CHARACTERIZATIONS OF THE 0-DISTRIBUTIVE SEMILATTICE

P. Balasubramani, Perundurai

(Received February 22, 2002)

Abstract. The 0-distributive semilattice is characterized in terms of semiideals, ideals and filters. Some sufficient conditions and some necessary conditions for 0-distributivity are obtained. Counterexamples are given to prove that certain conditions are not necessary and certain conditions are not sufficient.

Keywords: semilattice, prime ideal, filter
MSC 2000: 06A12, 06A99, 06B10, 06B99

1. INTRODUCTION AND PRELIMINARIES

The 0-distributive lattice and the 0-distributive semilattice have been studied by Varlet [7], [8], Pawar and Thakare [4], [5], Jayaram [3] and Balasubramani and Venkatanarasimhan [1]. In this paper we obtain some characterizations of the 0 distributive semilattice. For the lattice theoretic concepts which have now become commonplace the reader is referred to Szasz [6] and Grätzer [2].

A semilattice is a partially ordered set in which any two elements have a greatest lower bound. Let S be a semilattice. A semiideal of S is a nonempty subset A of S such that $a \in A, b \leqslant a(b \in S) \Rightarrow b \in A$. An ideal of S is a semiideal A of S such that the join of any finite number of elements of A, whenever it exists, belongs to A. If $a \in S$, then $\{x \in S ; x \leqslant a\}$ is an ideal. It is called the principal ideal generated by a and is denoted by (a]. A filter of S is a nonempty subset F of S such that (i) $a \in F, b \geqslant a(b \in S) \Rightarrow b \in F$ and (ii) $a, b \in F \Rightarrow a \wedge b \in F$. The dual of a principal ideal is called a principal filter. The principal filter generated by a is denoted by $[a)$. A maximal ideal (filter) of S is a proper ideal (filter) which is not contained in any other proper ideal (filter). A prime semiideal (ideal) is a proper semiideal (ideal)
A such that $a \wedge b \in A \Rightarrow a \in A$ or $b \in A$. A minimal prime semiideal (ideal) is a prime semiideal (ideal) which does not contain any other prime semiideal (ideal). Let $F(S)$ denote the set of filters of S. A prime filter of S is a filter A such that B, $C \in F(S), B \cap C \subseteq A, B \cap C \neq \emptyset \Rightarrow B \subseteq A$ or $C \subseteq A$. If A is a prime filter of S and $A_{1}, \ldots, A_{n} \in F(S), A_{1} \cap \ldots \cap A_{n} \subseteq A, A_{1} \cap \ldots \cap A_{n} \neq \emptyset$, then $A_{i} \subseteq A$ for some $i \in\{1, \ldots, n\}$.

Let A be a nonempty subset of a semilattice S with $0, A^{*}=\{x \in S ; a \wedge x=0$ for all $a \in A\}$ and $A^{0}=\{x \in S ; a \wedge x=0$ for some $a \in A\}$. Then A^{*} is called the annihilator of A and A^{0} is called the pseudoannihilator of A. If $a \in S$, we write $(a)^{*}$ for $\{a\}^{*}$ and $(a)^{0}$ for $\{a\}^{0}$. We say that a is dense if $(a)^{*}=\{0\}$. If $\sup (a)^{*} \in(a)^{*}$, it is called the pseudocomplement of a and is denoted by a^{*}. A pseudocomplemented semilattice is a semilattice with 0 in which every element has a pseudocomplement. An ideal (semiideal) A of a semilattice S with 0 is said to be normal if $A^{* *}=A$.

The following five lemmas are contained in Venkatanarasimhan [9].

Lemma 1.1. The set $I(S)$ of all ideals of a semilattice S forms a lattice under set inclusion as the partial ordering relation. The meet in $I(S)$ coincides with the set intersection.

Lemma 1.2. Let S be a semilattice and $\left\{a_{i} ; i \in I\right\}$ any subset of S. Then $\bigwedge a_{i}\left(\bigvee a_{i}\right)$ exists if and only if $\bigcap\left(a_{i}\right]\left(\bigcap\left[a_{i}\right)\right)$ is a principal ideal (principal filter). Whenever $\bigwedge a_{i}\left(\bigvee a_{i}\right)$ exists then $\bigcap\left(a_{i}\right]=\left(\bigwedge a_{i}\right]\left(\bigcap\left[a_{i}\right)=\left[\bigvee a_{i}\right)\right)$.

Lemma 1.3. Let S be a semilattice. Then for $a_{1}, \ldots, a_{n} \in S, a_{1} \vee \ldots \vee a_{n}$ exists if and only if $\left(a_{1}\right] \vee \ldots \vee\left(a_{n}\right]$ is a principal ideal. Whenever $a_{1} \vee \ldots \vee a_{n}$ exists then $\left(a_{1}\right] \vee \ldots \vee\left(a_{n}\right]=\left(a_{1} \vee \ldots \vee a_{n}\right]$.

Lemma 1.4. If $\left\{A_{i} ; i \in I\right\}$ is a family of ideals of a semilattice, then $\bigvee A_{i}=$ $\left\{x ;(x] \subseteq\left(a_{i 1}\right] \vee \ldots \vee\left(a_{i n}\right] ; a_{i 1}, \ldots, a_{i n} \in \bigcup A_{i}\right\}$.

Lemma 1.5. Every proper filter of a semilattice with 0 is contained in a maximal filter.

The following lemma is easily proved.

Lemma 1.6. Let A be a nonempty subset of a semilattice S with 0 and $x \in S$. Then A^{*} and A^{0} are semiideals of S and $(x]^{*}=[x)^{0}=(x)^{0}=(x)^{*}$.

The following four lemmas are contained in Venkatanarasimhan [10].

Lemma 1.7. Let A be a nonempty proper subset of a semilattice S with 0 . Then A is a filter if and only if $S-A$ is a prime semiideal.

Lemma 1.8. Let A be a nonempty subset of a semilattice S with 0 . Then A is a maximal filter if and only if $S-A$ is a minimal prime semiideal.

Lemma 1.9. Any prime semiideal of a semilattice with 0 contains a minimal prime semiideal.

Lemma 1.10. Let A be a nonempty subset of a semilattice with 0 . Then A^{*} is the intersection of all minimal prime semiideals not containing A.

The following lemma is contained in Pawar and Thakare [4].
Lemma 1.11. Let A be a proper filter of a semilattice S with 0 . Then A is maximal if and only if for each x in $S-A$, there is some a in A such that $a \wedge x=0$.

Lemma 1.12. Let A and B be filters of a semilattice S with 0 such that A and B^{0} are disjoint. Then there is a minimal prime semiideal containing B^{0} and disjoint from A.

Proof. It is easily seen that $A \vee B$ is a proper filter of S. Hence by Lemma 1.5, $A \vee B \subseteq M$ for some maximal filter M. Now $B \subseteq M$ and so $M \cap B^{0}=\emptyset$. By Lemma 1.8, S-M is a minimal prime semiideal. Clearly $B^{0} \subseteq S-M$ and $(S-$ $M) \cap A=\emptyset$.

Lemma 1.13. Let A be a filter of a semilattice S with 0 . Then A^{0} is the intersection of all minimal prime semiideals disjoint from A.

Proof. Let N be any minimal prime semiideal disjoint from A. If $x \in A^{0}$, then $x \wedge a=0$ for some $a \in A$ and so $x \in N$.

Let $y \in S-A^{0}$. Then $a \wedge y \neq 0$ for all $a \in A$. Hence $A \vee[y) \neq S$. By Lemma 1.5, $A \vee[y) \subseteq M$ for some maximal filter M. By Lemma $1.8, S-M$ is a minimal prime semiideal. Clearly $(S-M) \cap A=\emptyset$ and $y \notin S-M$.

Lemma 1.14. Let S be a semilattice with 0 . Then the set complement of a prime filter is a prime ideal. If S is finite, then the set complement of a prime ideal is a prime filter.

Proof. Let A be a prime filter of S. By Lemma 1.7, $S-A$ is a prime semiideal. Let $x_{1}, \ldots, x_{n} \in S-A$ and suppose $x_{1} \vee \ldots \vee x_{n}$ exists. Since A is prime it follows that $x_{1} \vee \ldots \vee x_{n} \in S-A$. Thus $S-A$ is a prime ideal.

