HAMILTONIAN COLORINGS OF GRAPHS WITH LONG CYCLES

LADISLAV NEBESKÝ, Praha

(Received April 11, 2002)

Abstract. By a hamiltonian coloring of a connected graph G of order $n \ge 1$ we mean a mapping c of V(G) into the set of all positive integers such that $|c(x) - c(y)| \ge n - 1 - D_G(x, y)$ (where $D_G(x, y)$ denotes the length of a longest x - y path in G) for all distinct $x, y \in G$. In this paper we study hamiltonian colorings of non-hamiltonian connected graphs with long cycles, mainly of connected graphs of order $n \ge 5$ with circumference n - 2.

Keywords: connected graphs, hamiltonian colorings, circumference

 $MSC \ 2000: \ 05C15, \ 05C38, \ 05C45, \ 05C78$

The letters f-n (possibly with indices) will be reserved for denoting non-negative integers. The set of all positive integers will be denoted by \mathbb{N} . By a graph we mean a finite undirected graph with no loop or multiple edge, i.e. a graph in the sense of [1], for example.

0. Let G be a connected graph of order $n \ge 1$. If $u, v \in V(G)$, then we denote by $D_G(u, v)$ the length of a longest u - v path in G. If $x, y \in G$, then we denote

$$D'_G(x,y) = n - 1 - D_G(x,y).$$

We say that a mapping c of V(G) into N is a hamiltonian coloring of G if

$$|c(x) - c(y)| \ge D'_G(x, y)$$

for all distinct $x, y \in V(G)$. If c is a hamiltonian coloring of G, then we denote

$$hc(c) = \max\{c(w); w \in V(G)\}.$$

Research supported by Grant Agency of the Czech Republic, grant No. 401/01/0218.

The hamiltonian chromatic number hc(G) of G is defined by

 $hc(G) = min\{hc(c); c \text{ is a hamiltonian coloring of } G\}.$

Fig. 1 shows four connected graphs of order six, each of them with a hamiltonian coloring.

The notions of a hamiltonian coloring and the hamiltonian chromatic number of a connected graph were introduced by G. Chartrand, L. Nebeský and P. Zhang in [2]. These concepts have a transparent motivation: a connected graph G is hamiltonian-connected if and only if hc(G) = 1.

The following useful result on the hamiltonian chromatic number was proved in [2]; its proof is easy.

Proposition 1. Let G_1 and G_2 be connected graphs. If G_1 is spanned by G_2 , then $hc(G_1) \leq hc(G_2)$.

It was proved in [2] that

$$\operatorname{hc}(G) \leqslant (n-2)^2 + 1$$

for every connected graph G of order $n \ge 2$ and that $hc(S) = (n-2)^2 + 1$ for every star S of order $n \ge 2$. These results were extended in [3]: there exists no connected graph of order $n \ge 5$ with $hc(G) = (n-2)^2$, and if T is a tree of order $n \ge 5$ obtained from a star of order n-1 by inserting a new vertex into an edge, then $hc(T) = (n-2)^2 - 1$.

The following definition will be used in the next sections. Let G be a connected graph containing a cycle; by the circumference of G we mean the length of a longest cycle in G; similarly as in [2] and [3], the circumference of G will be denoted by $\operatorname{cir}(G)$. If G is a tree, then we put $\operatorname{cir}(G) = 0$.

1. It was proved in [2] that if G is a cycle of order $n \ge 3$, then hc(G) = n - 2. Proposition 1 implies that if G is a hamiltonian graph of order $n \ge 3$, then $hc(G) \le n - 2$.

As was proved in [2], if G is a connected graph of order $n \ge 4$ such that $\operatorname{cir}(G) = n-1$ and G contains a vertex of degree 1, then $\operatorname{hc}(G) = n-1$. Thus, by Proposition 1, if G is a connected graph of order $n \ge 4$ such that $\operatorname{cir}(G) = n-1$, then $\operatorname{hc}(G) \le n-1$.

Consider arbitrary j and n such that $j \ge 0$ and $n-j \ge 3$. We denote by $hc_{max}(n, j)$ the maximum integer $i \ge 1$ with the property that there exists a connected graph G of order n such that cir(G) = n - j and hc(G) = i.

As follows from the results of [2] mentioned above,

 $hc_{max}(n,0) = n-2$ for every $n \ge 3$

and

$$hc_{max}(n,1) = n-1$$
 for every $n \ge 4$.

Using Proposition 1, it is not difficult to show that $hc_{max}(5,2) = 6$. Combining Proposition 1 with Fig. 1 we easily get $hc_{max}(6,2) \leq 10$. In this section, we will find an upper bound of $hc_{max}(n,2)$ for $n \geq 7$.

