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Abstract. The 0-distributive semilattice is characterized in terms of semiideals, ideals
and filters. Some sufficient conditions and some necessary conditions for 0-distributivity
are obtained. Counterexamples are given to prove that certain conditions are not necessary
and certain conditions are not sufficient.
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1. Introduction and preliminaries

The 0-distributive lattice and the 0-distributive semilattice have been studied by

Varlet [7], [8], Pawar and Thakare [4], [5], Jayaram [3] and Balasubramani and

Venkatanarasimhan [1]. In this paper we obtain some characterizations of the 0-

distributive semilattice. For the lattice theoretic concepts which have now become

commonplace the reader is referred to Szasz [6] and Grätzer [2].

A semilattice is a partially ordered set in which any two elements have a greatest

lower bound. Let S be a semilattice. A semiideal of S is a nonempty subset A of S

such that a ∈ A, b 6 a (b ∈ S) ⇒ b ∈ A. An ideal of S is a semiideal A of S such

that the join of any finite number of elements of A, whenever it exists, belongs to A.

If a ∈ S, then {x ∈ S; x 6 a} is an ideal. It is called the principal ideal generated

by a and is denoted by (a]. A filter of S is a nonempty subset F of S such that (i)

a ∈ F , b > a (b ∈ S) ⇒ b ∈ F and (ii) a, b ∈ F ⇒ a ∧ b ∈ F . The dual of a principal

ideal is called a principal filter. The principal filter generated by a is denoted by [a).

A maximal ideal (filter) of S is a proper ideal (filter) which is not contained in any

other proper ideal (filter). A prime semiideal (ideal) is a proper semiideal (ideal)
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A such that a ∧ b ∈ A ⇒ a ∈ A or b ∈ A. A minimal prime semiideal (ideal) is

a prime semiideal (ideal) which does not contain any other prime semiideal (ideal).

Let F (S) denote the set of filters of S. A prime filter of S is a filter A such that B,

C ∈ F (S), B ∩ C ⊆ A, B ∩ C 6= ∅ ⇒ B ⊆ A or C ⊆ A. If A is a prime filter of S

and A1, . . . , An ∈ F (S), A1 ∩ . . .∩An ⊆ A, A1 ∩ . . .∩An 6= ∅, then Ai ⊆ A for some

i ∈ {1, . . . , n}.

Let A be a nonempty subset of a semilattice S with 0, A∗ = {x ∈ S; a ∧ x = 0

for all a ∈ A} and A0 = {x ∈ S; a ∧ x = 0 for some a ∈ A}. Then A∗ is called the

annihilator of A and A0 is called the pseudoannihilator of A. If a ∈ S, we write (a)∗

for {a}∗ and (a)0 for {a}0. We say that a is dense if (a)∗ = {0}. If sup(a)∗ ∈ (a)∗, it

is called the pseudocomplement of a and is denoted by a∗. A pseudocomplemented

semilattice is a semilattice with 0 in which every element has a pseudocomplement.

An ideal (semiideal) A of a semilattice S with 0 is said to be normal if A∗∗ = A.

The following five lemmas are contained in Venkatanarasimhan [9].

Lemma 1.1. The set I(S) of all ideals of a semilattice S forms a lattice under

set inclusion as the partial ordering relation. The meet in I(S) coincides with the

set intersection.

Lemma 1.2. Let S be a semilattice and {ai; i ∈ I} any subset of S. Then
∧

ai

(
∨

ai

)

exists if and only if
⋂

(ai]
(
⋂

[ai)
)

is a principal ideal (principal filter).

Whenever
∧

ai

(
∨

ai

)

exists then
⋂

(ai] =
(
∧

ai

] (
⋂

[ai) =
[
∨

ai

))

.

Lemma 1.3. Let S be a semilattice. Then for a1, . . . , an ∈ S, a1 ∨ . . .∨ an exists

if and only if (a1]∨ . . .∨ (an] is a principal ideal. Whenever a1 ∨ . . .∨ an exists then

(a1] ∨ . . . ∨ (an] = (a1 ∨ . . . ∨ an].

Lemma 1.4. If {Ai; i ∈ I} is a family of ideals of a semilattice, then
∨

Ai =
{

x; (x] ⊆ (ai1] ∨ . . . ∨ (ain]; ai1, . . . , ain ∈
⋃

Ai

}

.

Lemma 1.5. Every proper filter of a semilattice with 0 is contained in a maximal

filter.

The following lemma is easily proved.

Lemma 1.6. Let A be a nonempty subset of a semilattice S with 0 and x ∈ S.

Then A∗ and A0 are semiideals of S and (x]∗ = [x)0 = (x)0 = (x)∗.

The following four lemmas are contained in Venkatanarasimhan [10].
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Lemma 1.7. Let A be a nonempty proper subset of a semilattice S with 0. Then

A is a filter if and only if S − A is a prime semiideal.

Lemma 1.8. Let A be a nonempty subset of a semilattice S with 0. Then A is

a maximal filter if and only if S − A is a minimal prime semiideal.

Lemma 1.9. Any prime semiideal of a semilattice with 0 contains a minimal

prime semiideal.

Lemma 1.10. Let A be a nonempty subset of a semilattice with 0. Then A∗ is

the intersection of all minimal prime semiideals not containing A.

The following lemma is contained in Pawar and Thakare [4].

Lemma 1.11. Let A be a proper filter of a semilattice S with 0. Then A is

maximal if and only if for each x in S −A, there is some a in A such that a∧ x = 0.

Lemma 1.12. Let A and B be filters of a semilattice S with 0 such that A and

B0 are disjoint. Then there is a minimal prime semiideal containing B0 and disjoint

from A.

���������
. It is easily seen that A∨B is a proper filter of S. Hence by Lemma 1.5,

A ∨ B ⊆ M for some maximal filter M . Now B ⊆ M and so M ∩ B0 = ∅. By

Lemma 1.8, S − M is a minimal prime semiideal. Clearly B0 ⊆ S − M and (S −

M) ∩ A = ∅. �

Lemma 1.13. Let A be a filter of a semilattice S with 0. Then A0 is the

intersection of all minimal prime semiideals disjoint from A.

���������
. Let N be any minimal prime semiideal disjoint from A. If x ∈ A0, then

x ∧ a = 0 for some a ∈ A and so x ∈ N .

Let y ∈ S −A0. Then a∧ y 6= 0 for all a ∈ A. Hence A∨ [y) 6= S. By Lemma 1.5,

A ∨ [y) ⊆ M for some maximal filter M . By Lemma 1.8, S −M is a minimal prime

semiideal. Clearly (S − M) ∩ A = ∅ and y /∈ S − M . �

Lemma 1.14. Let S be a semilattice with 0. Then the set complement of a prime

filter is a prime ideal. If S is finite, then the set complement of a prime ideal is a

prime filter.