Let S be finite and let A be any prime ideal of S. By Lemma 1.7, $S-A$ is a filter. Since S is finite, every filter of S is principal. Let $a, b \in A$ be such that $[a) \cap[b) \neq \emptyset$. Let $[a) \cap[b)=\left\{c_{1}, \ldots, c_{n}\right\}$ and $c=c_{1} \wedge \ldots \wedge c_{n}$. Then $c \geqslant a, b$. If $d \geqslant a, b$ then $d=c_{j}$ for some j and so $d \geqslant c$. Thus $c=a \vee b \in A$. Hence $[a) \cap[b)=[a \vee b) \nsubseteq S-A$ proving $S-A$ is prime.

2. Definition and characterizations

Definition 2.1. A 0-distributive lattice is a lattice with 0 in which $a \wedge b=0=$ $a \wedge c$ implies $a \wedge(b \vee c)=0$.

Varlet [7], has proved that a lattice L bounded below is 0 -distributive if and only if the ideal lattice $I(L)$ is pseudocomplemented. He also observed that for an ideal lattice, the two notions of pseudocomplementedness and 0-distributivity are equivalent. These results motivate the following definition.

Definition 2.2. A 0 -distributive semilattice is a semilattice S with 0 such that $I(S)$, the lattice of ideals of S, is 0-distributive.

Theorem 2.3. Let S be a semilattice with 0 . Then the following statements are equivalent:

1. S is 0 -distributive.
2. If A, A_{1}, \ldots, A_{n} are ideals of S such that $A \cap A_{1}=\ldots=A \cap A_{n}=(0]$, then $A \cap\left(A_{1} \vee \ldots \vee A_{n}\right)=(0]$.
3. If a, a_{1}, \ldots, a_{n} are elements of S such that $(a] \cap\left(a_{1}\right]=\ldots=(a] \cap\left(a_{n}\right]=(0]$, then $(a] \cap\left(\left(a_{1}\right] \vee \ldots \vee\left(a_{n}\right]\right)=(0]$.
4. If M is a maximal filter of S, then $S-M$ is a minimal prime ideal.
5. Every minimal prime semiideal of S is a minimal prime ideal.
6. Every prime semiideal of S contains a minimal prime ideal.
7. Every proper filter of S is disjoint from a minimal prime ideal.
8. For each nonzero element a of S, there is a minimal prime ideal not containing a.
9. For each nonzero element a of S, there is a prime ideal not containing a.

Proof. $1 \Rightarrow 2$: Suppose 1 holds and let $A, A_{1}, \ldots, A_{n} \in I(S)$ be such that $A \cap A_{1}=\ldots=A \cap A_{n}=(0]$. By $1, I(S)$ is 0 -distributive. Hence $A \cap\left(A_{1} \vee A_{2}\right)=(0]$. Assume $A \cap\left(A_{1} \vee \ldots \vee A_{k-1}\right)=(0]$ for $2<k \leqslant n$. Then $A \cap\left(A_{1} \vee \ldots \vee A_{k-1} \vee A_{k}\right)=$ $A \cap\left(B \vee A_{k}\right)$ where $B=A_{1} \vee \ldots \vee A_{k-1}$. By our induction hypothesis $A \cap B=(0]$. Also $A \cap A_{k}=(0]$. Consequently $A \cap\left(A_{1} \vee \ldots \vee A_{k}\right)=A \cap\left(B \vee A_{k}\right)=(0]$. Thus the result follows by induction.

Obviously $2 \Rightarrow 3$ and $8 \Rightarrow 9$.
$3 \Rightarrow 1$: Suppose 3 holds. Let $A, B, C \in I(S)$ be such that $A \cap B=(0]=A \cap C$. Then $(a] \cap(b]=(0]=(a] \cap(c]$ for all $a \in A, b \in B$ and $c \in C$. Let $x \in A \cap(B \vee C)$. Then $x \in B \vee C$. Hence $(x] \subseteq\left(b_{1}\right] \vee \ldots \vee\left(b_{m}\right] \vee\left(c_{1}\right] \vee \ldots \vee\left(c_{n}\right]$ for some $b_{1}, \ldots, b_{m} \in B$ and $c_{1}, \ldots, c_{n} \in C$. Also $x \in A$. Consequently $(x] \cap\left(b_{i}\right]=(0]$ for $i=1, \ldots, m$ and $(x] \cap\left(c_{j}\right]=(0]$ for $j=1, \ldots, n$. By $3,(x] \cap\left(\left(b_{1}\right] \vee \ldots \vee\left(b_{m}\right] \vee\left(c_{1}\right] \vee \ldots \vee\left(c_{n}\right]\right)=(0]$. It follows that $x=0$. Thus $A \cap(B \vee C)=(0]$.
$3 \Rightarrow 4$: Suppose 3 holds. Let M be any maximal filter of S. By Lemma 1.8, $S-M$ is a minimal prime semiideal. Let $x_{1}, \ldots, x_{n} \in S-M$ be such that $x_{1} \vee \ldots \vee x_{n}$ exists. By Lemma 1.11, $a_{1} \wedge x_{1}=\ldots=a_{n} \wedge x_{n}=0$ for some $a_{1}, \ldots, a_{n} \in M$. Let $a=$ $a_{1} \wedge \ldots \wedge a_{n}$. Then $a \in M$ and $a \wedge x_{i}=0$ for $i=1, \ldots, n$. By Lemma 1.2, $(a] \cap\left(x_{i}\right]=(0]$ for $i=1, \ldots, n$. By Lemma 1.3, $(a] \cap\left(x_{1} \vee \ldots \vee x_{n}\right]=(a] \cap\left(\left(x_{1}\right] \vee \ldots \vee\left(x_{n}\right]\right)=(0]$ by 3. It follows that $a \wedge\left(x_{1} \vee \ldots \vee x_{n}\right)=0$. Hence $x_{1} \vee \ldots \vee x_{n} \in S-M$. Thus $S-M$ is an ideal.
$4 \Rightarrow 5$: Suppose 4 holds. Let N be any minimal prime semiideal of S. By Lemma 1.8, $S-N$ is a maximal filter. By $4, N=S-(S-N)$ is a minimal prime ideal.
$5 \Rightarrow 6$: Suppose 5 holds and let A be any prime semiideal of S. By Lemma 1.9, $A \supseteq N$ for some minimal prime semiideal N. By $5, N$ is a minimal prime ideal.
$6 \Rightarrow 7$: Suppose 6 holds and let A be any proper filter of S. By Lemma 1.7, $S-A$ is a prime semiideal. By $6, S-A$ contains a minimal prime ideal N. Clearly $A \cap N=\emptyset$.
$7 \Rightarrow 8$: Suppose 7 holds and let a be any nonzero element of S. By $7,[a)$ is disjoint from a minimal prime ideal N. Clearly $a \notin N$.
$9 \Rightarrow 3$: Suppose 9 holds. Let $a, a_{1}, \ldots, a_{n} \in S$ such that $(a] \cap\left(a_{1}\right]=\ldots=(a] \cap$ $\left(a_{n}\right]=(0]$ and $(a] \cap\left(\left(a_{1}\right] \vee \ldots \vee\left(a_{n}\right]\right) \neq(0]$. Then there exists $x \in(a] \cap\left(\left(a_{1}\right] \vee \ldots \vee\left(a_{n}\right]\right)$ such that $x \neq 0$. By 9 there is a prime ideal A such that $x \notin A$. By Lemma 1.7, $S-A$ is a proper filter and clearly $a \in S-A$. Consequently $a_{1}, \ldots, a_{n} \in A$. It follows that $\left(a_{1}\right] \vee \ldots \vee\left(a_{n}\right] \subseteq A$ and so $x \in A$. Thus we get a contradiction. Hence $(a] \cap\left(a_{1}\right]=\ldots=(a] \cap\left(a_{n}\right]=(0] \Rightarrow(a] \cap\left(\left(a_{1}\right] \vee \ldots \vee\left(a_{n}\right]\right)=(0]$.

