo MV-algebras. Studia Logica 68 (2001), 301–327.
- [3] A. Di Nola, G. Georgescu, A. Iorgulescu: Pseudo BL-algebras: Part I. Preprint.
- [4] G. Georgescu, A. Iorgulescu: Pseudo MV-algebras. Mult. Val. Logic 6 (2001), 95–135.
- [5] G. Grätzer: General Lattice Theory. Birkhäuser, Berlin, 1998.
- [6] P. Hájek: Basic fuzzy logic and BL-algebras. Soft Computing 2 (1998), 124–128.
- [7] P. Hájek: Metamathematics of Fuzzy Logic. Kluwer, Amsterdam, 1998.
- [8] T. Kovář: A general theory of dually residuated lattice ordered monoids. Ph.D. thesis, Palacký Univ., Olomouc, 1996.
- [9] J. Kühr: Ideals of noncommutative $DR\ell$ -monoids. Manuscript.
- [10] J. Rachůnek: A non-commutative generalization of MV-algebras. Czechoslovak Math. J. 52 (2002), 255-273.
- [11] J. Rachůnek: A duality between algebras of basic logic and bounded representable $DR\ell$ -monoids. Math. Bohem. 126 (2001), 561–569.
- $[12]\ K.\,L.\,N.\,Swamy$: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105–114.

Author's address: Jan Kühr, Department of Algebra and Geometry, Faculty of Sciences, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic, e-mail: kuhr@inf.upol.cz.