���������
. Let A be a prime filter of S. By Lemma 1.7, S−A is a prime semiideal.

Let x1, . . . , xn ∈ S − A and suppose x1 ∨ . . . ∨ xn exists. Since A is prime it follows

that x1 ∨ . . . ∨ xn ∈ S − A. Thus S − A is a prime ideal. �
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Let S be finite and let A be any prime ideal of S. By Lemma 1.7, S−A is a filter.

Since S is finite, every filter of S is principal. Let a, b ∈ A be such that [a)∩ [b) 6= ∅.

Let [a) ∩ [b) = {c1, . . . , cn} and c = c1 ∧ . . . ∧ cn. Then c > a, b. If d > a, b then

d = cj for some j and so d > c. Thus c = a∨ b ∈ A. Hence [a)∩ [b) = [a∨ b) � S−A

proving S − A is prime.

2. Definition and characterizations

Definition 2.1. A 0-distributive lattice is a lattice with 0 in which a ∧ b = 0 =

a ∧ c implies a ∧ (b ∨ c) = 0.

Varlet [7], has proved that a lattice L bounded below is 0-distributive if and

only if the ideal lattice I(L) is pseudocomplemented. He also observed that for an

ideal lattice, the two notions of pseudocomplementedness and 0-distributivity are

equivalent. These results motivate the following definition.

Definition 2.2. A 0-distributive semilattice is a semilattice S with 0 such that

I(S), the lattice of ideals of S, is 0-distributive.

Theorem 2.3. Let S be a semilattice with 0. Then the following statements are

equivalent:

1. S is 0-distributive.

2. If A, A1, . . . , An are ideals of S such that A ∩ A1 = . . . = A ∩ An = (0], then

A ∩ (A1 ∨ . . . ∨ An) = (0].

3. If a, a1, . . . , an are elements of S such that (a] ∩ (a1] = . . . = (a] ∩ (an] = (0],

then (a] ∩ ((a1] ∨ . . . ∨ (an]) = (0].

4. If M is a maximal filter of S, then S − M is a minimal prime ideal.

5. Every minimal prime semiideal of S is a minimal prime ideal.

6. Every prime semiideal of S contains a minimal prime ideal.

7. Every proper filter of S is disjoint from a minimal prime ideal.

8. For each nonzero element a of S, there is a minimal prime ideal not containing a.

9. For each nonzero element a of S, there is a prime ideal not containing a.

���������
. 1 ⇒ 2: Suppose 1 holds and let A, A1, . . . , An ∈ I(S) be such that

A∩A1 = . . . = A∩An = (0]. By 1, I(S) is 0-distributive. Hence A∩ (A1∨A2) = (0].

Assume A∩ (A1∨ . . .∨Ak−1) = (0] for 2 < k 6 n. Then A∩ (A1∨ . . .∨Ak−1 ∨Ak) =

A ∩ (B ∨Ak) where B = A1 ∨ . . .∨Ak−1. By our induction hypothesis A ∩B = (0].

Also A ∩ Ak = (0]. Consequently A ∩ (A1 ∨ . . . ∨ Ak) = A ∩ (B ∨ Ak) = (0]. Thus

the result follows by induction.

Obviously 2 ⇒ 3 and 8 ⇒ 9.
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3 ⇒ 1: Suppose 3 holds. Let A, B, C ∈ I(S) be such that A ∩ B = (0] = A ∩ C.

Then (a] ∩ (b] = (0] = (a] ∩ (c] for all a ∈ A, b ∈ B and c ∈ C. Let x ∈ A ∩ (B ∨ C).

Then x ∈ B∨C. Hence (x] ⊆ (b1]∨ . . .∨(bm]∨(c1]∨ . . .∨(cn] for some b1, . . . , bm ∈ B

and c1, . . . , cn ∈ C. Also x ∈ A. Consequently (x] ∩ (bi] = (0] for i = 1, . . . , m and

(x]∩ (cj ] = (0] for j = 1, . . . , n. By 3, (x]∩ ((b1]∨ . . .∨ (bm]∨ (c1]∨ . . .∨ (cn]) = (0].

It follows that x = 0. Thus A ∩ (B ∨ C) = (0].

3 ⇒ 4: Suppose 3 holds. LetM be any maximal filter of S. By Lemma 1.8, S−M

is a minimal prime semiideal. Let x1, . . . , xn ∈ S−M be such that x1∨. . .∨xn exists.

By Lemma 1.11, a1 ∧ x1 = . . . = an ∧ xn = 0 for some a1, . . . , an ∈ M . Let a =

a1∧. . .∧an. Then a ∈ M and a∧xi = 0 for i = 1, . . . , n. By Lemma 1.2, (a]∩(xi ] = (0]

for i = 1, . . . , n. By Lemma 1.3, (a] ∩ (x1 ∨ . . . ∨ xn] = (a] ∩ ((x1] ∨ . . . ∨ (xn]) = (0]

by 3. It follows that a ∧ (x1 ∨ . . . ∨ xn) = 0. Hence x1 ∨ . . . ∨ xn ∈ S − M . Thus

S − M is an ideal.

4 ⇒ 5: Suppose 4 holds. Let N be any minimal prime semiideal of S. By

Lemma 1.8, S − N is a maximal filter. By 4, N = S − (S − N) is a minimal prime

ideal.

5 ⇒ 6: Suppose 5 holds and let A be any prime semiideal of S. By Lemma 1.9,

A ⊇ N for some minimal prime semiideal N . By 5, N is a minimal prime ideal.

6 ⇒ 7: Suppose 6 holds and let A be any proper filter of S. By Lemma 1.7,

S − A is a prime semiideal. By 6, S −A contains a minimal prime ideal N . Clearly

A ∩ N = ∅.

7 ⇒ 8: Suppose 7 holds and let a be any nonzero element of S. By 7, [a) is disjoint

from a minimal prime ideal N . Clearly a /∈ N .