Theorem 2.4. Let S be a semilattice with 0 . Then the following statements are equivalent:

1. S is 0-distributive.
2. If A is a nonempty subset of S and B is a proper filter intersecting A, there is a minimal prime ideal containing A^{*} and disjoint from B.
3. If A is a nonempty subset of S and B is a proper filter intersecting A, there is a prime ideal containing A^{*} and disjoint from B.
4. If A is a nonempty subset of S and B is a prime semiideal not containing A, there is a minimal prime ideal containing A^{*} and contained in B.
5. If A is a nonempty subset of S and B is a prime semiideal not containing A, there is a prime ideal containing A^{*} and contained in B.
6. For each nonzero element a of S and each proper filter B containing a, there is a prime ideal containing $(a)^{*}$ and disjoint from B.
7. For each nonzero element a of S and each prime semiideal B not containing a, there is a prime ideal containing $(a)^{*}$ and contained in B.
8. If A and B are filters of S such that A and B^{0} are disjoint, there is a minimal prime ideal containing B^{0} and disjoint from A.
9. If A and B are filters of S such that A and B^{0} are disjoint, there is a prime ideal containing B^{0} and disjoint from A.
10. If A is a filter of S and B is a prime semiideal containing A^{0}, there is a minimal prime ideal containing A^{0} and contained in B.
11. If A is a filter of S and B is a prime semiideal containing A^{0}, there is a prime ideal containing A^{0} and contained in B.
12. For each nonzero element a in S and each filter A disjoint from $(a)^{*}$, there is a prime ideal containing $(a)^{*}$ and disjoint from A.
13. For each nonzero element a in S and each prime semiideal B containing $(a)^{*}$, there is a prime ideal containing $(a)^{*}$ and contained in B.

Proof. $1 \Rightarrow 2$: Suppose 1 holds. Let A be a nonempty subset of S and B any proper filter such that $B \cap A \neq \emptyset$. By Lemma 1.7, $S-B$ is a prime semiideal and by Lemma 1.9, $S-B \supseteq N$ for some minimal prime semiideal N. Clearly $N \cap B=\emptyset$. Also $S-B \nsupseteq A$ and so $N \nsupseteq A$. By Lemma 1.10, $N \supseteq A^{*}$. Since S is 0 -distributive, N is a minimal prime ideal [see Theorem 2.3,5].

By Lemma 1.7, it follows that $2 \Rightarrow 4,3 \Rightarrow 5,8 \Rightarrow 10,9 \Rightarrow 11$ and $12 \Rightarrow 13$.
Obviously $2 \Rightarrow 3,2 \Rightarrow 6,4 \Rightarrow 5,4 \Rightarrow 7,8 \Rightarrow 9,10 \Rightarrow 11 \Rightarrow 13$ and $5 \Rightarrow 7$.
$1 \Rightarrow 8$: Suppose 1 holds. Let A and B be filters of S such that $A \cap B^{0} \neq \emptyset$. By Lemma 1.12, there is a minimal prime semiideal N such that $N \supseteq B^{0}$ and $N \cap A=\emptyset$. Since S is 0 -distributive it follows that N is a minimal prime ideal [see Theorem 2.3, 5].
$8 \Rightarrow 12$: By Lemma 1.6, $(x)^{*}=[x)^{0}$ for all $x \in S$. Hence the result.
$6 \Rightarrow 1$: Suppose 6 holds. Let a be any nonzero element of S. Now $[a)$ is a proper filter containing a. By 6 , there is a prime ideal N containing $(a)^{*}$ and disjoint from [a). Clearly $a \notin N$. Thus S is 0 -distributive [see Theorem 2.3, 9].
$7 \Rightarrow 1$: Suppose 7 holds. Let a be any nonzero element of S. Now $S-[a)$ is a prime semiideal not containing a. By 7 there is a prime ideal N containing ($a)^{*}$ and contained in $S-[a)$. Clearly $a \notin N$. Thus S is 0 -distributive [See Theorem 2.3, 9].
$13 \Rightarrow 1$: Suppose 13 holds and let a be any nonzero element of S. By Lemma 1.7, $S-[a)$ is a prime semiideal not containing a. Since $(a) \cap(a)^{*}=(0] \subseteq S-[a)$ it
follows that $S-[a)$ contains $(a)^{*}$. By 13 , there is a prime ideal N containing $(a)^{*}$ and contained in $S-[a)$. Clearly $a \in N$. Thus S is 0 -distributive [see Theorem 2.3, 9].

Theorem 2.5. Let S be a semilattice with 0 . Then the following statements are equivalent:

1. S is 0-distributive.
2. For any nonempty subset A of S, A^{*} is the intersection of all minimal prime ideals not containing A.
3. For any filter A of S, A^{0} is the intersection of all minimal prime ideals disjoint from A.
4. For each a in $S,(a)^{*}$ is an ideal.
5. Every normal semiideal of S is an intersection of minimal prime ideals.
6. For any finite number of ideals A, A_{1}, \ldots, A_{n} of S,

$$
\left(A \cap\left(A_{1} \vee \ldots \vee A_{n}\right)\right)^{*}=\left(A \cap A_{1}\right)^{*} \cap \ldots \cap\left(A \cap A_{n}\right)^{*}
$$

7. For any three ideals A, B, C of S,

$$
(A \cap(B \vee C))^{*}=(A \cap B)^{*} \cap(A \cap C)^{*}
$$

8. For any finite number of ideals A, A_{1}, \ldots, A_{n} of S,

$$
\left(\left(A \vee A_{1}\right) \cap \ldots \cap\left(A \vee A_{n}\right)\right)^{*}=A^{*} \cap\left(A_{1} \cap \ldots A_{n}\right)^{*}
$$

9. For any three ideals A, B, C of S,

$$
((A \vee B) \cap(A \vee C))^{*}=A^{*} \cap(B \cap C)^{*}
$$

10. For any finite number of elements a, a_{1}, \ldots, a_{n} of S,

$$
\left((a] \cap\left(\left(a_{1}\right] \vee \ldots \vee\left(a_{n}\right]\right)\right)^{*}=\left((a] \cap\left(a_{1}\right]\right)^{*} \cap \ldots \cap\left((a] \cap\left(a_{n}\right]\right)^{*} .
$$

11. For any finite number of elements a_{1}, \ldots, a_{n} of S,

$$
\left(\left(a_{1}\right] \vee \ldots \vee\left(a_{n}\right]\right)^{*}=\left(a_{1}\right]^{*} \cap \ldots \cap\left(a_{n}\right]^{*} .
$$

12. $I(S)$ is pseudocomplemented.

Proof. $1 \Rightarrow 2$: Follows by Lemma 1.10 and Theorem 2.3, 5 . $1 \Rightarrow 3$: Follows by Lemma 1.13 and Theorem 2.3, 5 .
$3 \Rightarrow 4$: By Lemma $1.6,(a)^{*}=[a)^{0}$. Hence the result.
$4 \Rightarrow 1$: Suppose 4 holds. Let $a, a_{1}, \ldots, a_{n} \in S$ be such that $(a] \cap\left(a_{1}\right]=\ldots=$ $(a] \cap\left(a_{n}\right]=(0]$. Then $a_{1}, \ldots, a_{n} \in(a)^{*}$. By 4 it follows that $\left(a_{1}\right] \vee \ldots \vee\left(a_{n}\right] \subseteq(a)^{*}$. Hence $(a] \cap\left(\left(a_{1}\right] \vee \ldots \vee\left(a_{n}\right]\right)=(0]$. Thus S is 0 -distributive [see Theorem 2.3, 3].

