PSEUDO $B L$-ALGEBRAS AND $D R \ell$-MONOIDS

Jan Kǘhr, Olomouc

(Received March 1, 2002)

Abstract

It is shown that pseudo $B L$-algebras are categorically equivalent to certain bounded $D R \ell$-monoids. Using this result, we obtain some properties of pseudo $B L$-algebras, in particular, we can characterize congruence kernels by means of normal filters. Further, we deal with representable pseudo $B L$-algebras and, in conclusion, we prove that they form a variety.

Keywords: pseudo $B L$-algebra, $D R \ell$-monoid, filter, polar, representable pseudo $B L$ algebra

MSC 2000: 06F05, 03G25

1. Connections between pseudo $B L$-algebras and $D R \ell$-monoids

Recently, pseudo $B L$-algebras were introduced by A. Di Nola, G. Georgescu and A. Iorgulescu in [3] as a noncommutative extension of Hájek's $B L$-algebras (see [6]).

An algebra $\mathfrak{A}=(A, \vee, \wedge, \odot, \rightarrow, \rightsquigarrow, 0,1)$ of type $\langle 2,2,2,2,2,0,0\rangle$ is called a pseudo $B L$-algebra iff $(A, \vee, \wedge, 0,1)$ is a bounded lattice, $(A, \odot, 1)$ is a monoid and the following conditions are satisfied for all $x, y, z \in A$:
(1) $x \odot y \leqslant z$ iff $x \leqslant y \rightarrow z$ iff $y \leqslant x \rightsquigarrow z$,
(2) $x \wedge y=(x \rightarrow y) \odot x=x \odot(x \rightsquigarrow y)$,
(3) $(x \rightarrow y) \vee(y \rightarrow x)=(x \rightsquigarrow y) \vee(y \rightsquigarrow x)=1$.

By [3, Corollary 3.29], pseudo $B L$-algebras satisfying the identity

$$
(x \rightsquigarrow 0) \rightarrow 0=(x \rightarrow 0) \rightsquigarrow 0=x
$$

are the duals of pseudo $M V$-algebras.
In the same way, (noncommutative) $D R \ell$-monoids extend Swamy's $D R \ell$-semigroups which were introduced in [12] as a common generalization of abelian ℓ-groups and Brouwerian algebras.

An algebra $\mathfrak{A}=(A,+, 0, \vee, \wedge, \rightharpoonup, \leftharpoondown)$ of type $\langle 2,0,2,2,2,2\rangle$ is a dually residuated lattice ordered monoid, or simply a $D R \ell$-monoid, iff
(1) $(A,+, 0, \vee, \wedge)$ is an ℓ-monoid, that is, $(A,+, 0)$ is a monoid, (A, \vee, \wedge) is a lattice and, for any $x, y, s, t \in A$, the following distributive laws are satisfied:

$$
\begin{aligned}
& s+(x \vee y)+t=(s+x+t) \vee(s+y+t), \\
& s+(x \wedge y)+t=(s+x+t) \wedge(s+y+t)
\end{aligned}
$$

(2) for any $x, y \in A, x \rightharpoonup y$ is the least $s \in A$ such that $s+y \geqslant x$, and $x \leftharpoondown y$ is the least $t \in A$ such that $y+t \geqslant x$;
(3) \mathfrak{A} fulfils the identities

$$
\begin{gathered}
((x \rightharpoonup y) \vee 0)+y \leqslant x \vee y, y+((x \leftharpoondown y) \vee 0) \leqslant x \vee y, \\
x \rightharpoonup x \geqslant 0, x \leftharpoondown x \geqslant 0 .
\end{gathered}
$$

Note that the inequalities $x \rightharpoonup x \geqslant 0$ and $x \leftharpoondown x \geqslant 0$ can be omitted, and the condition (2) is equivalent to the system of identities (see [10])

$$
\begin{aligned}
(x \rightharpoonup y)+y & \geqslant x, y+(x \leftharpoondown y) \geqslant x \\
x \rightharpoonup y & \leqslant(x \vee z) \rightharpoonup y, x \leftharpoondown y \leqslant(x \vee z) \leftharpoondown y, \\
(x+y) \rightharpoonup y & \leqslant x,(y+x) \leftharpoondown y \leqslant x .
\end{aligned}
$$

In [11], mutual relationships between $B L$-algebras and bounded representable commutative $D R \ell$-monoids are described.

