GRAPH AUTOMORPHISMS OF MULTILATTICES

MÁria Csontóová, Košice

(Received March 20, 2002)

Abstract

In the present paper we generalize a result of a theorem of J. Jakubík concerning graph automorphisms of lattices to the case of multilattices of locally finite length.

Keywords: multilattice, graph automorphism, direct factor
MSC 2000: 06A06

1. Introduction

Inspired by a problem proposed G. Birkhoff ([1], Problem 6) J. Jakubík investigated graph automorphisms of modular lattices [4], semimodular lattices [10] and lattices [5].

The present author studied graph isomorphisms of multilattices [7], [8], [11]. We will apply some results [4], [5] and our results [7], [8] for dealing with graph automorphisms of multilattices of locally finite length. We obtain a generalization of a theorem of J. Jakubík [4], [5].

2. Preliminaries

The notion of a multilattice was introduced by Benado [2]. It is defined as follows. Let P be a partially ordered set. For $x, y, \in P$ we denote by $L(x, y)$ and $U(x, y)$ the system of all lower bounds and all upper bounds of the set $\{x, y\}$ in P, respectively. Let $x \wedge y$ be the system of all maximal elements of $L(x, y)$; similarly we denote by $x \vee y$ the system of all minimal elements of $U(x, y)$. If P is directed then both $x \wedge y, x \vee y$ are nonempty. P is said to be a multilattice if whenever $x, y \in P$ and $z \in L(x, y)$ then there is z_{1} in $L(x, y)$ such that $z_{1} \geqslant z, z_{1}$ is a maximal element of
$L(x, y)$ (this case we will write down as $z_{1} \in(x \wedge y)_{z}=\{u \in x \wedge y: u \geqslant z\}$) and if the corresponding dual condition concerning $U(x, y)$ also holds.

In what follows M is a directed multilattice of locally finite length. For $a, b \in M$ with $a \leqslant b$, the interval $[a, b]$ is the set $\{x \in M: a \leqslant x \leqslant b\}$. If $[a, b]=\{a, b\}$ and $a \neq b$ then $[a, b]$ is said to be a prime interval and we put $a \prec b$.

By a graph $G(M)$ we mean an unoriented graph whose vertices are elements of M : two vertices are joined by an edge (a, b) iff $[a, b]$ is a prime interval. A graph automorphism of M is a one-to-one maping $\varphi: M$ onto M such that whenever $x, y \in M$ and $x \prec y$, then either $\varphi(x) \prec \varphi(y)$ or $\varphi(y) \prec \varphi(x)$.

The following assertion (A) was proved in [2].
(A) A multilattice M of locally finite length is modular iff it fulfils the following covering condition (σ^{\prime}) and the condition ($\sigma^{\prime \prime}$) dual to σ^{\prime}.
$\left(\sigma^{\prime}\right)$ If $a, b, u, v \in M$ are such that $[u, a],[u, b]$ are prime intervals and $v \in a \vee b$, then $[a, v],[b, v]$ are prime intervals.

3. Cells in partially ordered sets

Let M be a multilattice. Assume that $x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}, u, v$ are distinct elements of M such that
(i) $u \prec x_{1} \prec x_{2} \prec \ldots \prec x_{m} \prec v, \quad u \prec y_{1} \prec \ldots \prec y_{n} \prec v$;
(ii) either $v \in x_{1} \vee y_{1}$ or $u \in x_{m} \wedge y_{n}$.

Then the set $\left\{u, v, x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right\}=C$ is called a cell in M. The cell C in M is said to be proper if either $m>1$ or $n>1$. A cell C in M such that $m=n=1$ will be called an elementary square. We will say that an elementary square $C=\left\{u, v, x_{1}, y_{1}\right\}$ in M is broken by a graph automorphism φ if either $\varphi(u) \prec \varphi\left(x_{1}\right)$, $\varphi(u) \prec \varphi\left(y_{1}\right), \varphi(v) \prec \varphi\left(x_{1}\right), \varphi(v) \prec \varphi\left(y_{1}\right)$ or dually.

A cell C is called regular under a graph automorphism φ if either each prime interval $[a, b] \in C$ is preserved by the graph automorphism φ (i.e. $\varphi(a) \prec \varphi(b))$ or each prime interval $[a, b] \in C$ is reversed by the graph automorphism φ (i.e. $\varphi(b) \prec \varphi(a)$).