9 ⇒ 3: Suppose 9 holds. Let a, a1, . . . , an ∈ S such that (a] ∩ (a1] = . . . = (a] ∩

(an] = (0] and (a]∩((a1]∨. . .∨(an]) 6= (0]. Then there exists x ∈ (a]∩((a1]∨. . .∨(an])

such that x 6= 0. By 9 there is a prime ideal A such that x /∈ A. By Lemma 1.7,

S − A is a proper filter and clearly a ∈ S − A. Consequently a1, . . . , an ∈ A. It

follows that (a1] ∨ . . . ∨ (an] ⊆ A and so x ∈ A. Thus we get a contradiction. Hence

(a] ∩ (a1] = . . . = (a] ∩ (an] = (0] ⇒ (a] ∩ ((a1] ∨ . . . ∨ (an]) = (0]. �

Theorem 2.4. Let S be a semilattice with 0. Then the following statements are

equivalent:

1. S is 0-distributive.

2. If A is a nonempty subset of S and B is a proper filter intersecting A, there is

a minimal prime ideal containing A∗ and disjoint from B.

3. If A is a nonempty subset of S and B is a proper filter intersecting A, there is

a prime ideal containing A∗ and disjoint from B.

4. If A is a nonempty subset of S and B is a prime semiideal not containing A,

there is a minimal prime ideal containing A∗ and contained in B.
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5. If A is a nonempty subset of S and B is a prime semiideal not containing A,

there is a prime ideal containing A∗ and contained in B.

6. For each nonzero element a of S and each proper filter B containing a, there is

a prime ideal containing (a)∗ and disjoint from B.

7. For each nonzero element a of S and each prime semiideal B not containing a,

there is a prime ideal containing (a)∗ and contained in B.

8. If A and B are filters of S such that A and B0 are disjoint, there is a minimal

prime ideal containing B0 and disjoint from A.

9. If A and B are filters of S such that A and B0 are disjoint, there is a prime

ideal containing B0 and disjoint from A.

10. If A is a filter of S and B is a prime semiideal containing A0, there is a minimal

prime ideal containing A0 and contained in B.

11. If A is a filter of S and B is a prime semiideal containing A0, there is a prime

ideal containing A0 and contained in B.

12. For each nonzero element a in S and each filter A disjoint from (a)∗, there is a

prime ideal containing (a)∗ and disjoint from A.

13. For each nonzero element a in S and each prime semiideal B containing (a)∗,

there is a prime ideal containing (a)∗ and contained in B.

���������
. 1 ⇒ 2: Suppose 1 holds. Let A be a nonempty subset of S and B any

proper filter such that B ∩A 6= ∅. By Lemma 1.7, S −B is a prime semiideal and by

Lemma 1.9, S − B ⊇ N for some minimal prime semiideal N . Clearly N ∩ B = ∅.

Also S −B 6⊇ A and so N 6⊇ A. By Lemma 1.10, N ⊇ A∗. Since S is 0-distributive,

N is a minimal prime ideal [see Theorem 2.3, 5].

By Lemma 1.7, it follows that 2 ⇒ 4, 3 ⇒ 5, 8 ⇒ 10, 9 ⇒ 11 and 12 ⇒ 13.

Obviously 2 ⇒ 3, 2 ⇒ 6, 4 ⇒ 5, 4 ⇒ 7, 8 ⇒ 9, 10 ⇒ 11 ⇒ 13 and 5 ⇒ 7.

1 ⇒ 8: Suppose 1 holds. Let A and B be filters of S such that A ∩ B0 6= ∅. By

Lemma 1.12, there is a minimal prime semiideal N such that N ⊇ B0 and N∩A = ∅.

Since S is 0-distributive it follows that N is a minimal prime ideal [see Theorem 2.3,

5].

8 ⇒ 12: By Lemma 1.6, (x)∗ = [x)0 for all x ∈ S. Hence the result.

6 ⇒ 1: Suppose 6 holds. Let a be any nonzero element of S. Now [a) is a proper

filter containing a. By 6, there is a prime ideal N containing (a)∗ and disjoint from

[a). Clearly a /∈ N . Thus S is 0-distributive [see Theorem 2.3, 9].

7 ⇒ 1: Suppose 7 holds. Let a be any nonzero element of S. Now S − [a) is a

prime semiideal not containing a. By 7 there is a prime ideal N containing (a)∗ and

contained in S − [a). Clearly a /∈ N . Thus S is 0-distributive [See Theorem 2.3, 9].

13 ⇒ 1: Suppose 13 holds and let a be any nonzero element of S. By Lemma 1.7,

S − [a) is a prime semiideal not containing a. Since (a) ∩ (a)∗ = (0] ⊆ S − [a) it
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follows that S − [a) contains (a)∗. By 13, there is a prime ideal N containing (a)∗

and contained in S − [a). Clearly a ∈ N . Thus S is 0-distributive [see Theorem 2.3,

9]. �

Theorem 2.5. Let S be a semilattice with 0. Then the following statements are

equivalent:

1. S is 0-distributive.

2. For any nonempty subset A of S, A∗ is the intersection of all minimal prime

ideals not containing A.

3. For any filter A of S, A0 is the intersection of all minimal prime ideals disjoint

from A.

4. For each a in S, (a)∗ is an ideal.

5. Every normal semiideal of S is an intersection of minimal prime ideals.

6. For any finite number of ideals A, A1, . . . , An of S,

(A ∩ (A1 ∨ . . . ∨ An))∗ = (A ∩ A1)
∗ ∩ . . . ∩ (A ∩ An)∗.

7. For any three ideals A, B, C of S,

(A ∩ (B ∨ C))∗ = (A ∩ B)∗ ∩ (A ∩ C)∗.

8. For any finite number of ideals A, A1, . . . , An of S,

((A ∨ A1) ∩ . . . ∩ (A ∨ An))∗ = A∗ ∩ (A1 ∩ . . . An)∗.

9. For any three ideals A, B, C of S,

((A ∨ B) ∩ (A ∨ C))∗ = A∗ ∩ (B ∩ C)∗.

10. For any finite number of elements a, a1, . . . , an of S,

((a] ∩ ((a1] ∨ . . . ∨ (an]))∗ = ((a] ∩ (a1])
∗ ∩ . . . ∩ ((a] ∩ (an])∗.

11. For any finite number of elements a1, . . . , an of S,

((a1] ∨ . . . ∨ (an])∗ = (a1]
∗ ∩ . . . ∩ (an]∗.

12. I(S) is pseudocomplemented.

���������
. 1 ⇒ 2: Follows by Lemma 1.10 and Theorem 2.3, 5.

1 ⇒ 3: Follows by Lemma 1.13 and Theorem 2.3, 5.
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3 ⇒ 4: By Lemma 1.6, (a)∗ = [a)0. Hence the result.

4 ⇒ 1: Suppose 4 holds. Let a, a1, . . . , an ∈ S be such that (a] ∩ (a1] = . . . =

(a]∩ (an] = (0]. Then a1, . . . , an ∈ (a)∗. By 4 it follows that (a1]∨ . . .∨ (an] ⊆ (a)∗.