Theorem 1.1. Let $\mathfrak{A}=(A, \vee, \wedge, \odot, \rightarrow, \rightsquigarrow, 0,1)$ be a pseudo $B L$-algebra. If we set

$$
\begin{aligned}
x+y & :=x \odot y, x \vee_{d} y:=x \wedge y, x \wedge_{d} y:=x \vee y, \\
x \rightharpoonup y & :=y \rightarrow x, x \leftharpoondown y:=y \rightsquigarrow x, 0_{d}:=1,1_{d}:=0
\end{aligned}
$$

for any $x, y \in A$, then $\mathfrak{A}_{d}=\left(A,+, 0_{d}, \vee_{d}, \wedge_{d}, \rightharpoonup, \leftharpoondown\right)$ is a bounded $D R \ell$-monoid with the greatest element 1_{d}. In addition, this $D R \ell$-monoid satisfies the identities

$$
\begin{align*}
& (x \rightharpoonup y) \wedge_{d}(y \rightharpoonup x)=0_{d}, \\
& (x \leftharpoondown y) \wedge_{d}(y \leftharpoondown x)=0_{d} . \tag{*}
\end{align*}
$$

Proof. Since $(A, \odot, 1, \vee, \wedge)$ is an ℓ-monoid, by [3, Propositions 3.3, 3.9], so is $\left(A,+, 0_{d}, \vee_{d}, \wedge_{d}\right)$. The rest follows directly by the definitions. Note that if a $D R \ell$-monoid \mathfrak{A}_{d} contains the greatest element 1_{d} then 0_{d} is its least element, by [8 , Theorem 1.2.3].

In view of Theorem 1.1, it is easily seen that in the definition of a pseudo $B L$ algebra, the condition (1) can be equivalently replaced by the following identities:

$$
\begin{aligned}
& (x \rightarrow y) \odot x \leqslant y, x \odot(x \rightsquigarrow y) \leqslant y, \\
& \quad x \rightarrow y \geqslant x \rightarrow(y \wedge z), x \rightsquigarrow y \geqslant x \rightsquigarrow(y \wedge z), \\
& y \rightarrow(x \odot y) \geqslant x, y \rightsquigarrow(y \odot x) \geqslant x .
\end{aligned}
$$

Consequently, pseudo $B L$-algebras form a variety of algebras of type $\langle 2,2,2,2,2$, $0,0\rangle$. This variety is arithmetical; in accordance with [8, Theorem 3.1.1], the Pixley term of the variety of pseudo $B L$-algebras can be taken as follows:

$$
p(x, y, z)=((x \rightsquigarrow y) \rightarrow z) \wedge((z \rightsquigarrow y) \rightarrow x) \wedge(x \vee z) .
$$

Theorem 1.2. Let $\mathfrak{A}=(A,+, 0, \vee, \wedge, \rightharpoonup, \leftharpoondown)$ be a $D R \ell$-monoid with the greatest element 1. For any $x, y \in A$ set

$$
\begin{aligned}
x \odot y & :=x+y, x \vee_{d} y:=x \wedge y, x \wedge_{d} y:=x \vee y, \\
x \rightarrow y & :=y \rightharpoonup x, x \rightsquigarrow y:=y \leftharpoondown x, 0_{d}:=1,1_{d}:=0 .
\end{aligned}
$$

Then $\mathfrak{A}_{d}=\left(A, \vee_{d}, \wedge_{d}, \odot, \rightarrow, \rightsquigarrow, 0_{d}, 1_{d}\right)$ is a pseudo $B L$-algebra if and only if \mathfrak{A} satisfies (*).

Proof. In any $D R \ell$-monoid we have

$$
x \vee y=((y \rightharpoonup x) \vee 0)+x=x+((y \leftharpoondown x) \vee 0) .
$$

Since \mathfrak{A} is bounded, that is, $0 \leqslant x \leqslant 1$ for any $x \in A$, it follows that

$$
x \wedge_{d} y=(x \rightarrow y) \odot x=x \odot(x \rightsquigarrow y) .
$$

The rest is obvious.
Let $\mathcal{P B L}$ be the category of pseudo $B L$-algebras, that is, the category whose objects are pseudo $B L$-algebras and morphisms are homomorphisms of pseudo $B L$ algebras. Let $\mathcal{D} \mathcal{R} \mathcal{L}_{1(*)}$ be the category of bounded $D R \ell$-monoids satisfying (*). Its morphisms are homomorphisms of $D R \ell$-monoids which preserve also 1 , thus in the sequel, bounded $D R \ell$-monoids are regarded as algebras $(A,+, 0, \vee, \wedge, \rightharpoonup, \leftharpoondown, 1)$ of type $\langle 2,0,2,2,2,2,0\rangle$.