Obviously $6 \Rightarrow 7,8 \Rightarrow 9$ and $6 \Rightarrow 10$.
$2 \Rightarrow 5$: Suppose 2 holds. Let A be any normal semiideal of S. Then $A=B^{*}$ for some semiideal B. By $2, B^{*}$ is the intersection of all minimal prime ideals not containing B. Hence the result.
$5 \Rightarrow 4$: By Lemma 1.6, $(a)^{*}=(a]^{*}$ for all $a \in S$. Hence the result.
$2 \Rightarrow 6$: Suppose 2 holds. Let $A, A_{1}, \ldots, A_{n} \in I(S)$. If Q is any minimal prime ideal of S such that $Q \nsupseteq A \cap\left(A_{1} \vee \ldots \vee A_{n}\right)$, then $Q \nsupseteq A \cap A_{j}$ for some $j \in\{1, \ldots, n\}$. By 2 it follows that $\left(A \cap\left(A_{1} \vee \ldots \vee A_{n}\right)\right)^{*} \supseteq\left(A \cap A_{1}\right)^{*} \cap \ldots \cap\left(A \cap A_{n}\right)^{*}$. The reverse inclusion is obvious.
$7 \Rightarrow 1$: Suppose 7 holds. Then for $A, B, C \in I(S)$ we have $(A \cap(B \vee C))^{*}=$ $(A \cap B)^{*} \cap(A \cap C)^{*}$. By replacing A by $B \vee C$ it follows that $(B \vee C)^{*}=B^{*} \cap C^{*}$. Suppose $A \cap B=(0]=A \cap C$. Then $(a] \cap(b]=(0]=(a] \cap(c]$ for all $a \in A, b \in B$ and $c \in C$. Hence $a \in B^{*} \cap C^{*}$ for all $a \in A$. Hence $a \in(B \vee C)^{*}$. Consequently $A \subseteq(B \vee C)^{*}$. It follows that $A \cap(B \vee C)=(0]$.
$2 \Rightarrow 8$: Suppose 2 holds, let A, A_{1}, \ldots, A_{n} be ideals of S and let Q be any minimal prime ideal such that $Q \nsupseteq\left(A \vee A_{1}\right) \cap \ldots \cap\left(A \vee A_{n}\right)$. Then $Q \nsupseteq A \vee A_{1}, \ldots, A \vee A_{n}$ and so $Q \nsupseteq A$ or $Q \nsupseteq A_{1} \cap \ldots \cap A_{n}$. By 2 it follows that $\left(\left(A \vee A_{1}\right) \cap \ldots \cap\left(A \vee A_{n}\right)\right)^{*} \supseteq$ $A^{*} \cap\left(A_{1} \cap \ldots \cap A_{n}\right)^{*}$. The reverse inclusion is obvious.
$9 \Rightarrow 1$: Suppose 9 holds. Then for any three ideals A, B, C of $S,((A \vee B) \cap$ $(A \vee C))^{*}=A^{*} \cap(B \cap C)^{*}$. By replacing C by B and A by C it follows that $(B \vee C)^{*}=B^{*} \cap C^{*}$. Suppose $A \cap B=(0]=A \cap C$. Then $(a] \cap(b]=(0]=(a] \cap(c]$ for all $a \in A, b \in B$ and $c \in C$. Hence $a \in B^{*} \cap C^{*}$ for all $a \in A$. Hence $a \in(B \vee C)^{*}$ for all $a \in A$. Consequently $A \subseteq(B \vee C)^{*}$. It follows that $A \cap(B \vee C)=(0]$. Thus S is 0-distributive.
$10 \Rightarrow 1$: Suppose 10 holds. Let $a, a_{1}, \ldots, a_{n} \in S$ such that $(a] \cap\left(a_{1}\right]=\ldots=$ $(a] \cap\left(a_{n}\right]=(0]$. Then $\left((a] \cap\left(a_{1}\right]\right)^{*}=\ldots=\left((a] \cap\left(a_{n}\right]\right)^{*}=S$. Hence $\left((a] \cap\left(a_{1}\right]\right)^{*} \cap$ $\ldots \cap\left((a] \cap\left(a_{n}\right]\right)^{*}=S . \quad$ By 10, $\left((a] \cap\left(\left(a_{1}\right] \vee \ldots \vee\left(a_{n}\right]\right)\right)^{*}=S$. Consequently $(a] \cap\left(\left(a_{1}\right] \vee \ldots \vee\left(a_{n}\right]\right)=(0]$. It follows that S is 0 -distributive [see Theorem 2.3, 3].
$6 \Rightarrow 11$: Suppose 6 holds. Then for any finite number of ideals A, A_{1}, \ldots, A_{n} of $S,\left(A \cap\left(A_{1} \vee \ldots \vee A_{n}\right)\right)^{*}=\left(A \cap A_{1}\right)^{*} \cap \ldots \cap\left(A \cap A_{n}\right)^{*}$. By taking $A=A_{1} \vee \ldots \vee A_{n}$ it follows that $\left(A_{1} \vee \ldots \vee A_{n}\right)^{*}=A_{1}^{*} \cap \ldots \cap A_{n}^{*}$. Hence the result.
$11 \Rightarrow 1$: Suppose 11 holds. Let $a, a_{1}, \ldots, a_{n} \in S$ be such that $(a] \cap\left(a_{1}\right]=\ldots=$ $(a] \cap\left(a_{n}\right]=(0]$. Then $a \in\left(a_{1}\right]^{*} \cap \ldots \cap\left(a_{n}\right]^{*}$. By 11 it follows that $a \in\left(\left(a_{1}\right] \vee \ldots \vee\left(a_{n}\right]\right)^{*}$. Hence $(a] \cap\left(\left(a_{1}\right] \vee \ldots \vee\left(a_{n}\right]\right)=(0]$. Thus S is 0 -distributive [see Theorem 2.3, 3].
$2 \Rightarrow 12$: Suppose 2 holds. Let $A \in I(S)$. Then by 2 it follows that A^{*} is an ideal. If $B \in I(S)$ is such that $A \cap B=(0]$ and $x \in B$, then $a \wedge x=0$ for all $a \in A$ and so $x \in A^{*}$. Thus $B \subseteq A^{*}$. It follows that A^{*} is the pseudocomplement of A.
$12 \Rightarrow 1$: Suppose 12 holds. Then every principal ideal of S has a pseudocomplement in $I(S)$. Let $a, a_{1}, \ldots, a_{n} \in S$ be such that $(a] \cap\left(a_{1}\right]=\ldots=(a] \cap\left(a_{n}\right]=(0]$. Then $\left(a_{i}\right] \subseteq(a]^{*}$ for $i=1, \ldots, n$ and so $\left(\left(a_{1}\right] \vee \ldots \vee\left(a_{n}\right]\right) \subseteq(a]^{*}$. Consequently $(a] \cap\left(\left(a_{1}\right] \vee \ldots \vee\left(a_{n}\right]\right)=(0]$. Thus S is 0 -distributive [see Theorem 2.3, 3].

Remark 2.6. According to Varlet [8], an ideal of a semilattice S is a nonempty subset I of S such that (i) $y \leqslant x$ and $x \in I$ imply $y \in I$; (ii) for any $x, y \in I$ there exists a $z \in I$ such that $z \geqslant x$ and $z \geqslant y$. According to him a semilattice S with 0 is said to be 0 -distributive if for any $a \in S$, the subset $(a)^{*}=\{x \in S ; x \wedge a=0\}$ is an ideal.

Let S be a 0 -distributive semilattice in Varlet's sense. Then for each $a \in S,(a)^{*}$ is a Varlet ideal and therefore an ideal in our sense. Thus S is 0 -distributive in our sense. The converse is not true. Consider the semilattice $S=\{0, a, b, c\}$ in which the ordering is defined by $0<a, b, c ; a\|b ; a\| c$; and $b \| c$. Clearly S is 0 -distributive in our sense but not in Varlet's sense.

We give below some additional characterizations when the semilattice is finite.

Theorem 2.7. Let S be a finite semilattice. Then the following statements are equivalent:

1. S is 0 -distributive.
2. If a, b, c are elements of S such that $(a] \cap(b]=(0]=(a] \cap(c]$ then $(a] \cap((b] \vee(c])=$ (0].
3. Every maximal filter of S is prime.
4. Each nonzero element of S is contained in a prime filter.
5. If A is a nonempty subset of S and B is a proper filter intersecting A, there is a prime filter containing B and disjoint from A^{*}.
6. If A is a nonempty subset of S and B is a prime semiideal not containing A, there is a prime filter containing $S-B$ and disjoint from A^{*}.
7. For each nonzero element a of S and each proper filter B containing a, there is a prime filter containing B and disjoint from $(a)^{*}$.
8. For each nonzero element a of S and each prime semiideal B not containing a, there is a prime filter containing $S-B$ and disjoint from $(a)^{*}$.
9. If A and B are filters of S such that A and B^{0} are disjoint, there is a prime filter containing A and disjoint from B^{0}.
10. If A is a filter of S and B is a prime semiideal containing A^{0}, there is a prime filter containing $S-B$ and disjoint from A^{0}.
11. For each nonzero element a in S and each filter A disjoint from $(a)^{*}$, there is a prime filter containing A and disjoint from (a)*
12. For each nonzero element a in S and each prime semiideal B containing $(a)^{*}$, there is a prime filter containing $S-B$ and disjoint from $(a)^{*}$.