Hence (a] ∩ ((a1] ∨ . . . ∨ (an]) = (0]. Thus S is 0-distributive [see Theorem 2.3, 3].

Obviously 6 ⇒ 7, 8 ⇒ 9 and 6 ⇒ 10.

2 ⇒ 5: Suppose 2 holds. Let A be any normal semiideal of S. Then A = B∗

for some semiideal B. By 2, B∗ is the intersection of all minimal prime ideals not

containing B. Hence the result.

5 ⇒ 4: By Lemma 1.6, (a)∗ = (a]∗ for all a ∈ S. Hence the result.

2 ⇒ 6: Suppose 2 holds. Let A, A1, . . . , An ∈ I(S). If Q is any minimal prime

ideal of S such that Q � A∩(A1∨ . . .∨An), then Q � A∩Aj for some j ∈ {1, . . . , n}.

By 2 it follows that (A∩ (A1 ∨ . . .∨An))∗ ⊇ (A∩A1)
∗ ∩ . . .∩ (A∩An)∗. The reverse

inclusion is obvious.

7 ⇒ 1: Suppose 7 holds. Then for A, B, C ∈ I(S) we have (A ∩ (B ∨ C))∗ =

(A ∩ B)∗ ∩ (A ∩ C)∗. By replacing A by B ∨ C it follows that (B ∨ C)∗ = B∗ ∩ C∗.

Suppose A ∩ B = (0] = A ∩ C. Then (a] ∩ (b] = (0] = (a] ∩ (c] for all a ∈ A, b ∈ B

and c ∈ C. Hence a ∈ B∗ ∩ C∗ for all a ∈ A. Hence a ∈ (B ∨ C)∗. Consequently

A ⊆ (B ∨ C)∗. It follows that A ∩ (B ∨ C) = (0].

2 ⇒ 8: Suppose 2 holds, let A, A1, . . . , An be ideals of S and let Q be any minimal

prime ideal such that Q � (A ∨ A1) ∩ . . . ∩ (A ∨ An). Then Q � A ∨ A1, . . . , A ∨ An

and so Q � A or Q � A1∩ . . .∩An. By 2 it follows that ((A∨A1)∩ . . .∩(A∨An))∗ ⊇

A∗ ∩ (A1 ∩ . . . ∩ An)∗. The reverse inclusion is obvious.

9 ⇒ 1: Suppose 9 holds. Then for any three ideals A, B, C of S, ((A ∨ B) ∩

(A ∨ C))∗ = A∗ ∩ (B ∩ C)∗. By replacing C by B and A by C it follows that

(B ∨ C)∗ = B∗ ∩ C∗. Suppose A ∩ B = (0] = A ∩ C. Then (a] ∩ (b] = (0] = (a] ∩ (c]

for all a ∈ A, b ∈ B and c ∈ C. Hence a ∈ B∗∩C∗ for all a ∈ A. Hence a ∈ (B∨C)∗

for all a ∈ A. Consequently A ⊆ (B ∨ C)∗. It follows that A ∩ (B ∨ C) = (0]. Thus

S is 0-distributive.

10 ⇒ 1: Suppose 10 holds. Let a, a1, . . . , an ∈ S such that (a] ∩ (a1] = . . . =

(a] ∩ (an] = (0]. Then ((a] ∩ (a1])
∗ = . . . = ((a] ∩ (an])∗ = S. Hence ((a] ∩ (a1])

∗ ∩

. . . ∩ ((a] ∩ (an])∗ = S. By 10, ((a] ∩ ((a1] ∨ . . . ∨ (an]))∗ = S. Consequently

(a] ∩ ((a1]∨ . . .∨ (an]) = (0]. It follows that S is 0-distributive [see Theorem 2.3, 3].

6 ⇒ 11: Suppose 6 holds. Then for any finite number of ideals A, A1, . . . , An of

S, (A∩ (A1 ∨ . . .∨An))∗ = (A∩A1)
∗ ∩ . . .∩ (A∩An)∗. By taking A = A1 ∨ . . .∨An

it follows that (A1 ∨ . . . ∨ An)∗ = A∗

1
∩ . . . ∩ A∗

n. Hence the result.

11 ⇒ 1: Suppose 11 holds. Let a, a1, . . . , an ∈ S be such that (a] ∩ (a1] = . . . =

(a]∩(an] = (0]. Then a ∈ (a1]
∗∩. . .∩(an]∗. By 11 it follows that a ∈ ((a1]∨. . .∨(an])∗.

Hence (a] ∩ ((a1] ∨ . . . ∨ (an]) = (0]. Thus S is 0-distributive [see Theorem 2.3, 3].
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2 ⇒ 12: Suppose 2 holds. Let A ∈ I(S). Then by 2 it follows that A∗ is an ideal.

If B ∈ I(S) is such that A ∩ B = (0] and x ∈ B, then a ∧ x = 0 for all a ∈ A and so

x ∈ A∗. Thus B ⊆ A∗. It follows that A∗ is the pseudocomplement of A.

12 ⇒ 1: Suppose 12 holds. Then every principal ideal of S has a pseudocomple-

ment in I(S). Let a, a1, . . . , an ∈ S be such that (a] ∩ (a1] = . . . = (a] ∩ (an] = (0].

Then (ai] ⊆ (a]∗ for i = 1, . . . , n and so ((a1] ∨ . . . ∨ (an]) ⊆ (a]∗. Consequently

(a] ∩ ((a1] ∨ . . . ∨ (an]) = (0]. Thus S is 0-distributive [see Theorem 2.3, 3]. �

�����! ���"
2.6. According to Varlet [8], an ideal of a semilattice S is a nonempty

subset I of S such that (i) y 6 x and x ∈ I imply y ∈ I ; (ii) for any x, y ∈ I there

exists a z ∈ I such that z > x and z > y. According to him a semilattice S with 0

is said to be 0-distributive if for any a ∈ S, the subset (a)∗ = {x ∈ S; x ∧ a = 0} is

an ideal.

Let S be a 0-distributive semilattice in Varlet’s sense. Then for each a ∈ S, (a)∗

is a Varlet ideal and therefore an ideal in our sense. Thus S is 0-distributive in our

sense. The converse is not true. Consider the semilattice S = {0, a, b, c} in which

the ordering is defined by 0 < a, b, c; a‖b; a‖c; and b‖c. Clearly S is 0-distributive in

our sense but not in Varlet’s sense.

We give below some additional characterizations when the semilattice is finite.

Theorem 2.7. Let S be a finite semilattice. Then the following statements are

equivalent:

1. S is 0-distributive.

2. If a, b, c are elements of S such that (a]∩(b] = (0] = (a]∩(c] then (a]∩((b]∨(c]) =

(0].