Let $n \ge 7$, let $0 \le i \le \lfloor \frac{1}{2}(n-2) \rfloor$, and let V be a set of n elements, say elements $u_0, u_1, \ldots, u_{n-4}, u_{n-3}, v, w$. We denote by F(n, i) the graph defined as follows: V(F(n, i)) = V and

$$E(F(n,i)) = \{u_0u_1, u_1u_2, \dots, u_{n-4}u_{n-3}, u_{n-3}u_0\} \cup \{u_0v, u_iw\}.$$

Lemma 1. Let $n \ge 7$. Then there exists a hamiltonian coloring c_i of F(n, i) with

$$hc(c_i) = 3n - \lfloor \frac{1}{3}(n-2) \rfloor - 6 - i$$

for each $i, \ 0 \leq i \leq \lfloor \frac{1}{3}(n-2) \rfloor$.

Proof. Put $j = \lfloor \frac{1}{3}(n-2) \rfloor$. Let $0 \leq i \leq j$. Consider a mapping c_i of V(F(n,i)) into \mathbb{N} defined as follows:

$$c_i(u_0) = n - 1, \ c_i(u_1) = n - 3, \ \dots, \ c_i(u_{j-1}) = n - 2(j-1) - 1,$$

$$c_i(u_j) = n - 2j - 1, \ c_i(u_{j+1}) = 3n - 2j - 7, \ c_i(u_{j+2}) = 3n - 2j - 9, \ \dots,$$

$$c_i(u_{n-4}) = n + 3, \ c_i(u_{n-3}) = n + 1, \ c_i(v) = 1 \ \text{and} \ c_i(w) = 3n - j - 6 - i.$$

(A diagram of F(21, 0) with c_0 can be found in Fig. 2.)

Consider arbitrary distinct vertices r and s of F(n, i) such that $c_i(r) \ge c_i(s)$. Put $D'_i(r, s) = D'_{F(n,i)}(r, s)$. Obviously, $c_i(r) > c_i(s)$. If $(r, s) = (w, u_{j+1})$ or (u_{n-3}, u_0) or (u_{f+1}, u_f) , where $0 \le f \le n-4$, then $c_i(r) - c_i(s) = D'_i(r, s)$. If $(r, s) = (u_j, v)$, then $D'_i(r, s) + 2 \ge c_i(r) - c_i(s) \ge D'_i(r, s)$. Otherwise, $c_i(r) - c_i(s) > D'_i(r, s)$. Thus c_i is a hamiltonian coloring of F(n, i). We see that $hc(c_i) = c_i(w)$.

Let $n \ge 7$. We define $F'(n) = F(n,0) - u_0 w + v w$.

0	C	5
4	υ	J

Corollary 1. Let $n \ge 7$. Then there exists a hamiltonian coloring c'_0 of F'(n) with $\operatorname{hc}(c'_0) = 3n - \lfloor \frac{1}{3}(n-2) \rfloor - 7$.

Proof. Put $c'_0 = c_1$, where c_1 is defined in the proof of Lemma 1. It is clear that c'_0 is a hamiltonian coloring of F'(n). Applying Lemma 1, we get the desired result.

Lemma 2. Let $n \ge 7$. Then there exists a hamiltonian coloring c_i^+ of F(n,i) with

$$\operatorname{hc}(c_i^+) = 2n - 4 + 2\lfloor \frac{1}{2}(n-2) \rfloor - i$$

for each $i, \lfloor \frac{1}{3}(n-2) \rfloor + 1 \leq i \leq \lfloor \frac{1}{2}(n-2) \rfloor$.

Proof. Put $j = \lfloor \frac{1}{2}(n-2) \rfloor$ and $k = \lfloor \frac{1}{2}(n-2) \rfloor$. Let $j+1 \leq i \leq k$. Consider a mapping c_i^+ of V(F(n,i)) into \mathbb{N} defined as follows:

$$c_i^+(u_0) = 3k+1, \ c_i^+(u_1) = 3k-1, \ \dots, \ c_i^+(u_{k-1}) = k+3, \ c_i^+(u_k) = k+1,$$

$$c_i^+(u_{k+1}) = 2(n-3)+k+1, \ c_i^+(u_{k+2}) = 2(n-3)+k-1, \ \dots,$$

$$c_i^+(u_{n-4}) = 3k+5, \ c_i^+(u_{n-3}) = 3k+3, \ c_i^+(v) = 1 \text{ and } c_i^+(w) = 2n-4+2k-i.$$

(A diagram of F(21,7) with c_7^+ can be found in Fig. 3.)

Put $D'_i = D'_{F(n,i)}$. We see that $c_i^+(u_k) - c_i^+(v) = D'_i(u_k, v)$ and $c_i^+(w) - c_i^+(u_{k+1}) = D'_i(w, u_{k+1})$. It is easy to show that c_i^+ is a hamiltonian coloring of F(n, i). We have $\operatorname{hc}(c_i^+) = c_i^+(w)$.