Proof. Obviously $1 \Rightarrow 2,6 \Rightarrow 8,10 \Rightarrow 12,5 \Rightarrow 7$ and $9 \Rightarrow 11$.
$2 \Rightarrow 1$: Suppose 2 holds and let $a, a_{1}, \ldots, a_{n} \in S$ be such that $(a] \cap\left(a_{1}\right]=\ldots=$ $(a] \cap\left(a_{n}\right]=(0]$. Let $A=\left(a_{1}\right] \cup \ldots \cup\left(a_{n}\right]$, let $B=\left\{b_{1}, \ldots, b_{m}\right\}$ be the set of existing suprema of nonempty subsets of A and $b \in B$. Then $\left(a_{1}\right] \vee \ldots \vee\left(a_{n}\right]=\left(b_{1}\right] \cup \ldots \cup\left(b_{m}\right]$ and $b=c_{1} \vee \ldots \vee c_{k}$ for some $c_{1}, \ldots, c_{k} \in A$. If $p, q \in\{1, \ldots, k\}$, clearly b is an upperbound of $\left\{c_{p}, c_{q}\right\}$. Thus the set C of upperbounds of $\left\{c_{p}, c_{q}\right\}$ is nonempty and $\inf C=c_{p} \vee c_{q}$. Also $(a] \cap\left(c_{p}\right]=(0]=(a] \cap\left(c_{q}\right]$, so that $(a] \cap\left(\left(c_{p}\right] \vee\left(c_{q}\right]\right)=(0]$ by 2 . It is easily seen that every nonempty subset of $\left\{c_{1}, \ldots, c_{k}\right\}$ has a supremum and by induction it follows that $(a] \cap(b]=(a] \cap\left(\left(c_{1}\right] \vee \ldots \vee\left(c_{k}\right]\right)=(0]$. Hence $(a] \cap\left(\left(a_{1}\right] \vee \ldots \vee\left(a_{n}\right]\right)=(a] \cap\left(\left(b_{1}\right] \cup \ldots \cup\left(b_{m}\right]\right)=\left((a] \cap\left(b_{1}\right]\right) \cup \ldots \cup\left((a] \cap\left(b_{m}\right]\right)=(0]$. Consequently S is 0 -distributive [see Theorem 2.3,3].
$1 \Rightarrow 3$: Suppose 1 holds. Let M be any maximal filter of S. Since S is finite, every filter of S is principal. Let $a, b \in S-M$ be such that $[a) \cap[b) \neq \emptyset$. Let $[a) \cap[b)=\left\{c_{1}, \ldots, c_{n}\right\}$ and $c=c_{1} \wedge \ldots \wedge c_{n}$. Then $c \geqslant a, b$ as $c_{i} \geqslant a, b$ for all i. If $d \in S$ and $d \geqslant a, b$, then $d=c_{j}$ for some j, so that $d \geqslant c$. Thus $c=a \vee b$. Also $S-M$ is an ideal [see Theorem 2.3, 4]. Hence $a \vee b \in S-M$. It follows that $[a) \cap[b)=[a \vee b) \nsubseteq M$, proving M is prime.
$3 \Rightarrow 4$: Suppose 3 holds. Let a be any nonzero element of S. By Lemma 1.5, [a) is contained in a maximal filter M. By $3, M$ is prime. Clearly $a \in M$.
$4 \Rightarrow 1$: Suppose 4 holds. Let a be any nonzero element of S. By $4, a \in B$ for some prime filter B. By Lemma $1.14, S-B$ is a prime ideal and clearly $a \notin S-B$. It follows that S is 0 -distributive [see Theorem 2.3, 9].
$3 \Rightarrow 5$: Suppose 3 holds. Let A be a nonempty subset of S and B a proper filter such that $B \cap A \neq \emptyset$. By Lemma $1.5, B \subseteq M$ for some maximal filter M. By $3, M$ is prime. By Lemma 1.8, $S-M$ is a minimal prime semiideal and clearly $S-M \nsupseteq A$. Hence $S-M \supseteq A^{*}$ and so $M \cap A^{*}=\emptyset$.
$5 \Rightarrow 6$: Suppose 5 holds. Let A be a nonempty subset of S and B a prime semiideal such that $B \nsupseteq A$. By Lemma $7, S-B$ is a proper filter and clearly $(S-B) \cap A \neq \emptyset$. By 5 there is a prime filter containing $S-B$ and disjoint from A^{*}.
$7 \Rightarrow 8$: Similar to $5 \Rightarrow 6$.
$8 \Rightarrow 1$: Suppose 8 holds and let a be any nonzero element of S. Now $S-[a)$ is a prime semiideal not containing a. By 8 there is a prime filter N containing $S-(S-[a))=[a)$ and disjoint from $(a)^{*}$. By Lemma 1.14, $S-N$ is a prime ideal and clearly $a \notin S-N$. Thus S is 0 -distributive [see Theorem 2.3, 9].
$3 \Rightarrow 9$: Suppose 3 holds. Let A and B be filters of S such that A and B^{0} are disjoint. By Lemma 1.12, there is a minimal prime semiideal N such that $N \supseteq B^{0}$ and $N \cap A=\emptyset$. By Lemma 1.8, $S-N$ is a maximal filter. Clearly $S-N \supseteq A$ and $(S-N) \cap B^{0}=\emptyset$. By $3, S-N$ is prime.
$9 \Rightarrow 10$: Suppose 9 holds. Let A be a filter of S and B a prime semiideal such that $B \supseteq A^{0}$. By Lemma $1.7, S-B$ is a proper filter and clearly $(S-B) \cap A^{0}=\emptyset$. By 9 , there is a prime filter containing $S-B$ and disjoint from A^{0}.
$11 \Rightarrow 12$: Similar to $5 \Rightarrow 6$.
$12 \Rightarrow 4$: Suppose 12 holds. Let a be any nonzero element of S. Now $S-[a)$ is a prime semiideal not containing (a]. Since $(a] \cap(a]^{*}=(0] \subseteq S-[a)$ it follows that $(a)^{*} \subseteq S-[a)$. By 12 there is a prime filter N containing $S-(S-[a))=[a)$ and disjoint from $(a)^{*}$. Clearly $a \in N$.

Theorem 2.8. Let S be a finite semilattice. Then the following statements are equivalent:

1. S is 0-distributive.
2. For any finite number of filters A, A_{1}, \ldots, A_{n} of S such that $A \cap A_{i} \neq \emptyset$ for all $i \in\{1, \ldots, n\}$,

$$
\left(\left(A \cap A_{1}\right) \vee \ldots \vee\left(A \cap A_{n}\right)\right)^{0}=A^{0} \cap\left(A_{1} \vee \ldots \vee A_{n}\right)^{0}
$$

3. For any three filters A, B, C of S such that $A \cap B \neq \emptyset$ and $A \cap C \neq \emptyset$,

$$
((A \cap B) \vee(A \cap C))^{0}=A^{0} \cap(B \vee C)^{0}
$$

4. For all a, b, c in S such that $[a) \cap[b) \neq \emptyset$ and $[a) \cap[c) \neq \emptyset$,

$$
(([a) \cap[b)) \vee([a) \cap[c)))^{0}=[a)^{0} \cap([b) \vee[c))^{0} .
$$

5. For any finite number of filters A, A_{1}, \ldots, A_{n} of S such that $A_{1} \cap \ldots \cap A_{n} \neq \emptyset$,

$$
\left(A \vee\left(A_{1} \cap \ldots \cap A_{n}\right)\right)^{0}=\left(A \vee A_{1}\right)^{0} \cap \ldots \cap\left(A \vee A_{n}\right)^{0}
$$

6. For any three filters A, B, C of S such that $B \cap C \neq \emptyset$,

$$
(A \vee(B \cap C))^{0}=(A \vee B)^{0} \cap(A \vee C)^{0}
$$

7. For any finite number of elements a, a_{1}, \ldots, a_{n} of S such that $\left[a_{1}\right) \cap \ldots \cap\left[a_{n}\right) \neq \emptyset$,

$$
\left([a) \vee\left(\left[a_{1}\right) \cap \ldots \cap\left[a_{n}\right)\right)\right)^{0}=\left([a) \vee\left[a_{1}\right)\right)^{0} \cap \ldots \cap\left([a) \vee\left[a_{n}\right)\right)^{0} .
$$