3. Every maximal filter of S is prime.

4. Each nonzero element of S is contained in a prime filter.

5. If A is a nonempty subset of S and B is a proper filter intersecting A, there is

a prime filter containing B and disjoint from A∗.

6. If A is a nonempty subset of S and B is a prime semiideal not containing A,

there is a prime filter containing S − B and disjoint from A∗.

7. For each nonzero element a of S and each proper filter B containing a, there is

a prime filter containing B and disjoint from (a)∗.

8. For each nonzero element a of S and each prime semiideal B not containing a,

there is a prime filter containing S − B and disjoint from (a)∗.

9. If A and B are filters of S such that A and B0 are disjoint, there is a prime

filter containing A and disjoint from B0.

10. If A is a filter of S and B is a prime semiideal containing A0, there is a prime

filter containing S − B and disjoint from A0.
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11. For each nonzero element a in S and each filter A disjoint from (a)∗, there is a

prime filter containing A and disjoint from (a)∗.

12. For each nonzero element a in S and each prime semiideal B containing (a)∗,

there is a prime filter containing S − B and disjoint from (a)∗.

���������
. Obviously 1 ⇒ 2, 6 ⇒ 8, 10 ⇒ 12, 5 ⇒ 7 and 9 ⇒ 11.

2 ⇒ 1: Suppose 2 holds and let a, a1, . . . , an ∈ S be such that (a] ∩ (a1] = . . . =

(a]∩ (an] = (0]. Let A = (a1]∪ . . .∪ (an], let B = {b1, . . . , bm} be the set of existing

suprema of nonempty subsets of A and b ∈ B. Then (a1]∨ . . .∨(an] = (b1]∪ . . .∪(bm]

and b = c1 ∨ . . . ∨ ck for some c1, . . . , ck ∈ A. If p, q ∈ {1, . . . , k}, clearly b is an

upperbound of {cp, cq}. Thus the set C of upperbounds of {cp, cq} is nonempty and

inf C = cp ∨ cq. Also (a] ∩ (cp] = (0] = (a] ∩ (cq ], so that (a] ∩ ((cp] ∨ (cq ]) = (0]

by 2. It is easily seen that every nonempty subset of {c1, . . . , ck} has a supremum

and by induction it follows that (a] ∩ (b] = (a] ∩ ((c1] ∨ . . . ∨ (ck]) = (0]. Hence

(a]∩ ((a1]∨ . . .∨ (an]) = (a]∩ ((b1]∪ . . .∪ (bm]) = ((a]∩ (b1])∪ . . .∪ ((a]∩ (bm]) = (0].

Consequently S is 0-distributive [see Theorem 2.3, 3].

1 ⇒ 3: Suppose 1 holds. Let M be any maximal filter of S. Since S is finite,

every filter of S is principal. Let a, b ∈ S − M be such that [a) ∩ [b) 6= ∅. Let

[a) ∩ [b) = {c1, . . . , cn} and c = c1 ∧ . . . ∧ cn. Then c > a, b as ci > a, b for all

i. If d ∈ S and d > a, b, then d = cj for some j, so that d > c. Thus c = a ∨ b.

Also S − M is an ideal [see Theorem 2.3, 4]. Hence a ∨ b ∈ S − M . It follows that

[a) ∩ [b) = [a ∨ b) � M , proving M is prime.

3 ⇒ 4: Suppose 3 holds. Let a be any nonzero element of S. By Lemma 1.5, [a)

is contained in a maximal filter M . By 3, M is prime. Clearly a ∈ M .

4 ⇒ 1: Suppose 4 holds. Let a be any nonzero element of S. By 4, a ∈ B for

some prime filter B. By Lemma 1.14, S −B is a prime ideal and clearly a /∈ S −B.

It follows that S is 0-distributive [see Theorem 2.3, 9].

3 ⇒ 5: Suppose 3 holds. Let A be a nonempty subset of S and B a proper filter

such that B∩A 6= ∅. By Lemma 1.5, B ⊆ M for some maximal filterM . By 3,M is

prime. By Lemma 1.8, S −M is a minimal prime semiideal and clearly S −M � A.

Hence S − M ⊇ A∗ and so M ∩ A∗ = ∅.

5 ⇒ 6: Suppose 5 holds. Let A be a nonempty subset of S and B a prime semiideal

such that B � A. By Lemma 7, S −B is a proper filter and clearly (S −B)∩A 6= ∅.

By 5 there is a prime filter containing S − B and disjoint from A∗.

7 ⇒ 8: Similar to 5 ⇒ 6.

8 ⇒ 1: Suppose 8 holds and let a be any nonzero element of S. Now S − [a)

is a prime semiideal not containing a. By 8 there is a prime filter N containing

S − (S − [a)) = [a) and disjoint from (a)∗. By Lemma 1.14, S − N is a prime ideal

and clearly a /∈ S − N . Thus S is 0-distributive [see Theorem 2.3, 9].

246



3 ⇒ 9: Suppose 3 holds. Let A and B be filters of S such that A and B0 are

disjoint. By Lemma 1.12, there is a minimal prime semiideal N such that N ⊇ B0

and N ∩ A = ∅. By Lemma 1.8, S − N is a maximal filter. Clearly S − N ⊇ A and

(S − N) ∩ B0 = ∅. By 3, S − N is prime.

9 ⇒ 10: Suppose 9 holds. Let A be a filter of S and B a prime semiideal such

that B ⊇ A0. By Lemma 1.7, S −B is a proper filter and clearly (S −B) ∩A0 = ∅.

By 9, there is a prime filter containing S − B and disjoint from A0.

11 ⇒ 12: Similar to 5 ⇒ 6.

12 ⇒ 4: Suppose 12 holds. Let a be any nonzero element of S. Now S − [a) is a

prime semiideal not containing (a]. Since (a] ∩ (a]∗ = (0] ⊆ S − [a) it follows that

(a)∗ ⊆ S − [a). By 12 there is a prime filter N containing S − (S − [a)) = [a) and

disjoint from (a)∗. Clearly a ∈ N . �

Theorem 2.8. Let S be a finite semilattice. Then the following statements are

equivalent:

1. S is 0-distributive.

2. For any finite number of filters A, A1, . . . , An of S such that A ∩ Ai 6= ∅ for all

i ∈ {1, . . . , n},

((A ∩ A1) ∨ . . . ∨ (A ∩ An))0 = A0 ∩ (A1 ∨ . . . ∨ An)0.