Theorem 1.3. The categories $\mathcal{P B L}$ and $\mathcal{D} \mathcal{R} \mathcal{L}_{1(*)}$ are equivalent.
Proof. Theorems 1.1 and 1.2 enable us to define a functor $\mathcal{F}: \mathcal{P B L} \rightarrow \mathcal{D} \mathcal{R} \mathcal{L}_{1(*)}$ as follows: (i) $\mathcal{F}(\mathfrak{A})=\mathfrak{A}_{d}$ for any pseudo $B L$-algebra \mathfrak{A}, and (ii) $\mathcal{F}(h)=h$ for any pseudo $B L$-homomorphism h. It is easy to see that \mathcal{F} is really a categorical equivalence.

2. Filters

According to [3], a subset F of a pseudo $B L$-algebra \mathfrak{A} with the following properties is said to be a filter of \mathfrak{A} :
(F1) $1 \in F$;
(F2) $\forall x, y \in F ; x \odot y \in F$;
(F3) $\forall x \in F \forall y \in A ; x \leqslant y \Longrightarrow y \in F$.
For any subset $M \subseteq A$, the intersection of all filters containing M is called a filter generated by M and denoted by $[M)$. It is clear that

$$
[M)=\left\{x \in A ; x \geqslant a_{1} \odot \ldots \odot a_{n} \text { for some } a_{1}, \ldots, a_{n} \in M \text { and } n \geqslant 1\right\},
$$

and if we write briefly $[a)$ for $[\{a\})$ then

$$
[a)=\left\{x \in A ; x \geqslant a^{n} \text { for some } n \geqslant 1\right\} .
$$

In Section 1, we have already proved that $D R \ell$-monoids include the duals of pseudo $B L$-algebras. It is obvious that $F \subseteq A$ is a filter of a pseudo $B L$-algebra \mathfrak{A} iff it is an ideal of the induced bounded $D R \ell$-monoid \mathfrak{A}_{d}, that is,
(I1) $0_{d} \in F$;
(I2) $\forall x, y \in F ; x+y \in F$;
(I3) $\forall x \in F \forall y \in A ; x \geqslant_{d} y \Longrightarrow y \in F$.
Ideals of noncommutative $D R \ell$-monoids were studied in [9]. Considering the above facts, we immediately obtain the following results.

Proposition 2.1. The set of all filters of any pseudo $B L$-algebra \mathfrak{A}, ordered by set inclusion, is an algebraic Brouwerian lattice. For any filters F, G of \mathfrak{A}, the relative pseudocomplement of F with respect to G is given by

$$
F * G=\{a \in A ; a \vee x \in G \text { for all } x \in F\} .
$$

Let \mathfrak{A} be a pseudo $B L$-algebra and $X \subseteq A$. The set

$$
X^{\perp}=\{a \in A ; a \vee x=1 \text { for any } x \in X\}
$$

is called the polar of X. For any $x \in A$ we write x^{\perp} instead of $\{x\}^{\perp}$.
A subset X of A is a polar in \mathfrak{A} iff $X=Y^{\perp}$ for some $Y \subseteq A$.
Proposition 2.2 [3, Propositions 4.38, 4.39]. For all subsets X, Y of a pseudo $B L$-algebra \mathfrak{A}, (i) X^{\perp} is a filter of \mathfrak{A}, (ii) $X \subseteq X^{\perp \perp}$, (iii) $X \subseteq Y$ implies $Y^{\perp} \subseteq X^{\perp}$, (iv) $X^{\perp}=X^{\perp \perp \perp}$.

Proposition 2.3. For any subset X of a pseudo $B L$-algebra \mathfrak{A}, X is a polar in \mathfrak{A} iff $X=X^{\perp \perp}$.