8. For all a, b, c in S, with $[b) \cap[c) \neq \emptyset$,

$$
([a) \vee([b) \cap[c)))^{0}=([a) \vee[b))^{0} \cap([a) \vee[c))^{0} .
$$

9. For any finite number of elements a_{1}, \ldots, a_{n} of S such that $\left[a_{1}\right) \cap \ldots \cap\left[a_{n}\right) \neq \emptyset$,

$$
\left(\left[a_{1}\right) \cap \ldots \cap\left[a_{n}\right)\right)^{0}=\left[a_{1}\right)^{0} \cap \ldots \cap\left[a_{n}\right)^{0} .
$$

10. For all a, b in S with $[a) \cap[b) \neq \emptyset,([a) \cap[b))^{0}=[a)^{0} \cap[b)^{0}$.
11. For all a, b, c in $S,((a] \cap((b] \vee(c]))^{*}=((a] \cap(b])^{*} \cap((a] \cap(c])^{*}$.
12. For all a, b, c in S,

$$
(((a] \vee(b]) \cap((a] \vee(c]))^{*}=(a]^{*} \cap((b] \cap(c])^{*}
$$

13. For all a, b in $S,((a] \vee(b])^{*}=(a]^{*} \cap(b]^{*}$.

Proof. $1 \Rightarrow 2$: Suppose 1 holds and let A, A_{1}, \ldots, A_{n} be filters of S such that $A \cap A_{i} \neq \emptyset$ for all $i \in\{1, \ldots, n\}$. If Q is any minimal prime ideal of S such that $Q \cap\left(\left(A \cap A_{1}\right) \vee \ldots \vee\left(A \cap A_{n}\right)\right)=\emptyset$, then $Q \cap\left(A \cap A_{1}\right)=\ldots=Q \cap\left(A \cap A_{n}\right)=\emptyset$. By Lemma 1.14, $S-Q$ is a prime filter and $S-Q \supseteq\left(A \cap A_{1}\right), \ldots,\left(A \cap A_{n}\right)$. Hence $S-Q \supseteq A$ or $S-Q \supseteq A_{1} \vee \ldots \vee A_{n}$ and so $Q \cap A=\emptyset$ or $Q \cap\left(A_{1} \vee \ldots \vee A_{n}\right)=\emptyset$. It follows that $\left(\left(A \cap A_{1}\right) \vee \ldots \vee\left(A \cap A_{n}\right)\right)^{0} \supseteq A^{0} \cap\left(A_{1} \vee \ldots \vee A_{n}\right)^{0}$ [see Theorem 2.5, 3]. The reverse inclusion is obvious.

Obviously $2 \Rightarrow 3 \Rightarrow 4,5 \Rightarrow 6 \Rightarrow 8$ and $5 \Rightarrow 7 \Rightarrow 8$.
$4 \Rightarrow 10$: Follows by taking $c=b$ in 4 .
$1 \Rightarrow 5$: Suppose 1 holds. Let A, A_{1}, \ldots, A_{n} be filters of S such that $A_{1} \cap \ldots \cap A_{n} \neq$ \emptyset. If Q is any minimal prime ideal of S such that $Q \cap\left(A \vee\left(A_{1} \cap \ldots \cap A_{n}\right)\right)=\emptyset$, then $Q \cap A=\emptyset=Q \cap\left(A_{1} \cap \ldots \cap A_{n}\right)$. By Lemma $1.14, S-Q$ is a prime filter and clearly $S-Q \supseteq A, A_{1} \cap \ldots \cap A_{n}$. Hence $S-Q \supseteq A \vee A_{j}$ and so $Q \cap\left(A \vee A_{j}\right)=\emptyset$ for some $j \in\{1, \ldots, n\}$. It follows that $\left(A \vee\left(A_{1} \cap \ldots \cap A_{n}\right)\right)^{0} \supseteq\left(A \vee A_{1}\right)^{0} \cap \ldots \cap\left(A \vee A_{n}\right)^{0}$ [see Theorem 2.5, 3]. The reverse inclusion is obvious.
$10 \Rightarrow 9$: Suppose 10 holds and let $a_{1}, \ldots, a_{n} \in S$ be such that $\left[a_{1}\right) \cap \ldots \cap\left[a_{n}\right) \neq \emptyset$. Then $\left(\left[a_{1}\right) \cap\left[a_{2}\right)\right)^{0}=\left[a_{1}\right)^{0} \cap\left[a_{2}\right)^{0}$. Assume $\left(\left[a_{1}\right) \cap \ldots \cap\left[a_{k-1}\right)\right)^{0}=\left[a_{1}\right)^{0} \cap \ldots \cap\left[a_{k-1}\right)^{0}$ for $2<k \leqslant n$. Let $x \in\left[a_{1}\right)^{0} \cap \ldots \cap\left[a_{k}\right)^{0}$. Then $x \in\left[a_{1}\right)^{0} \cap \ldots \cap\left[a_{k-1}\right)^{0}=$ $\left(\left[a_{1}\right) \cap \ldots \cap\left[a_{k-1}\right)\right)^{0}$ by our induction hypothesis. Hence $x \wedge y=0$ for some $y \in$ $\left(\left[a_{1}\right) \cap \ldots \cap\left[a_{k-1}\right)\right)$. Thus $x \in[y)^{0} \cap\left[a_{k}\right)^{0}=\left([y) \cap\left[a_{k}\right)\right)^{0} \subseteq\left(\left[a_{1}\right) \cap \ldots \cap\left[a_{k}\right)\right)^{0}$ so that $\left(\left[a_{1}\right)^{0} \cap \ldots \cap\left[a_{k}\right)^{0}\right) \subseteq\left(\left[a_{1}\right) \cap \ldots \cap\left[a_{k}\right)\right)^{0}$. The reverse inclusion is obvious. By induction it follows that $\left(\left[a_{1}\right) \cap \ldots \cap\left[a_{n}\right)\right)^{0}=\left[a_{1}\right)^{0} \cap \ldots \cap\left[a_{n}\right)^{0}$.
$9 \Rightarrow 1$: Suppose 9 holds. Let $a \in S$ and let $a_{1}, \ldots, a_{n} \in(a)^{*}$ be such that $a_{1} \vee \ldots \vee a_{n}$ exists. Then $a \wedge a_{1}=\ldots=a \wedge a_{n}=0$ and so $a \in\left[a_{1}\right)^{0} \cap \ldots \cap\left[a_{n}\right)^{0}=$
$\left(\left[a_{1}\right) \cap \ldots \cap\left[a_{n}\right)\right)^{0}$ by 9 . That is $a \in\left[a_{1} \vee \ldots \vee a_{n}\right)^{0}$. Hence $a \wedge\left(a_{1} \vee \ldots \vee a_{n}\right)=0$, so that $a_{1} \vee \ldots \vee a_{n} \in(a)^{*}$. Thus $(a)^{*}$ is an ideal. It follows that S is 0 -distributive [see Theorem 2.5, 4].
$8 \Rightarrow 1$: Suppose 8 holds and let $a, b, c \in S$ such that $(a] \cap(b]=(0]=(a] \cap(c]$. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be the set of existing suprema of nonempty subsets of $(b] \cup(c]$ and $x \in X$. Then $(b] \vee(c]=\left(x_{1}\right] \cup \ldots \cup\left(x_{n}\right]$ and $x=y_{1} \vee \ldots \vee y_{m}$ for some $y_{1}, \ldots, y_{m} \in(b] \cup(c]$. If $p, q \in\{1, \ldots, m\}$, clearly x is an upperbound of $\left\{y_{p}, y_{q}\right\}$. Thus the set Y of upperbounds of $\left\{y_{p}, y_{q}\right\}$ is nonempty and $\inf Y=y_{p} \vee y_{q}$. Also $a \wedge y_{p}=0=a \wedge y_{q}$. Hence $\left([a) \vee\left[y_{p}\right)\right)^{0}=S=\left([a) \vee\left[y_{q}\right)\right)^{0}$. Let $z \in(a] \cap\left(\left(y_{p}\right] \vee\left(y_{q}\right]\right)$. Then $z \leqslant a$ and $z \leqslant y_{p} \vee y_{q}$. Now $z \in S=\left([a) \vee\left[y_{p}\right)\right)^{0} \cap\left([a) \vee\left[y_{q}\right)\right)^{0}=\left([a) \vee\left(\left[y_{p}\right) \cap\right.\right.$ $\left.\left[y_{q}\right)\right)^{0}=\left([a) \vee\left[y_{p} \vee y_{q}\right)\right)^{0}$ by 8 , so that $z \wedge t=0$ for some $t \in[a) \vee\left[y_{p} \vee y_{q}\right)$. Thus $z=z \wedge a \wedge\left(y_{p} \vee y_{q}\right) \leqslant z \wedge t=0$ and consequently $(a] \cap\left(\left(y_{p}\right] \vee\left(y_{q}\right]\right)=(0]$. It is easily seen that every nonempty subset of $\left\{y_{1}, \ldots, y_{m}\right\}$ has a supremum and by induction it follows that $(a] \cap(x]=(a] \cap\left(\left(y_{1}\right] \vee \ldots \vee\left(y_{m}\right]\right)=(0]$. Hence $(a] \cap((b] \vee(c])=$ $(a] \cap\left(\left(x_{1}\right] \cup \ldots \cup\left(x_{n}\right]\right)=\left((a] \cap\left(x_{1}\right]\right) \cup \ldots \cup\left((a] \cap\left(x_{n}\right]\right)=(0]$. Thus S is 0 -distributive [see Theorem 2.7, 2].
$1 \Rightarrow$ 11: Suppose 1 holds. Then for all $A, B, C \in I(S)$ we have $(A \cap(B \vee C))^{*}=$ $(A \cap B)^{*} \cap(A \cap C)^{*}$ [see Theorem 2.5, 7]. Hence 11 follows.
$1 \Rightarrow 12$: Suppose 1 holds. Then for all $A, B, C \in I(S)$ we have $((A \vee B) \cap(A \vee$ $C))^{*}=A^{*} \cap(B \cap C)^{*}$ [see Theorem 2.5,9]. Hence 12 follows.
$12 \Rightarrow 13$: Follows by taking $c=b$ in 12 .
$13 \Rightarrow 1$: Suppose 13 holds. Let $a, b, c \in S$ be such that $(a] \cap(b]=(0]=(a] \cap(c]$. Then $a \in(b]^{*} \cap(c]^{*}=((b] \vee(c])^{*}$ by 13. Hence $(a] \cap((b] \vee(c])=(0]$. Thus S is 0 -distributive [see Theorem 2.7, 2].
$11 \Rightarrow 1$: Suppose 11 holds. Let $a, b, c \in S$ be such that $(a] \cap(b]=(0]=(a] \cap(c]$. Then $((a] \cap(b])^{*} \cap((a] \cap(c])^{*}=S$. Hence By $11,((a] \cap((b] \vee(c]))^{*}=S$. It follows that $(a] \cap((b] \vee(c])=(0]$. Thus S is 0-distributive [see Theorem 2.7, 2].