3. For any three filters A, B, C of S such that A ∩ B 6= ∅ and A ∩ C 6= ∅,

((A ∩ B) ∨ (A ∩ C))0 = A0 ∩ (B ∨ C)0.

4. For all a, b, c in S such that [a) ∩ [b) 6= ∅ and [a) ∩ [c) 6= ∅,

(([a) ∩ [b)) ∨ ([a) ∩ [c)))0 = [a)0 ∩ ([b) ∨ [c))0.

5. For any finite number of filters A, A1, . . . , An of S such that A1 ∩ . . . ∩An 6= ∅,

(A ∨ (A1 ∩ . . . ∩ An))0 = (A ∨ A1)
0 ∩ . . . ∩ (A ∨ An)0.

6. For any three filters A, B, C of S such that B ∩ C 6= ∅,

(A ∨ (B ∩ C))0 = (A ∨ B)0 ∩ (A ∨ C)0.

7. For any finite number of elements a, a1, . . . , an of S such that [a1)∩. . .∩[an) 6= ∅,

([a) ∨ ([a1) ∩ . . . ∩ [an)))0 = ([a) ∨ [a1))
0 ∩ . . . ∩ ([a) ∨ [an))0.
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8. For all a, b, c in S, with [b) ∩ [c) 6= ∅,

([a) ∨ ([b) ∩ [c)))0 = ([a) ∨ [b))0 ∩ ([a) ∨ [c))0.

9. For any finite number of elements a1, . . . , an of S such that [a1)∩ . . .∩ [an) 6= ∅,

([a1) ∩ . . . ∩ [an))0 = [a1)
0 ∩ . . . ∩ [an)0.

10. For all a, b in S with [a) ∩ [b) 6= ∅, ([a) ∩ [b))0 = [a)0 ∩ [b)0.

11. For all a, b, c in S, ((a] ∩ ((b] ∨ (c]))∗ = ((a] ∩ (b])∗ ∩ ((a] ∩ (c])∗.

12. For all a, b, c in S,

(((a] ∨ (b]) ∩ ((a] ∨ (c]))∗ = (a]∗ ∩ ((b] ∩ (c])∗.

13. For all a, b in S, ((a] ∨ (b])∗ = (a]∗ ∩ (b]∗.

���������
. 1 ⇒ 2: Suppose 1 holds and let A, A1, . . . , An be filters of S such that

A ∩ Ai 6= ∅ for all i ∈ {1, . . . , n}. If Q is any minimal prime ideal of S such that

Q ∩ ((A ∩ A1) ∨ . . . ∨ (A ∩ An)) = ∅, then Q ∩ (A ∩ A1) = . . . = Q ∩ (A ∩ An) = ∅.

By Lemma 1.14, S −Q is a prime filter and S −Q ⊇ (A∩A1), . . . , (A ∩An). Hence

S −Q ⊇ A or S −Q ⊇ A1 ∨ . . .∨An and so Q∩A = ∅ or Q∩ (A1 ∨ . . .∨An) = ∅. It

follows that ((A ∩ A1) ∨ . . . ∨ (A ∩ An))0 ⊇ A0 ∩ (A1 ∨ . . . ∨ An)0 [see Theorem 2.5,

3]. The reverse inclusion is obvious.

Obviously 2 ⇒ 3 ⇒ 4, 5 ⇒ 6 ⇒ 8 and 5 ⇒ 7 ⇒ 8.

4 ⇒ 10: Follows by taking c = b in 4.

1 ⇒ 5: Suppose 1 holds. Let A, A1, . . . , An be filters of S such that A1∩ . . .∩An 6=

∅. If Q is any minimal prime ideal of S such that Q∩ (A∨ (A1 ∩ . . .∩An)) = ∅, then

Q∩A = ∅ = Q∩ (A1 ∩ . . .∩An). By Lemma 1.14, S −Q is a prime filter and clearly

S −Q ⊇ A, A1 ∩ . . .∩An. Hence S −Q ⊇ A∨Aj and so Q∩ (A∨Aj) = ∅ for some

j ∈ {1, . . . , n}. It follows that (A ∨ (A1 ∩ . . . ∩ An))0 ⊇ (A ∨ A1)
0 ∩ . . . ∩ (A ∨ An)0

[see Theorem 2.5, 3]. The reverse inclusion is obvious.

10 ⇒ 9: Suppose 10 holds and let a1, . . . , an ∈ S be such that [a1)∩ . . .∩ [an) 6= ∅.

Then ([a1)∩ [a2))
0 = [a1)

0∩ [a2)
0. Assume ([a1)∩ . . .∩ [ak−1))

0 = [a1)
0∩ . . .∩ [ak−1)

0

for 2 < k 6 n. Let x ∈ [a1)
0 ∩ . . . ∩ [ak)0. Then x ∈ [a1)

0 ∩ . . . ∩ [ak−1)
0 =

([a1) ∩ . . . ∩ [ak−1))
0 by our induction hypothesis. Hence x ∧ y = 0 for some y ∈

([a1) ∩ . . . ∩ [ak−1)). Thus x ∈ [y)0 ∩ [ak)0 = ([y) ∩ [ak))0 ⊆ ([a1) ∩ . . . ∩ [ak))0 so

that ([a1)
0 ∩ . . . ∩ [ak)0) ⊆ ([a1) ∩ . . . ∩ [ak))0. The reverse inclusion is obvious. By

induction it follows that ([a1) ∩ . . . ∩ [an))0 = [a1)
0 ∩ . . . ∩ [an)0.

9 ⇒ 1: Suppose 9 holds. Let a ∈ S and let a1, . . . , an ∈ (a)∗ be such that

a1 ∨ . . . ∨ an exists. Then a ∧ a1 = . . . = a ∧ an = 0 and so a ∈ [a1)
0 ∩ . . . ∩ [an)0 =

248



([a1) ∩ . . . ∩ [an))0 by 9. That is a ∈ [a1 ∨ . . . ∨ an)0. Hence a ∧ (a1 ∨ . . . ∨ an) = 0,

so that a1 ∨ . . . ∨ an ∈ (a)∗. Thus (a)∗ is an ideal. It follows that S is 0-distributive

[see Theorem 2.5, 4].

8 ⇒ 1: Suppose 8 holds and let a, b, c ∈ S such that (a] ∩ (b] = (0] = (a] ∩ (c].

Let X = {x1, . . . , xn} be the set of existing suprema of nonempty subsets of (b]∪ (c]

and x ∈ X . Then (b] ∨ (c] = (x1] ∪ . . . ∪ (xn] and x = y1 ∨ . . . ∨ ym for some

y1, . . . , ym ∈ (b] ∪ (c]. If p, q ∈ {1, . . . , m}, clearly x is an upperbound of {yp, yq}.