Proof. Let $X=Y^{\perp}$; then $X^{\perp \perp}=Y^{\perp \perp \perp}=Y^{\perp}=X$.
By Proposition 2.1, the pseudocomplement of a filter F is

$$
F^{*}=\{a \in A ; a \vee x=1 \text { for any } x \in F\} .
$$

Moreover, it is clear that $F^{\perp}=F^{*}$ whenever F is a filter, and conversely, any polar is the pseudocomplement of some filter; in fact, $X=\left(X^{\perp}\right)^{*}$. Thus the polars in any pseudo $B L$-algebra are precisely the pseudocomplements in the lattice of its filters. Therefore, by the Glivenko-Frink Theorem, we directly obtain

Theorem 2.4. The set of all polars in any pseudo $B L$-algebra, ordered by set inclusion, is a complete Boolean algebra.

A filter F of a pseudo $B L$-algebra \mathfrak{A} is said to be normal iff it satisfies the following condition for each $x, y \in A$:

$$
x \rightarrow y \in F \Longleftrightarrow x \rightsquigarrow y \in F
$$

Proposition 2.5. For any filter F, the following conditions are equivalent:
(i) F is normal;
(ii) $x \odot F=F \odot x$ for each $x \in A$.

Proposition 2.6. If F and G are normal filters of \mathfrak{A} then

$$
F \vee G=\{x \in A ; x \geqslant a \odot b \text { for some } a \in F, b \in G\} .
$$

In addition, $F \vee G$ is a normal filter. Consequently, normal filters of any pseudo $B L$-algebra form a complete sublattice of the lattice of all its filters.

Theorem 2.7. In any pseudo $B L$-algebra, there is a one-to-one correspondence between the normal filters and the congruence relations. In fact, F corresponds to $\Theta(F)$ defined by

$$
\langle x, y\rangle \in \Theta(F)=\Theta_{1}(F) \Longleftrightarrow(x \rightarrow y) \wedge(y \rightarrow x) \in F
$$

or equivalently,

$$
\langle x, y\rangle \in \Theta(F)=\Theta_{2}(F) \Longleftrightarrow(x \rightsquigarrow y) \wedge(y \rightsquigarrow x) \in F .
$$

As proved in [3], and in general for noncommutative $D R \ell$-monoids in [9], if F is not a normal filter then the binary relations defined in the previous theorem, $\Theta_{1}(F)$ and $\Theta_{2}(F)$, are two distinct congruence relations on the distributive lattice $\mathfrak{L}(\mathfrak{A})=(A, \vee, \wedge, 0,1)$. In the quotient lattices $\mathfrak{L}(\mathfrak{A}) / \Theta_{1}(F)$ and $\mathfrak{L}(\mathfrak{A}) / \Theta_{2}(F)$ we have

$$
\begin{equation*}
[x] \Theta_{1}(F) \leqslant[y] \Theta_{1}(F) \Longleftrightarrow x \rightarrow y \in F \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
[x] \Theta_{2}(F) \leqslant[y] \Theta_{2}(F) \Longleftrightarrow x \rightsquigarrow y \in F \tag{2.2}
\end{equation*}
$$

respectively.
Let \mathfrak{A} be a pseudo $B L$-algebra. A filter F of \mathfrak{A} is said to be prime if it is a finitely meet-irreducible element in the lattice of filters of \mathfrak{A}.

By [3, Theorem 4.28], for any filter F of a pseudo $B L$-algebra \mathfrak{A} and for each ideal I of the lattice $\mathfrak{L}(\mathfrak{A})$, if $F \cap I=\emptyset$ then there exists a prime filter P of \mathfrak{A} with $F \subseteq P$ and $P \cap I=\emptyset$. Consequently, every proper filter is the intersection of all prime filters including it. In particular, the intersection of all prime filters is equal to $\{1\}$.

Theorem 2.8. For any filter F of a pseudo BL-algebra \mathfrak{A}, the following conditions are equivalent:
(i) F is prime;
(ii) for all filters G, H of $\mathfrak{A}, G \cap H \subseteq F$ implies $G \subseteq F$ or $H \subseteq F$;
(iii) for any $x, y \in A, x \vee y \in F$ implies $x \in F$ or $y \in F$;
(iv) for any $x, y \in A, x \vee y=1$ implies $x \in F$ or $y \in F$;
(v) for any $x, y \in A, x \rightarrow y \in F$ or $y \rightarrow x \in F$;
(vi) for any $x, y \in A, x \rightsquigarrow y \in F$ or $y \rightsquigarrow x \in F$;
(vii) $\mathfrak{L}(\mathfrak{A}) / \Theta_{1}(F)$ is totally ordered;
(viii) $\mathfrak{L}(\mathfrak{A}) / \Theta_{2}(F)$ is totally ordered;
(ix) the set of all filters including F is totally ordered under set inclusion.