Theorem 2.9. Any one of the conditions 3 to 12 of Theorem 2.7 is sufficient for a semilattice S with 0 (not necessarily finite) to be 0-distributive. These conditions are also necessary in the case of a lattice.

Proof. Suppose 3 of Theorem 2.7 holds and let M be any maximal filter of S. By Lemma 1.8, $S-M$ is a minimal prime semiideal. Let $x_{1}, \ldots, x_{n} \in S-M$ and suppose $x_{1} \vee \ldots \vee x_{n}$ exists. By $3, M$ is prime and clearly $\left[x_{i}\right) \nsubseteq M$ for $i=$ $1, \ldots, n$. Hence by Lemma $1.2,\left[x_{1} \vee \ldots \vee x_{n}\right)=\left[x_{1}\right) \cap \ldots \cap\left[x_{n}\right) \nsubseteq M$. Consequently $x_{1} \vee \ldots \vee x_{n} \in S-M$ and so $S-M$ is an ideal. It follows that S is 0 -distributive [see Theorem 2.3, 4].

The sufficiency of the condition 4 of Theorem 2.7 follows by Lemma 1.14 and Theorem 2.3 [see Theorem 2.3, 9]. The sufficiency of the conditions 5 to 12 of Theorem 2.7 follows by Lemma 1.14 and Theorem 2.4 [see Theorem 2.4, 3, 5, 6, 7, $9,11,12,13]$.

Theorem 2.10. Any one of the conditions 2 to 10 of Theorem 2.8 is sufficient for a semilattice S with 0 (not necessarily finite) to be 0 -distributive. These conditions are also necessary in the case of a lattice.

Proof. Obviously $2 \Rightarrow 3 \Rightarrow 4$ and $5 \Rightarrow 6 \Rightarrow 8$.
$4 \Rightarrow 10$: Follows by taking $c=b$ in 4 .
$10 \Rightarrow 9$: Same proof as in Theorem 2.8.
Suppose 9 holds. Let $a \in S$ and let $a_{1}, \ldots, a_{n} \in(a)^{*}$ be such that $a_{1} \vee \ldots \vee a_{n}$ exists. Then $a \wedge a_{1}=\ldots=a \wedge a_{n}=0$ and so $a \in\left[a_{1}\right)^{0} \cap \ldots \cap\left[a_{n}\right)^{0}=\left(\left[a_{1}\right) \cap \ldots \cap\left[a_{n}\right)\right)^{0}$ by 9 . That is $a \in\left[a_{1} \vee \ldots \vee a_{n}\right)^{0}$. It follows that $a \wedge\left(a_{1} \vee \ldots \vee a_{n}\right)=0$. Hence $a_{1} \vee \ldots \vee a_{n} \in$ $(a)^{*}$. Thus $(a)^{*}$ is an ideal and so S is 0 -distributive [see Theorem 2.5, 4].
$8 \Rightarrow 7$: Suppose 8 holds and let $a, a_{1}, \ldots, a_{n} \in S$ be such that $\left[a_{1}\right) \cap \ldots \cap\left[a_{n}\right) \neq \emptyset$. Then $\left([a) \vee\left(\left[a_{1}\right) \cap\left[a_{2}\right)\right)\right)^{0}=\left([a) \vee\left(\left[a_{1}\right)\right)^{0} \cap\left([a) \vee\left[a_{2}\right)\right)^{0}\right.$. Assume $\left([a) \vee\left(\left[a_{1}\right) \cap\right.\right.$ $\left.\left.\ldots \cap\left(a_{k-1}\right)\right)\right)^{0}=\left([a) \vee\left[a_{1}\right)\right)^{0} \cap \ldots \cap\left([a) \vee\left[a_{k-1}\right)\right)^{0}$ for $2<k \leqslant n$. Let $x \in$ $\left([a) \vee\left[a_{1}\right)\right)^{0} \cap \ldots \cap\left([a) \vee\left[a_{k}\right)\right)^{0}$. Then $x \in\left([a) \vee\left[a_{1}\right)\right)^{0} \cap \ldots \cap\left([a) \vee\left[a_{k-1}\right)\right)^{0}=$ $\left([a) \vee\left(\left[a_{1}\right) \cap \ldots \cap\left[a_{k-1}\right)\right)\right)^{0}$ by our induction hypothesis and $x \in\left([a) \vee\left[a_{k}\right)\right)^{0}$. Hence $x \wedge y=a$ for some $y \in[a) \vee\left(\left[a_{1}\right) \cap \ldots \cap\left[a_{k-1}\right)\right)$ and $x \wedge z=0$ for some $z \in[a) \vee\left[a_{k}\right)$. Thus $x \wedge a \wedge t=0$ for some $t \in\left[a_{1}\right) \cap \ldots \cap\left[a_{k-1}\right)$ and $x \wedge a \wedge a_{k}=0$ so that $x \in[a \wedge t)^{0} \cap\left[a \wedge a_{k}\right)^{0}=([a) \vee[t))^{0} \cap\left([a) \vee\left[a_{k}\right)\right)^{0}=\left([a) \vee\left([t) \cap\left[a_{k}\right)\right)\right)^{0}$ by 8. Consequently $x \wedge a \wedge u=0$ for some $u \in[t) \cap\left[a_{k}\right) \subseteq\left[a_{1}\right) \cap \ldots \cap\left[a_{k}\right)$ and so $x \in\left([a) \vee\left(\left[a_{1}\right) \cap \ldots \cap\left[a_{k}\right)\right)\right)^{0}$. Thus $\left([a) \vee\left[a_{1}\right)\right)^{0} \cap \ldots \cap\left([a) \vee\left[a_{k}\right)\right)^{0} \subseteq$ $\left([a) \vee\left(\left[a_{1}\right) \cap \ldots \cap\left[a_{k}\right)\right)\right)^{0}$. The reverse inclusion is obvious. By induction it follows that $\left([a) \vee\left[a_{1}\right)\right)^{0} \cap \ldots \cap\left([a) \vee\left[a_{n}\right)\right)^{0}=\left([a) \vee\left(\left[a_{1}\right) \cap \ldots \cap\left[a_{n}\right)\right)\right)^{0}$.
Suppose 7 holds. Let $a \in S$ and let $a_{1}, \ldots, a_{n} \in(a)^{*}$ be such that $a_{1} \vee \ldots \vee a_{n}$ exsits. Then $a \wedge a_{1}=\ldots=a \wedge a_{n}=0$ and so $a \in\left[a_{1}\right)^{0} \cap \ldots \cap\left[a_{n}\right)^{0}$. Replacing a by $a_{1} \vee \ldots \vee a_{n}$ in 7 , we have $\left(\left[a_{1}\right) \cap \ldots \cap\left(a_{n}\right)\right)^{0}=\left(a_{1}\right)^{0} \cap \ldots \cap\left[a_{n}\right)^{0}$. Thus $a \in\left(\left[a_{1}\right) \cap \ldots \cap\left[a_{n}\right)\right)^{0}=\left[a_{1} \vee \ldots \vee a_{n}\right)^{0}$. Hence $a \wedge\left(a_{1} \vee \ldots \vee a_{n}\right)=0$ and consequently $a_{1} \vee \ldots \vee a_{n} \in(a)^{*}$. Thus $(a)^{*}$ is an ideal. It follows that S is 0 distributive [see Theorem 2.5, 4].