Thus the set Y of upperbounds of {yp, yq} is nonempty and inf Y = yp ∨ yq. Also

a∧yp = 0 = a∧yq . Hence ([a)∨ [yp))
0 = S = ([a)∨ [yq))

0. Let z ∈ (a]∩ ((yp]∨ (yq ]).

Then z 6 a and z 6 yp ∨ yq. Now z ∈ S = ([a)∨ [yp))
0 ∩ ([a)∨ [yq))

0 = ([a)∨ ([yp)∩

[yq))
0 = ([a) ∨ [yp ∨ yq))

0 by 8, so that z ∧ t = 0 for some t ∈ [a) ∨ [yp ∨ yq). Thus

z = z ∧ a∧ (yp ∨ yq) 6 z ∧ t = 0 and consequently (a]∩ ((yp]∨ (yq ]) = (0]. It is easily

seen that every nonempty subset of {y1, . . . , ym} has a supremum and by induction

it follows that (a] ∩ (x] = (a] ∩ ((y1] ∨ . . . ∨ (ym]) = (0]. Hence (a] ∩ ((b] ∨ (c]) =

(a]∩ ((x1 ]∪ . . .∪ (xn]) = ((a]∩ (x1 ])∪ . . .∪ ((a]∩ (xn ]) = (0]. Thus S is 0-distributive

[see Theorem 2.7, 2].

1 ⇒ 11: Suppose 1 holds. Then for all A, B, C ∈ I(S) we have (A ∩ (B ∨ C))∗ =

(A ∩ B)∗ ∩ (A ∩ C)∗ [see Theorem 2.5, 7]. Hence 11 follows.

1 ⇒ 12: Suppose 1 holds. Then for all A, B, C ∈ I(S) we have ((A ∨ B) ∩ (A ∨

C))∗ = A∗ ∩ (B ∩ C)∗ [see Theorem 2.5,9]. Hence 12 follows.

12 ⇒ 13: Follows by taking c = b in 12.

13 ⇒ 1: Suppose 13 holds. Let a, b, c ∈ S be such that (a] ∩ (b] = (0] = (a] ∩ (c].

Then a ∈ (b]∗ ∩ (c]∗ = ((b] ∨ (c])∗ by 13. Hence (a] ∩ ((b] ∨ (c]) = (0]. Thus S is

0-distributive [see Theorem 2.7, 2].

11 ⇒ 1: Suppose 11 holds. Let a, b, c ∈ S be such that (a] ∩ (b] = (0] = (a] ∩ (c].

Then ((a] ∩ (b])∗ ∩ ((a] ∩ (c])∗ = S. Hence By 11, ((a] ∩ ((b] ∨ (c]))∗ = S. It follows

that (a] ∩ ((b] ∨ (c]) = (0]. Thus S is 0-distributive [see Theorem 2.7, 2]. �

Theorem 2.9. Any one of the conditions 3 to 12 of Theorem 2.7 is sufficient for

a semilattice S with 0 (not necessarily finite) to be 0-distributive. These conditions

are also necessary in the case of a lattice.

���������
. Suppose 3 of Theorem 2.7 holds and let M be any maximal filter of

S. By Lemma 1.8, S − M is a minimal prime semiideal. Let x1, . . . , xn ∈ S − M

and suppose x1 ∨ . . . ∨ xn exists. By 3, M is prime and clearly [xi) � M for i =

1, . . . , n. Hence by Lemma 1.2, [x1 ∨ . . .∨xn) = [x1)∩ . . .∩ [xn) � M . Consequently

x1 ∨ . . . ∨ xn ∈ S − M and so S − M is an ideal. It follows that S is 0-distributive

[see Theorem 2.3, 4]. �
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The sufficiency of the condition 4 of Theorem 2.7 follows by Lemma 1.14 and

Theorem 2.3 [see Theorem 2.3, 9]. The sufficiency of the conditions 5 to 12 of

Theorem 2.7 follows by Lemma 1.14 and Theorem 2.4 [see Theorem 2.4, 3, 5, 6, 7,

9, 11, 12, 13].

Theorem 2.10. Any one of the conditions 2 to 10 of Theorem 2.8 is sufficient for

a semilattice S with 0 (not necessarily finite) to be 0-distributive. These conditions

are also necessary in the case of a lattice.

���������
. Obviously 2 ⇒ 3 ⇒ 4 and 5 ⇒ 6 ⇒ 8.

4 ⇒ 10: Follows by taking c = b in 4.

10 ⇒ 9: Same proof as in Theorem 2.8.

Suppose 9 holds. Let a ∈ S and let a1, . . . , an ∈ (a)∗ be such that a1∨. . .∨an exists.

Then a∧a1 = . . . = a∧an = 0 and so a ∈ [a1)
0∩ . . .∩ [an)0 = ([a1)∩ . . .∩ [an))0 by 9.

That is a ∈ [a1∨ . . .∨an)0. It follows that a∧(a1∨ . . .∨an) = 0. Hence a1∨ . . .∨an ∈

(a)∗. Thus (a)∗ is an ideal and so S is 0-distributive [see Theorem 2.5, 4].

8 ⇒ 7: Suppose 8 holds and let a, a1, . . . , an ∈ S be such that [a1)∩ . . .∩ [an) 6= ∅.

Then ([a) ∨ ([a1) ∩ [a2)))
0 = ([a) ∨ ([a1))

0 ∩ ([a) ∨ [a2))
0. Assume ([a) ∨ ([a1) ∩

. . . ∩ [ak−1)))
0 = ([a) ∨ [a1))

0 ∩ . . . ∩ ([a) ∨ [ak−1))
0 for 2 < k 6 n. Let x ∈

([a) ∨ [a1))
0 ∩ . . . ∩ ([a) ∨ [ak))0. Then x ∈ ([a) ∨ [a1))

0 ∩ . . . ∩ ([a) ∨ [ak−1))
0 =

([a) ∨ ([a1) ∩ . . . ∩ [ak−1)))
0 by our induction hypothesis and x ∈ ([a) ∨ [ak))0.