Remark. The equivalence of (iii), (v), (vi), (vii) and (viii) is due to [3, Proposition 4.25].

Proof. (i) \Rightarrow (ii): Using the distributivity of the lattice of filters, $G \cap H \subseteq F$ implies $F=F \vee(G \cap H)=(F \vee G) \cap(F \vee H)$, whence $F=F \vee G$ or $F=F \vee H$, that is, $F \supseteq G$ or $F \supseteq H$.
(ii) \Rightarrow (iii): Obviously, $x \vee y \in F$ yields $[x) \cap[y)=[x \vee y) \subseteq F$. Hence, by (ii), $[x) \subseteq F$ or $[y) \subseteq F$ and thus $x \in F$ or $y \in F$.
(iii) \Rightarrow (iv): This is evident since $1 \in F$.
(iv) $\Rightarrow(\mathrm{v})$ and (iv) $\Rightarrow(\mathrm{vi})$: By the definition of a pseudo $B L$-algebra,

$$
(x \rightarrow y) \vee(y \rightarrow x)=(x \rightsquigarrow y) \vee(y \rightsquigarrow x)=1,
$$

which implies the assertion by (iv).
(v) \Rightarrow (vii) and (vi) \Rightarrow (viii): This is obvious from (2.1) and (2.2), respectively.
(vii) \Rightarrow (ix): If $F \subseteq G, H$ and neither $G \subseteq H$ nor $H \subseteq G$ then there exist $a, b \in A$ with $a \in G \backslash H$ and $b \in H \backslash G$. For instance, let $a \rightarrow b \in F$. Then $b \geqslant a \wedge b=(a \rightarrow b) \odot a \in G$, whence $b \in G$; a contradiction. Similarly (viii) \Rightarrow (ix).
(ix) \Rightarrow (i): $F=G \cap H$ entails $F=G$ or $F=H$, because either $G \subseteq H$ or $H \subseteq G$.

3. Representable pseudo $B L$-algebras

Proposition 3.1. If P is a minimal prime filter of a pseudo $B L$-algebra \mathfrak{A} then $A \backslash P$ is a maximal ideal of the lattice $\mathfrak{L}(\mathfrak{A})$.

Proof. By Zorn's Lemma, there is a maximal ideal I of $\mathfrak{L}(\mathfrak{A})$ with $A \backslash P \subseteq I$. (Since P is also a prime filter of $\mathfrak{L}(\mathfrak{A})$, it follows that $A \backslash P$ is a prime ideal of $\mathfrak{L}(\mathfrak{A})$ which is included in some maximal (prime) ideal.) We will show that $I=A \backslash P$. Denote $Q=\bigcup\left\{a^{\perp} ; a \in I\right\}$. We claim that $P=Q$.

If $x \in a^{\perp}$ for some $a \in I$, then $x \vee a=1$ and $x \notin I$. Indeed, if $x \in I$ then $x \vee a \neq 1$ since $x \vee a=1$ would mean $I=A$. Thus $x \in A \backslash I \subseteq A \backslash(A \backslash P)=P$, whence $a^{\perp} \subseteq A \backslash I \subseteq P$ and consequently, $Q \subseteq A \backslash I \subseteq P$.

We shall now prove that Q is a prime filter of \mathfrak{A}. (F1): Since any principal polar a^{\perp} contains 1 , so does Q. (F2): If $x, y \in Q$, that is, $x \in a^{\perp}, y \in b^{\perp}$ for some $a, b \in I$, then $a \vee b \in I$ and

$$
(x \odot y) \vee a \vee b \geqslant(x \vee a \vee b) \odot(y \vee a \vee b)=1 \odot 1=1
$$

Therefore $x \odot y \in(a \vee b)^{\perp} \subseteq Q$. (F3): It is obvious since a^{\perp} is a filter of \mathfrak{A} for each $a \in I$.