Theorem 1. Let $n \ge 7$. Then

$$\operatorname{hc}_{\max}(n,2) \leq 3n - \lfloor \frac{1}{3}(n-2) \rfloor - 6.$$

Proof. Consider an arbitrary connected graph G of order n with cir(G) = n-2. Obviously, G is spanned by a connected graph F such that cir(F) = n-2 and F

has exactly one cycle. By Proposition 1, $hc(G) \leq hc(F)$. Thus we need to show that $hc(F) \leq 3n - \lfloor \frac{1}{3}(n-2) \rfloor - 6$.

If F is isomorphic to F'(n), then the result follows from Corollary 1. Let F be not isomorphic to F'(n). Then there exists $i, 0 \leq i \leq \lfloor \frac{1}{2}(n-2) \rfloor$, such that F is isomorphic to F(n,i). If $0 \leq i \leq \lfloor \frac{1}{3}(n-2) \rfloor$, then the result follows from Lemma 1. Let $\lfloor \frac{1}{3}(n-2) \rfloor \leq i \leq \lfloor \frac{1}{2}(n-2) \rfloor$. By Lemma 2, $\operatorname{hc}(F) \leq 2n-4+2\lfloor \frac{1}{2}(n-2) \rfloor - i \leq 2n-4+2\lfloor \frac{1}{2}(n-2) \rfloor - \lfloor \frac{1}{3}(n-2) \rfloor - 1 \leq 3n - \lfloor \frac{1}{3}(n-2) \rfloor - 7$, which completes the proof.

Corollary 2. Let $n \ge 7$. Then

$$hc_{max}(n,2) \leq \frac{1}{3}(8n-14).$$

2. Consider arbitrary j and n such that $j \ge 0$ and $n - j \ge 3$. We denote by $\operatorname{hc}_{\min}(n, j)$ the minimum integer $i \ge 1$ with the property that there exists a connected graph G of order n such that $\operatorname{cir}(G) = n - j$ and $\operatorname{hc}(G) = i$. Since every hamiltonian-connected graph of order ≥ 3 is hamiltonian, we get $\operatorname{hc}_{\min}(n, 0) = 1$ for every $n \ge 3$. In this section we will find an upper bound of $\operatorname{hc}_{\min}(n, j)$ for $j \ge 1$ and $n \ge j(j+3)+1$.

We start with two auxiliary definitions. If U is a set, then we denote

$$E_{\rm com}(U) = \{A \subseteq U; |A| = 2\}.$$

If W_1 and W_2 are disjoint sets, then we denote

$$E_{\text{combi}}(W_1, W_2) = \{ A \in E_{\text{com}}(W_1 \cup W_2); |A \cap W_1| = 1 = |A \cap W_2| \}.$$

Lemma 3. Consider arbitrary j, k and n such that $j \ge 1, k \ge j + 1$, and

$$k + j(k+1) \leq n \leq k + (k-1)^2 + 2j.$$

Then there exists a k-connected graph G of order n such that $\operatorname{cir}(G) = n - j$ and $\operatorname{hc}(G) \leq 2j(k-1) + 1$.

Proof. Clearly, there exist f_1, \ldots, f_{k-1} such that

$$j \leq f_q \leq k-1$$
 for all $g, 0 \leq g \leq k-1$

and

$$f_1 + \ldots + f_{k-1} = n - 2j - k$$

Consider pairwise disjoint finite sets U, W_1, \ldots, W_k and W_{k+1} such that |U| = k,

$$|W_g| = f_g$$
 for each $g, 0 \leq g \leq k-1$

and $|W_k| = |W_{k+1}| = j$. We denote by G the graph with

$$V(G) = U \cup W_1 \cup \dots W_k \cup W_{k+1}$$

and

$$E(G) = E_{\text{com}}(V_1) \cup \ldots \cup E_{\text{com}}(V_{k+1}) \cup E_{\text{combi}}(U, V_1 \cup \ldots \cup V_{k+1}).$$

It is easy to see that G is a k-connected graph of order n and cir(G) = n - j. Put $D'(x, y) = D'_G(x, y)$ for $x, y \in U$. It is clear that

$$D'(u, u^*) = 2j$$

for all distinct $u, u^* \in U$,

$$D'(u,w)=j$$

for all $u \in U$ and $w \in W_1 \cup \ldots \cup W_{k+1}$,

$$D'(w,w^*) = 0$$

for all w and w^* such that there exist distinct $g, g^* \in \{1, \dots, k+1\}$ such that $w \in W_g$ and $w^* \in W_{g^*}$, and

$$D'(w, w^*) = j$$

for all distinct w and w^* such that there exists $h \in \{1, \ldots, k+1\}$ such that $w, w^* \in W_h$.

