GRAPH AUTOMORPHISMS OF MULTILATTICES

MÁRIA CSONTÓOVÁ, Košice

(Received March 20, 2002)

Abstract. In the present paper we generalize a result of a theorem of J. Jakubík concerning graph automorphisms of lattices to the case of multilattices of locally finite length.

Keywords: multilattice, graph automorphism, direct factor

MSC 2000: 06A06

1. INTRODUCTION

Inspired by a problem proposed G. Birkhoff ([1], Problem 6) J. Jakubík investigated graph automorphisms of modular lattices [4], semimodular lattices [10] and lattices [5].

The present author studied graph isomorphisms of multilattices [7], [8], [11]. We will apply some results [4], [5] and our results [7], [8] for dealing with graph automorphisms of multilattices of locally finite length. We obtain a generalization of a theorem of J. Jakubík [4], [5].

2. Preliminaries

The notion of a multilattice was introduced by Benado [2]. It is defined as follows. Let P be a partially ordered set. For $x, y, \in P$ we denote by L(x, y) and U(x, y) the system of all lower bounds and all upper bounds of the set $\{x, y\}$ in P, respectively. Let $x \wedge y$ be the system of all maximal elements of L(x, y); similarly we denote by $x \vee y$ the system of all minimal elements of U(x, y). If P is directed then both $x \wedge y, x \vee y$ are nonempty. P is said to be a multilattice if whenever $x, y \in P$ and $z \in L(x, y)$ then there is z_1 in L(x, y) such that $z_1 \ge z, z_1$ is a maximal element of

L(x, y) (this case we will write down as $z_1 \in (x \wedge y)_z = \{u \in x \wedge y : u \ge z\}$) and if the corresponding dual condition concerning U(x, y) also holds.

In what follows M is a directed multilattice of locally finite length. For $a, b \in M$ with $a \leq b$, the interval [a, b] is the set $\{x \in M : a \leq x \leq b\}$. If $[a, b] = \{a, b\}$ and $a \neq b$ then [a, b] is said to be a prime interval and we put $a \prec b$.

By a graph G(M) we mean an unoriented graph whose vertices are elements of M: two vertices are joined by an edge (a, b) iff [a, b] is a prime interval. A graph automorphism of M is a one-to-one maping $\varphi \colon M$ onto M such that whenever $x, y \in M$ and $x \prec y$, then either $\varphi(x) \prec \varphi(y)$ or $\varphi(y) \prec \varphi(x)$.

The following assertion (A) was proved in [2].

(A) A multilattice M of locally finite length is modular iff it fulfils the following covering condition (σ') and the condition (σ'') dual to σ' .

 (σ') If $a, b, u, v \in M$ are such that [u, a], [u, b] are prime intervals and $v \in a \lor b$, then [a, v], [b, v] are prime intervals.

3. Cells in partially ordered sets

Let M be a multilattice. Assume that $x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_n, u, v$ are distinct elements of M such that

- (i) $u \prec x_1 \prec x_2 \prec \ldots \prec x_m \prec v, \quad u \prec y_1 \prec \ldots \prec y_n \prec v;$
- (ii) either $v \in x_1 \lor y_1$ or $u \in x_m \land y_n$.

Then the set $\{u, v, x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_n\} = C$ is called a cell in M. The cell C in M is said to be proper if either m > 1 or n > 1. A cell C in M such that m = n = 1 will be called an elementary square. We will say that an elementary square $C = \{u, v, x_1, y_1\}$ in M is broken by a graph automorphism φ if either $\varphi(u) \prec \varphi(x_1)$, $\varphi(u) \prec \varphi(y_1), \varphi(v) \prec \varphi(x_1), \varphi(v) \prec \varphi(y_1)$ or dually.

A cell C is called regular under a graph automorphism φ if either each prime interval $[a, b] \in C$ is preserved by the graph automorphism φ (i.e. $\varphi(a) \prec \varphi(b)$) or each prime interval $[a, b] \in C$ is reversed by the graph automorphism φ (i.e. $\varphi(b) \prec \varphi(a)$).

The present author proved the following results.