To prove that Q is prime, suppose $x \vee y=1$ and $x \notin Q$, that is, $x \vee a \neq 1$ for all $a \in I$. If $x \notin I$ then the ideal in the lattice $\mathfrak{L}(\mathfrak{A})$ generated by $I \cup\{x\},(I \cup\{x\}]$, is proper, i.e., $A \backslash P \subseteq I \subset(I \cup\{x\}] \neq A$, since $(I \cup\{x\}]=A$ would entail $1 \leqslant x \vee a$ for some $a \in I$; a contradiction. Hence $x \in I$ and thus $y \in x^{\perp} \subseteq Q$, proving that Q is prime.

However, P is a minimal prime filter of \mathfrak{A}; thus $Q \subseteq A \backslash I \subseteq P$ yields $Q=A \backslash I=P$ as claimed. Therefore $I=A \backslash P$.

Corollary 3.2. If P is a minimal prime filter then

$$
P=\bigcup\left\{a^{\perp} ; a \notin P\right\}
$$

Proof. By the proof of the previous proposition, $P=\bigcup\left\{a^{\perp} ; a \in I\right\}$, where $I=A \backslash P$.

A pseudo $B L$-algebra is said to be representable if it is a subdirect product of linearly ordered pseudo $B L$-algebras.

By Theorems 2.7 and 2.8, subdirect representations by totally ordered pseudo $B L$-algebras are associated with families of normal prime filters whose intersections are precisely $\{1\}$. Therefore it is obvious that every $B L$-algebra is representable (see also [11]). In contrast, for pseudo $B L$-algebras, this assertion fails.

The following results generalize the similar properties of pseudo $M V$-algebras, [4, Theorem 2.20], [1, Theorem 5.9], and [2, Theorem 6.11].

Theorem 3.3. For any pseudo $B L$-algebra \mathfrak{A}, the following statements are equivalent.
(i) \mathfrak{A} is representable.
(ii) There exists a family $\left\{P_{i}\right\}_{i \in I}$ of normal prime filters of \mathfrak{A} such that

$$
\bigcap_{i \in I} P_{i}=\{1\}
$$

(iii) Any polar of \mathfrak{A} is a normal filter of \mathfrak{A}.
(iv) Any principal polar is a normal filter.
(v) Any minimal prime filter is normal.

Proof. As argued above, the equivalence of (i) and (ii) is clear.
(i) \Rightarrow (iii): Suppose that \mathfrak{A} is a subdirect product of linearly ordered pseudo $B L$-algebras $\left\{\mathfrak{A}_{i}\right\}_{i \in I}$. Observe that

$$
\begin{equation*}
x \vee y=1 \text { iff }\left\{i \in I ; x_{i} \neq 1_{i}\right\} \cap\left\{i \in I ; y_{i} \neq 1_{i}\right\}=\emptyset \tag{3.1}
\end{equation*}
$$

for all $x, y \in A$, since \mathfrak{A}_{i} are totally ordered.
Let now P be a polar in \mathfrak{A}, i.e. $P=P^{\perp \perp}$. Let $x \in A, a \in P$ and $y \in P^{\perp}$. Then $x \odot a \leqslant x$ implies $x \odot a=(x \odot a) \wedge x=(x \rightarrow(x \odot a)) \odot x$. Further, $\left\{i \in I ; x_{i} \rightarrow\left(x_{i} \odot a_{i}\right) \neq 1_{i}\right\} \subseteq\left\{i \in I ; a_{i} \neq 1_{i}\right\}$. Indeed, if $a_{i}=1_{i}$ then $x_{i} \rightarrow$ $\left(x_{i} \odot a_{i}\right)=x_{i} \rightarrow\left(x_{i} \odot 1_{i}\right)=x_{i} \rightarrow x_{i}=1_{i}$. Hence we obtain
$\left\{i \in I ; x_{i} \rightarrow\left(x_{i} \odot a_{i}\right) \neq 1_{i}\right\} \cap\left\{i \in I ; y_{i} \neq 1_{i}\right\} \subseteq\left\{i \in I ; a_{i} \neq 1_{i}\right\} \cap\left\{i \in I ; y_{i} \neq 1_{i}\right\}=\emptyset$
by (3.1), since $a \in P$ and $y \in P^{\perp}$. Therefore $(x \rightarrow(x \odot a)) \vee y=1$, and thus $x \rightarrow(x \odot a) \in P^{\perp \perp}=P$. Hence $x \odot a=(x \rightarrow(x \odot a)) \odot x \in P \odot x$, proving $x \odot P \subseteq P \odot x$.
(iii) \Rightarrow (iv): Obvious.
(iv) $\Rightarrow(\mathrm{v})$: By Corollary 3.2, $P=\bigcup\left\{a^{\perp} ; a \notin P\right\}$ for any minimal prime filter P. If $x \rightarrow y \in P$ then there is $a \notin P$ with $x \rightarrow y \in a^{\perp}$ which is a normal filter, and hence $x \rightsquigarrow y \in a^{\perp} \subseteq P$. Summarizing, $x \rightarrow y \in P$ iff $x \rightsquigarrow y \in P$.
(v) \Rightarrow (i): Since any prime filter contains a minimal prime filter and the intersection of all prime filters of \mathfrak{A} is obviously $\{1\}$, so does the intersection of minimal prime filters. Thus, by (ii), \mathfrak{A} is representable.