The present author proved the following results.
3.1. Theorem (Cf. [7].). Let M, M^{\prime} be directed modular multilattices of locally finite length. Then the following conditions are equivalent:
$\left(\alpha_{1}\right)$ There exists a graph isomorphism φ of M onto M^{\prime} such that no elementary square of M or M^{\prime} is broken by φ or φ^{-1}, respectively.
$\left(\alpha_{2}\right)$ There are multilattices A, B and direct representations $f: M \rightarrow A \times B$, $g: M^{\prime} \rightarrow A \times B^{d}$ such that $\varphi=g^{-1} f\left(B^{d}\right.$ is the dual to $\left.B\right)$.
3.2. Theorem (Cf. [8].). Let M, M^{\prime} be directed multilattices of locally finite length and let $\varphi: M \rightarrow M^{\prime}$ be a bijection. Then the condition $\left(\alpha_{2}\right)$ is equivalent to the following condition.
$\left(\beta_{1}\right) \varphi$ is a graph isomorphism of the multilattice M onto M^{\prime} such that no elementary square of M or M^{\prime} is broken under φ or φ^{-1}, respectively, and all proper cells of M, M^{\prime} are regular under φ or φ^{-1}, respectively.

For a multilattice M we denote by
$A(M)$ - the set of all graph automorphisms of M;
$A_{s}(M)$-the set of all $\varphi \in A(M)$ such that no elementary square of M is broken by φ and by φ^{-1};
$A_{c}(M)$ - the set of all $\varphi \in A_{s}(M)$ such that each proper cell in M is regular under φ or φ^{-1}.
Futher, let $C,\left(C_{0}\right.$ and $\left.C_{1}\right)$ be the class of multilattices M such that whenever $\varphi \in A(M)\left(\right.$ or $\left.\varphi \in A_{s}(M), \varphi \in A_{c}(M)\right)$ then φ is a lattice automorphism on M.

The following two lemmas were proved in [3] for a lattice L. The proofs of these lemmas remain valid if the assumption that L is a modular lattice is replaced by the assumption that L is a multilattice of locally finite length.
3.3. Lemma (Cf. [4].). Let ψ be an isomorphism of the multilattice M onto the direct product $A \times B$. Further suppose that γ is an isomorphism of B onto B^{d}.

For each $x \in M$ we put $\varphi(x)=y$ where $\psi(x)=(a, b) y=\psi^{-1}(a, \gamma,(b))$.
Then φ is a graph automorphism of M.
3.4. Lemma (Cf. [4].). Let the assumption of 3.3 be satisfied. Further suppose that B has more than one element. Then φ fails to be a multilattice automorphism on M.
3.5. Lemma. Let the assumption of 3.3 be valid. Then no elementary square of M is broken by the graph automorphism φ and by φ^{-1}; consequently $\varphi \in A_{s}(M)$.

Proof. Let $\{a, b, u, v\}$ be an elementary square in M such that $a \prec v, b \prec$ $v, u \prec a, u \prec b$. If $\psi(a)=\left(a_{1}, a_{2}\right), \psi(b)=\left(b_{1}, b_{2}\right), \psi(u)=\left(u_{1}, u_{2}\right), \psi(v)=\left(v_{1}, v_{2}\right)$ then the relation $\psi(a) \prec \psi(v)$ is valid if and only if either
(i) $a_{1} \prec v_{1}$ and $a_{2}=v_{2}$,
or
(ii) $a_{1}=v_{1}$ and $a_{2} \prec v_{2}$.

From this and $a \prec v$ it follows that $\varphi(a) \prec \varphi(v)$ if and only if the case (i) is valid and $\varphi(v) \prec \varphi(a)$ if and only if the case (ii) is valid. Suppose that $\varphi(u) \prec \varphi(a)$,
$\varphi(u) \prec \varphi(b), \varphi(v) \prec \varphi(a), \varphi(v) \prec \varphi(b)$. From the relations $\varphi(u) \prec \varphi(a), \varphi(u) \prec \varphi(b)$ we have $a_{2}=u_{2}=b_{2}$. The relations $\varphi(v) \prec \varphi(a), \varphi(v) \prec \varphi(b)$ imply $a_{1}=v_{1}=b_{1}$.

Thus $\psi(a)=\psi(b)$, which is a contradiction.
If we consider $\varphi(a) \prec \varphi(u), \varphi(b) \prec \varphi(u), \varphi(a) \prec \varphi(v), \varphi(b) \prec \varphi(v)$ then we obtain $\psi(a)=\psi(b)$ by a similar argument.
In the same way we arrive at a contradiction if we suppose that an elementary square of M is broken by the graph automorphism φ^{-1}.
3.6. Lemma. Let the assumptions of 3.3 be satisfied. Then each proper cell of M is regular under the graph automorphism φ and under φ^{-1}; consequently $\varphi \in A_{c}(M)$.