Remark 2.11. The conditions 3 to 12 of Theorem 2.7 are not necessary for an infinite semilattice to be 0-distributive. These conditions are both necessary and sufficient in the case of a lattice.

Clearly each of the conditions 3 to 12 implies the condition 4. Hence it is enough to prove that 4 is not necessary.

Let C be an infinite chain without the least element and $S=C \cup\{0, a, b, d\}$. Define an ordering on S as follows: $0<a, b, d ; a\|b ; a\| d ; b \| d$ and $a, b, d<c$ for all $c \in C$. Clearly S is a 0 -distributive semilattice with respect to this ordering. But no prime filter of S contains the nonzero element a. Thus 4 is not necessary.

Remark 2.12. The conditions 2 to 10 of Theorem 2.8 are not necessary for an infinite semilattice to be 0-distributive. These conditions are both necessary and sufficient in the case of a lattice.

Clearly $2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 10,5 \Rightarrow 6 \Rightarrow 8,7 \Rightarrow 8$, and $9 \Rightarrow 10$. Hence it is enough to prove that 8 and 10 are not necessary.

Let C be an infinite chain without the least element and $S=C \cup\{0, a, b, d, e\}$. Define an ordering on S as follows: $0<a, b, d, e ; a<e ; a\|b ; a\| d ; b\|d ; b\| e ; d \| e$; $a, b, d,<c$ for all $c \in C ; e \| c$ for all $c \in C$. It is easily seen that S is a 0 -distributive semilattice with respect to this ordering. Now $[e) \vee[b]=S=[e) \vee[d)$, so that $([e) \vee[b))^{0} \cap([e) \vee[d))^{0}=S$. Also $[e) \vee([b) \cap[d))=[a)$ and hence $([e) \vee([b) \cap[d)))^{0}=$ $\{0, b, d\}$. Thus $([e) \vee([b) \cap[d)))^{0} \neq([e) \vee[b))^{0} \cap([e) \vee[d))^{0}$, proving 8 is not necessary.

Consider the 0 -distributive semilattice S from Remark 2.11. Now $([a) \cap[b))^{0}=\{0\}$ and $[a)^{0} \cap[b)^{0}=\{0, d\}$. Thus $([a) \cap[b))^{0} \neq[a)^{0} \cap[b)^{0}$, proving 10 is not necessary.

Remark 2.13. The condition 2 of Theorem 2.7 and the conditions 11, 12, 13 of Theorem 2.8 are necessary for a semilattice (not necessarily finite) to be 0 distributive.

Proof. The necessity of the condition 2 of Theorem 2.7 is obvious. The necessity of the conditions $11,12,13$ of Theorem 2.8 follows by Theorem 2.5 [see Theorem 2.5, 10, 8, 11].

Remark 2.14. The condition 2 of Theorem 2.7 and the conditions 11, 12, 13 of Theorem 2.8 are not sufficient for an infinite semilattice with 0 to be 0 -distributive.

Clearly the condition 12 of Theorem 2.8 implies the condition 13 of Theorem 2.8 and the condition 13 of Theorem 2.8 implies the condition 2 of Theorem 2.7. Hence it is enough to show that the conditions 11 and 12 of Theorem 2.8 are not sufficient.

Let C_{1}, C_{2}, C_{3} be infinite chains without greatest and least elements and let $S=C_{1} \cup C_{2} \cup C_{3} \cup\{0, a, b, c, d, e, f, g, 1\}$. Define an ordering on S as follows. $0<a$, $b, c, d ; a<e ; b<f ; c<g ; d<e ; d<f ; d<g ; e<c_{1}<1$ for all $c_{1} \in C_{1}$; $e<c_{2}<1$ for all $c_{2} \in C_{2} ; f<c_{1}$ for all $c_{1} \in C_{1} ; f<c_{3}<1$ for all $c_{3} \in C_{3}$; $g<c_{2}$ for all $c_{2} \in C_{2} ; g<c_{3}$ for all $c_{3} \in C_{3} ; a\|b ; a\| c ; a\|d ; a\| f ; a\|g ; a\| c_{3}$ for all $c_{3} \in C_{3} ; b\|c ; b\| d ; b\|e ; b\| g ; b \| c_{2}$ for all $c_{2} \in C_{2} ; c\|d ; c\| e ; c\|f ; c\| c_{1}$ for all $c_{1} \in C_{1}$; $c_{1} \| c_{2}$ for all $c_{1} \in C_{1}$ and $c_{2} \in C_{2} ; c_{1} \| c_{3}$ for all $c_{1} \in C_{1}$ and $c_{3} \in C_{3} ; c_{2} \| c_{3}$ for all $c_{2} \in C_{2}$ and $c_{3} \in C_{3}$. Clearly S is a semilattice with respect to this ordering.

Also for all $x, y, z \in S$, we have $((x] \cap((y] \vee(z]))^{*}=((x] \cap(y])^{*} \cap((x] \cap(z])^{*}$ and $((x] \vee(y]) \cap((x] \vee(z])^{*}=(x]^{*} \cap((y] \cap(z])^{*}$. Now $(d] \cap(a]=(0]=(d] \cap B$ where $B=(b] \vee(c]$. But $(d] \cap((a] \vee B) \neq(0]$. Thus S is not 0 -distributive.
I would like to thank Prof. P.V. Venkatanarasimhan for his valuable suggestions in the preparation of this paper. I also thank the referee whose valuable comments helped in shaping the paper into its present form.

References

[1] P. Balasubramani, P. V. Venkatanarasimhan: Characterizations of the 0-distributive lattice. J. Pure Appl. Math. 32 (2001), 315-324.
[2] G. Grätzer: Lattice Theory First Concepts and Distributive Lattices. W. H. Freeman, San Francisco, 1971.
[3] C. Jayaram: Prime α-ideals in a 0-distributive lattice. J. Pure Appl. Math. 17 (1986), 331-337.
[4] Y. S. Pawar, N. K. Thakare: 0-distributive semilattices. Canad. Math. Bull. 21 (1978), 469-475.
[5] Y.S. Pawar, N. K. Thakare: Minimal prime ideals in 0-distributive lattices. Period. Math. Hungar. 13 (1982), 237-246.
[6] G. Szasz: Introduction to Lattice Theory. Academic Press, New York, 1963.
[7] J. Varlet: A generalization of the notion of pseudocomplementedness. Bull. Soc. Roy. Sci. Liege 37 (1968), 149-158.
[8] J. Varlet: Distributive semilattices and Boolean lattices. Bull. Soc. Roy. Liege 41 (1972), 5-10.
[9] P. V. Venkatanarasimhan: Pseudocomplements in posets. Proc. Amer. Math. Soc. 28 (1971), 9-17.
[10] P. V. Venkatanarasimhan: Semiideals in semilattices. Col. Math. 30 (1974), 203-212.
Author's address: P. Balasubramani, Department of Mathematics, Kongu Engineering College, Perundurai, Erode-638 052, India, e-mail: pbalu_20032001@yahoo.co.in.