Theorem 3.4. A pseudo BL-algebra is representable if and only if it satisfies the identities

$$
\begin{align*}
& (y \rightarrow x) \vee(z \rightsquigarrow((x \rightarrow y) \odot z))=1 \tag{3.2}\\
& (y \rightsquigarrow x) \vee(z \rightarrow(z \odot(x \rightsquigarrow y)))=1 . \tag{3.3}
\end{align*}
$$

Consequently, the class of representable pseudo $B L$-algebras is a variety.
Proof. In any linearly ordered pseudo $B L$-algebra \mathfrak{A}, either $y \rightarrow x=1$ or $x \rightarrow y=1$ (and also $y \rightsquigarrow x=1$ or $x \rightsquigarrow y=1$), and so it is easy to verify that \mathfrak{A} fulfils (3.2) and (3.3). Therefore the part "only if" is obvious.

Conversely, suppose that (3.2) and (3.3) are satisfied by \mathfrak{A}. In view of Theorem 3.3 (iv), it suffices to prove that any principal polar x^{\perp} is a normal filter of \mathfrak{A}.

Let $y \in x^{\perp}$, that is, $y \vee x=1$. Observe that in this case

$$
x=1 \rightarrow x=(y \vee x) \rightarrow x=(y \rightarrow x) \wedge(x \rightarrow x)=(y \rightarrow x) \wedge 1=y \rightarrow x
$$

and similarly $y=x \rightarrow y$. Hence, by (3.2),

$$
x \vee(z \rightsquigarrow(y \odot z))=(y \rightarrow x) \vee(z \rightsquigarrow((x \rightarrow y) \odot z))=1,
$$

thus $z \rightsquigarrow(y \odot z) \in x^{\perp}$. Further, $y \odot z \leqslant z$ implies $y \odot z=(y \odot z) \wedge z=z \odot(z \rightsquigarrow$ $(y \odot z)) \in z \odot x^{\perp}$, which shows $x^{\perp} \odot z \subseteq z \odot x^{\perp}$. The other inclusion follows similarly by (3.3).

References

[1] A. Dvurečenskij: On pseudo $M V$-algebras. Soft Computing 5 (2001), 347-354.
[2] A. Dvurečenskij: States on pseudo MV-algebras. Studia Logica 68 (2001), 301-327.
[3] A. Di Nola, G. Georgescu, A. Iorgulescu: Pseudo BL-algebras: Part I. Preprint.
[4] G. Georgescu, A. Iorgulescu: Pseudo MV-algebras. Mult. Val. Logic 6 (2001), 95-135.
[5] G. Grätzer: General Lattice Theory. Birkhäuser, Berlin, 1998.
[6] P. Hájek: Basic fuzzy logic and BL-algebras. Soft Computing 2 (1998), 124-128.
[7] P. Hájek: Metamathematics of Fuzzy Logic. Kluwer, Amsterdam, 1998.
[8] T. Kovář: A general theory of dually residuated lattice ordered monoids. Ph.D. thesis, Palacký Univ., Olomouc, 1996.
[9] J. Kühr: Ideals of noncommutative $D R \ell$-monoids. Manuscript.
[10] J. Rachuinek: A non-commutative generalization of $M V$-algebras. Czechoslovak Math. J. 52 (2002), 255-273.
[11] J. Rachuinek: A duality between algebras of basic logic and bounded representable $D R \ell$-monoids. Math. Bohem. 126 (2001), 561-569.
[12] K. L. N. Swamy: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105-114.

Author's address: Jan Kühr, Department of Algebra and Geometry, Faculty of Sciences, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic, e-mail: kuhr @inf.upol.cz.