Hence x ∧ y = a for some y ∈ [a) ∨ ([a1) ∩ . . . ∩ [ak−1)) and x ∧ z = 0 for some

z ∈ [a) ∨ [ak). Thus x ∧ a ∧ t = 0 for some t ∈ [a1) ∩ . . . ∩ [ak−1) and x ∧ a ∧ ak = 0

so that x ∈ [a ∧ t)0 ∩ [a ∧ ak)0 = ([a) ∨ [t))0 ∩ ([a) ∨ [ak))0 = ([a) ∨ ([t) ∩ [ak)))0

by 8. Consequently x ∧ a ∧ u = 0 for some u ∈ [t) ∩ [ak) ⊆ [a1) ∩ . . . ∩ [ak)

and so x ∈ ([a) ∨ ([a1) ∩ . . . ∩ [ak)))0. Thus ([a) ∨ [a1))
0 ∩ . . . ∩ ([a) ∨ [ak))0 ⊆

([a) ∨ ([a1) ∩ . . . ∩ [ak)))0. The reverse inclusion is obvious. By induction it follows

that ([a) ∨ [a1))
0 ∩ . . . ∩ ([a) ∨ [an))0 = ([a) ∨ ([a1) ∩ . . . ∩ [an)))0.

Suppose 7 holds. Let a ∈ S and let a1, . . . , an ∈ (a)∗ be such that a1 ∨ . . . ∨ an

exsits. Then a ∧ a1 = . . . = a ∧ an = 0 and so a ∈ [a1)
0 ∩ . . . ∩ [an)0. Replacing

a by a1 ∨ . . . ∨ an in 7, we have ([a1) ∩ . . . ∩ [an))0 = [a1)
0 ∩ . . . ∩ [an)0. Thus

a ∈ ([a1) ∩ . . . ∩ [an))0 = [a1 ∨ . . . ∨ an)0. Hence a ∧ (a1 ∨ . . . ∨ an) = 0 and

consequently a1 ∨ . . . ∨ an ∈ (a)∗. Thus (a)∗ is an ideal. It follows that S is 0-

distributive [see Theorem 2.5, 4]. �

�����! ���"
2.11. The conditions 3 to 12 of Theorem 2.7 are not necessary for an

infinite semilattice to be 0-distributive. These conditions are both necessary and

sufficient in the case of a lattice.

Clearly each of the conditions 3 to 12 implies the condition 4. Hence it is enough

to prove that 4 is not necessary.
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Let C be an infinite chain without the least element and S = C ∪ {0, a, b, d}.

Define an ordering on S as follows: 0 < a, b, d; a‖b; a‖d; b‖d and a, b, d < c for all

c ∈ C. Clearly S is a 0-distributive semilattice with respect to this ordering. But no

prime filter of S contains the nonzero element a. Thus 4 is not necessary.

�����! ���"
2.12. The conditions 2 to 10 of Theorem 2.8 are not necessary for an

infinite semilattice to be 0-distributive. These conditions are both necessary and

sufficient in the case of a lattice.

Clearly 2 ⇒ 3 ⇒ 4 ⇒ 10, 5 ⇒ 6 ⇒ 8, 7 ⇒ 8, and 9 ⇒ 10. Hence it is enough to

prove that 8 and 10 are not necessary.

Let C be an infinite chain without the least element and S = C ∪ {0, a, b, d, e}.

Define an ordering on S as follows: 0 < a, b, d, e; a < e; a‖b; a‖d; b‖d; b‖e; d‖e;

a, b, d, < c for all c ∈ C; e‖c for all c ∈ C. It is easily seen that S is a 0-distributive

semilattice with respect to this ordering. Now [e) ∨ [b) = S = [e) ∨ [d), so that

([e)∨ [b))0 ∩ ([e)∨ [d))0 = S. Also [e)∨ ([b)∩ [d)) = [a) and hence ([e)∨ ([b)∩ [d)))0 =

{0, b, d}. Thus ([e)∨([b)∩ [d)))0 6= ([e)∨ [b))0∩([e)∨ [d))0 , proving 8 is not necessary.

Consider the 0-distributive semilattice S from Remark 2.11. Now ([a)∩[b))0 = {0}

and [a)0 ∩ [b)0 = {0, d}. Thus ([a) ∩ [b))0 6= [a)0 ∩ [b)0, proving 10 is not necessary.

�����! ���"
2.13. The condition 2 of Theorem 2.7 and the conditions 11, 12,

13 of Theorem 2.8 are necessary for a semilattice (not necessarily finite) to be 0-

distributive.

���������
. The necessity of the condition 2 of Theorem 2.7 is obvious. The

necessity of the conditions 11, 12, 13 of Theorem 2.8 follows by Theorem 2.5 [see

Theorem 2.5, 10, 8, 11]. �

�����! ���"
2.14. The condition 2 of Theorem 2.7 and the conditions 11, 12, 13 of

Theorem 2.8 are not sufficient for an infinite semilattice with 0 to be 0-distributive.

Clearly the condition 12 of Theorem 2.8 implies the condition 13 of Theorem 2.8

and the condition 13 of Theorem 2.8 implies the condition 2 of Theorem 2.7. Hence

it is enough to show that the conditions 11 and 12 of Theorem 2.8 are not sufficient.

Let C1, C2, C3 be infinite chains without greatest and least elements and let

S = C1 ∪C2 ∪C3 ∪ {0, a, b, c, d, e, f, g, 1}. Define an ordering on S as follows. 0 < a,

b, c, d; a < e; b < f ; c < g; d < e; d < f ; d < g; e < c1 < 1 for all c1 ∈ C1;

e < c2 < 1 for all c2 ∈ C2; f < c1 for all c1 ∈ C1; f < c3 < 1 for all c3 ∈ C3;

g < c2 for all c2 ∈ C2; g < c3 for all c3 ∈ C3; a‖b; a‖c; a‖d; a‖f ; a‖g; a‖c3 for all

c3 ∈ C3; b‖c; b‖d; b‖e; b‖g; b‖c2 for all c2 ∈ C2; c‖d; c‖e; c‖f ; c‖c1 for all c1 ∈ C1;

c1‖c2 for all c1 ∈ C1 and c2 ∈ C2; c1‖c3 for all c1 ∈ C1 and c3 ∈ C3; c2‖c3 for

all c2 ∈ C2 and c3 ∈ C3. Clearly S is a semilattice with respect to this ordering.
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Also for all x, y, z ∈ S, we have ((x] ∩ ((y] ∨ (z]))∗ = ((x] ∩ (y])∗ ∩ ((x] ∩ (z])∗ and

((x] ∨ (y]) ∩ ((x] ∨ (z])∗ = (x]∗ ∩ ((y] ∩ (z])∗. Now (d] ∩ (a] = (0] = (d] ∩ B where

B = (b] ∨ (c]. But (d] ∩ ((a] ∨ B) 6= (0]. Thus S is not 0-distributive.

I would like to thank Prof. P.V.Venkatanarasimhan for his valuable suggestions

in the preparation of this paper. I also thank the referee whose valuable comments

helped in shaping the paper into its present form.
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