3.1. Theorem (Cf. [7].). Let M, M' be directed modular multilattices of locally finite length. Then the following conditions are equivalent:

- (α_1) There exists a graph isomorphism φ of M onto M' such that no elementary square of M or M' is broken by φ or φ^{-1} , respectively.
- (α_2) There are multilattices A, B and direct representations $f: M \to A \times B$, $g: M' \to A \times B^d$ such that $\varphi = g^{-1}f$ (B^d is the dual to B).

3.2. Theorem (Cf. [8].). Let M, M' be directed multilattices of locally finite length and let $\varphi: M \to M'$ be a bijection. Then the condition (α_2) is equivalent to the following condition.

(β_1) φ is a graph isomorphism of the multilattice M onto M' such that no elementary square of M or M' is broken under φ or φ^{-1} , respectively, and all proper cells of M, M' are regular under φ or φ^{-1} , respectively.

For a multilattice M we denote by

A(M)—the set of all graph automorphisms of M;

 $A_s(M)$ —the set of all $\varphi \in A(M)$ such that no elementary square of M is broken by φ and by φ^{-1} ;

 $A_c(M)$ —the set of all $\varphi \in A_s(M)$ such that each proper cell in M is regular under φ or φ^{-1} .

Further, let $C, (C_0 \text{ and } C_1)$ be the class of multilattices M such that whenever $\varphi \in A(M)$ (or $\varphi \in A_s(M), \varphi \in A_c(M)$) then φ is a lattice automorphism on M.

The following two lemmas were proved in [3] for a lattice L. The proofs of these lemmas remain valid if the assumption that L is a modular lattice is replaced by the assumption that L is a multilattice of locally finite length.

3.3. Lemma (Cf. [4].). Let ψ be an isomorphism of the multilattice M onto the direct product $A \times B$. Further suppose that γ is an isomorphism of B onto B^d .

For each $x \in M$ we put $\varphi(x) = y$ where $\psi(x) = (a, b) \ y = \psi^{-1}(a, \gamma, (b))$. Then φ is a graph automorphism of M.

3.4. Lemma (Cf. [4].). Let the assumption of 3.3 be satisfied. Further suppose that B has more than one element. Then φ fails to be a multilattice automorphism on M.

3.5. Lemma. Let the assumption of 3.3 be valid. Then no elementary square of M is broken by the graph automorphism φ and by φ^{-1} ; consequently $\varphi \in A_s(M)$.

Proof. Let $\{a, b, u, v\}$ be an elementary square in M such that $a \prec v, b \prec v, u \prec a, u \prec b$. If $\psi(a) = (a_1, a_2), \psi(b) = (b_1, b_2), \psi(u) = (u_1, u_2), \psi(v) = (v_1, v_2)$ then the relation $\psi(a) \prec \psi(v)$ is valid if and only if either

(i) $a_1 \prec v_1$ and $a_2 = v_2$,

or

(ii) $a_1 = v_1$ and $a_2 \prec v_2$.

From this and $a \prec v$ it follows that $\varphi(a) \prec \varphi(v)$ if and only if the case (i) is valid and $\varphi(v) \prec \varphi(a)$ if and only if the case (ii) is valid. Suppose that $\varphi(u) \prec \varphi(a)$,

 $\varphi(u) \prec \varphi(b), \varphi(v) \prec \varphi(a), \varphi(v) \prec \varphi(b).$ From the relations $\varphi(u) \prec \varphi(a), \varphi(u) \prec \varphi(b)$ we have $a_2 = u_2 = b_2$. The relations $\varphi(v) \prec \varphi(a), \varphi(v) \prec \varphi(b)$ imply $a_1 = v_1 = b_1$.

Thus $\psi(a) = \psi(b)$, which is a contradiction.

If we consider $\varphi(a) \prec \varphi(u), \varphi(b) \prec \varphi(u), \varphi(a) \prec \varphi(v), \varphi(b) \prec \varphi(v)$ then we obtain $\psi(a) = \psi(b)$ by a similar argument.

In the same way we arrive at a contradiction if we suppose that an elementary square of M is broken by the graph automorphism φ^{-1} .

3.6. Lemma. Let the assumptions of 3.3 be satisfied. Then each proper cell of M is regular under the graph automorphism φ and under φ^{-1} ; consequently $\varphi \in A_c(M)$.

Proof. Assume that $C = \{u, v, x_1, \dots, x_m, y_1, \dots, y_n\}$ is a proper cell in M such that m > 1 and $v \in x_1 \lor y_1$ (if $u \in (x_m \land y_n)$ we can apply the dual method). If $x \in M$ and $\psi(x) = (a, b)$ then we denote a = x(A), b = x(B).