Proof. Assume that $C=\left\{u, v, x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right\}$ is a proper cell in M such that $m>1$ and $v \in x_{1} \vee y_{1}$ (if $u \in\left(x_{m} \wedge y_{n}\right)$ we can apply the dual method). If $x \in M$ and $\psi(x)=(a, b)$ then we denote $a=x(A), b=x(B)$.

Since $u \prec x_{1}$ we have either
(i) $u(A) \prec x_{1}(A)$ and $u(B)=x_{1}(B)$,
or
(ii) $u(A)=x_{1}(A)$ and $u(B) \prec x_{1}(B)$.

Similar relations hold for u and y_{1}; let us denote them by (i_{1}) and (ii_{1}). Consider the case when (i) is valid.

If (ii ${ }_{1}$) holds, then $x_{1}=\psi^{-1}\left(x_{1}(A), u(B)\right), y_{1}=\psi^{-1}\left(u(A), y_{1}(B)\right)$ and $\left(x_{1}(A)\right.$, $u(B)) \vee\left(u(A), y_{1}(B)\right)=\left\{\left(x_{1}(A), y_{1}(B)\right)\right\}$. From this it follows that $\psi(v)=$ $\left(x_{1}(A), y_{1}(B)\right) \prec\left(x_{1}(A), u(B)\right)=\psi\left(x_{1}\right)$ and thus $v \prec x_{1}$, which is a contradiction.

Hence (i_{1}) must hold and we have $\psi\left(x_{1}\right) \vee \psi\left(y_{1}\right)=\left(x_{1}(A), u(B)\right) \vee\left(y_{1}(A), u(B)\right)$. From this it follows that $v(B)=u(B)$.

For each x_{i} and y_{j} we have $u \leqslant x_{i} \leqslant v, u \leqslant y_{j} \leqslant v$ whence $x_{i}(B)=u(B)=y_{j}(B)$ and therefore we get $\varphi(u) \prec \varphi\left(x_{1}\right) \prec \ldots \prec \varphi\left(x_{m}\right) \prec \varphi(v), \varphi(u) \prec \varphi\left(y_{1}\right) \prec \ldots \prec$ $\varphi\left(y_{n}\right) \prec \varphi(v)$.

Thus C is regular.
The proof for the case (ii) is analogous.
By the same method as $1.3,3.1$ in [4] (with the only distinction that instead of [3] we now apply 3.2) we have
3.7. Lemma. If a multilattice M belongs to C_{1} then no direct factor of M having more than one element is self-dual.
3.8. Lemma. If no direct factor of M having more than one element is self-dual then M belongs to C_{1}.

These lemmas yield the following assertion.
3.9. Theorem. Let M be a directed multilattice of locally finite length. Then the following conditions are equivalent:
(i) M belongs to C_{1};
(ii) no direct factor of M having more than one element is self-dual.

Analogously as above (by applying 3.1) we obtain
3.10. Theorem. Let M be a directed modular multilattice of locally finite length. Then the following conditions are equivalent:
(i') M belongs to C_{0};
(ii) no direct factor of M having more than one element is self-dual.

References

[1] G. Birkhoff: Lattice Theory. Third Edition, Providence, 1967.
[2] M. Benado: Les ensembles partiellement ordonnèes et le théorème de raffinement de Schreier, II. Théorie des multistructures. Czechoslovak Math. J. 5 (1955), 308-344.
[3] J. Jakubik: On isomorphisms of graphs of lattices. Czechoslovak Math. J. 35 (1985), 188-200.
[4] J. Jakubik: Graph automorphisms of a finite modular lattice. Czechoslovak Math. J. 49 (1999), 443-447.
[5] J. Jakubik: Graph automorphisms and cells of lattices. Czechoslovak Math. J. 53 (2003), 103-111.
[6] J. Jakubik, M. Csontóová: Convex isomorphisms of directed multilattices. Math. Bohem. 118 (1993), 359-379.
[7] M. Tomková: Graph isomorphisms of modular multilattices. Math. Slovaca 30 (1980), 95-100.
[8] M. Tomková: Graph isomorphisms of partially ordered sets. Math. Slovaca 37 (1987), 47-52.
[9] C. Ratatonprasert, B. A. Davey: Semimodular lattices with isomorphic graphs. Order 4 (1987), 1-13.
[10] J. Jakubik: Graph automorphisms of semimodular lattices. Math. Bohem. 125 (2000), 459-464.
[11] M. Tomková: On multilattices with isomorphic graphs. Math. Slovaca 32 (1982), 63-73.
[12] J. Jakubik: On graph isomorphism of modular lattices. Czechoslovak Math. J. 4 (1954), 131-141.

Author's address: Mária Csontóová, Dept. of Mathematics, Faculty of Civil Engineering, Technical University, Vysokoškolská 4, SK-042 02 Košice, Slovakia, e-mail: csontom @tuke.sk.