Since $u \prec x_1$ we have either

(i)
$$u(A) \prec x_1(A)$$
 and $u(B) = x_1(B)$,

or

(ii) $u(A) = x_1(A)$ and $u(B) \prec x_1(B)$.

Similar relations hold for u and y_1 ; let us denote them by (i_1) and (ii_1) . Consider the case when (i) is valid.

If (ii₁) holds, then $x_1 = \psi^{-1}(x_1(A), u(B)), y_1 = \psi^{-1}(u(A), y_1(B))$ and $(x_1(A), u(B)) \lor (u(A), y_1(B)) = \{(x_1(A), y_1(B))\}$. From this it follows that $\psi(v) = (x_1(A), y_1(B)) \prec (x_1(A), u(B)) = \psi(x_1)$ and thus $v \prec x_1$, which is a contradiction.

Hence (i₁) must hold and we have $\psi(x_1) \lor \psi(y_1) = (x_1(A), u(B)) \lor (y_1(A), u(B))$. From this it follows that v(B) = u(B).

For each x_i and y_j we have $u \leq x_i \leq v$, $u \leq y_j \leq v$ whence $x_i(B) = u(B) = y_j(B)$ and therefore we get $\varphi(u) \prec \varphi(x_1) \prec \ldots \prec \varphi(x_m) \prec \varphi(v), \ \varphi(u) \prec \varphi(y_1) \prec \ldots \prec \varphi(y_n) \prec \varphi(v)$.

Thus C is regular.

The proof for the case (ii) is analogous.

By the same method as 1.3, 3.1 in [4] (with the only distinction that instead of [3] we now apply 3.2) we have

3.7. Lemma. If a multilattice M belongs to C_1 then no direct factor of M having more than one element is self-dual.

3.8. Lemma. If no direct factor of M having more than one element is self-dual then M belongs to C_1 .

These lemmas yield the following assertion.

3.9. Theorem. Let M be a directed multilattice of locally finite length. Then the following conditions are equivalent:

- (i) M belongs to C_1 ;
- (ii) no direct factor of M having more than one element is self-dual.

Analogously as above (by applying 3.1) we obtain

3.10. Theorem. Let M be a directed modular multilattice of locally finite length. Then the following conditions are equivalent:

- (i') M belongs to C_0 ;
- (ii) no direct factor of M having more than one element is self-dual.

References

- [1] G. Birkhoff: Lattice Theory. Third Edition, Providence, 1967.
- [2] M. Benado: Les ensembles partiellement ordonnèes et le théorème de raffinement de Schreier, II. Théorie des multistructures. Czechoslovak Math. J. 5 (1955), 308–344.
- [3] J. Jakubik: On isomorphisms of graphs of lattices. Czechoslovak Math. J. 35 (1985), 188–200.
- [4] J. Jakubik: Graph automorphisms of a finite modular lattice. Czechoslovak Math. J. 49 (1999), 443–447.
- [5] J. Jakubik: Graph automorphisms and cells of lattices. Czechoslovak Math. J. 53 (2003), 103–111.
- [6] J. Jakubík, M. Csontóová: Convex isomorphisms of directed multilattices. Math. Bohem. 118 (1993), 359–379.
- [7] M. Tomková: Graph isomorphisms of modular multilattices. Math. Slovaca 30 (1980), 95–100.
- [8] M. Tomková: Graph isomorphisms of partially ordered sets. Math. Slovaca 37 (1987), 47–52.
- C. Ratatonprasert, B. A. Davey: Semimodular lattices with isomorphic graphs. Order 4 (1987), 1–13.
- [10] J. Jakubík: Graph automorphisms of semimodular lattices. Math. Bohem. 125 (2000), 459–464.
- [11] M. Tomková: On multilattices with isomorphic graphs. Math. Slovaca 32 (1982), 63–73.
- [12] J. Jakubík: On graph isomorphism of modular lattices. Czechoslovak Math. J. 4 (1954), 131–141.

Author's address: Mária Csontóová, Dept. of Mathematics, Faculty of Civil Engineering, Technical University, Vysokoškolská 4, SK-04202 Košice, Slovakia, e-mail: csontom @tuke.sk.