Put $f_k = f_{k+1} = j$. Consider a mapping c of V(G) into \mathbb{N} with the properties that

$$c(U) = \{1, 2j + 1, 4j + 1, \dots, 2j(k-1) + 1\}$$

and

$$c(W_g) = \{j+1, 3j+1, \dots, 2j(f_g-1)+j+1\}$$

for each $g, 1 \leq g \leq k+1$. It is easy to see that c is a hamiltonian coloring of G. Hence $hc(G) \leq hc(c) = 2j(k-1) + 1$.

Theorem 2. Let n and j be integers such that $j \ge 1$ and $n \ge j(j+3) + 1$, and let k be the smallest integer such that

$$k \ge j+1$$
 and $(k-1)^2 + k \ge n-2j$.

Then

$$hc_{\min}(n,j) \leq 2j(k-1) + 1.$$

Proof. The theorem immediately follows from Lemma 3.

Corollary 3. Let $n \ge 5$ and let k be the smallest integer such that

$$k \ge 2$$
 and $n \le (k-1)^2 + k + 2$

Then

$$\operatorname{hc}_{\min}(n,1) \leqslant 2k - 1.$$

Corollary 4. Let $n \ge 11$ and let k be the smallest integer such that

$$k \ge 3$$
 and $n \le (k-1)^2 + k + 4$.

Then

$$hc_{min}(n,2) \leq 4k-3$$

3. As follows from results obtained in [2], if (a) $n \ge 3$, then for every $k \in \{1, 2, ..., n-1\}$ there exists a connected graph G of order $n \ge 4$ such that hc(G) = k, and if (b) G is a graph of order n such that $hc(G) \ge n$, then $cir(G) \ne n, n-1$.

For n = 4 or 5, it is easy to find a connected graph of order n with hc(G) = n: $hc(P_4) = 4$ and $hc(2K_2 + K_1) = 5$. On the other hand, there exists no connected graph of order 6 with hc(G) = 6. We can state the following question: Given $n \ge 7$,

n	c	n
4	υ	Э

does there exist a connected graph G of order n with hc(G) = n? Answering this question for $n \ge 8$ is the subject of the present section.

Let $1 \leq j \leq i$. Consider mutually distinct elements r, s, u, v, w and finite sets X and Y such that |X| = i, |Y| = j and the sets X, Y and $\{r, s, u, v, w\}$ are pairwise disjoint. We define a graph G(i, j) as follows:

$$V(G(i,j)) = X \cup Y \cup \{r, s, u, v, w\} \text{ and } E(G(i,j))$$
$$= \{uv\} \cup E_{\text{com}}(X) \cup E_{\text{com}}(Y) \cup E_{\text{combi}}(\{u, w\}, X \cup \{r\})$$
$$\cup E_{\text{combi}}(\{v, w\}, Y \cup \{s\}).$$

Obviously, $\operatorname{cir}(G(i,j))=i+j+3=|V(G(i,j)|-2$.

Proposition 2. Let $1 \leq j \leq i$. Put $D'(t_1, t_2) = D'_{G(i,j)}(t_1, t_2)$ for all $t_1, t_2 \in V(G(i, j))$. Then

(1)
$$D'(x,y) = 0$$
 for all $x \in X$ and all $y \in Y$,

(2)
$$D'(x,s) = 0, D'(x,r) = D'(x,v) = 1$$
 and $D'(x,u) = D'(x,w) = 2$
for all $x \in X$,

(3)
$$D'(y,r) = 0, D'(y,s) = D'(y,u) = 1$$
 and $D'(y,v) = D'(y,w) = 2$
for all $y \in Y$,

(4)
$$D'(x_1, x_2) = 2$$
 for all distinct $x_1, x_2 \in X$,

(5)
$$D'(y_1, y_2) = 2$$
 for all distinct $y_1, y_2 \in Y$,

$$(6) D'(r,s) = 0,$$

(7)
$$D'(r,v) = D'(s,u) = 1,$$

$$(8) D'(u,v) = 2,$$

(9)
$$D'(s,v) = D'(s,w) = j+1,$$

(10)
$$D'(v,w) = j+2,$$

(11)
$$D'(r, u) = D'(r, w) = \min(i + 1, j + 2),$$

and

(12)
$$D'(u,w) = \min(i+2,j+3).$$

Proof is easy.

Lemma 4. Let $1 \leq j \leq i$. Then $hc(G(i, j)) \geq i + j + 5$.

Proof. Suppose, to the contrary, that there exists a hamiltonian coloring c of G(i, j) such that $hc(c) \leq i + j + 4$. Thus $hc(c) \leq 2i + 4$. We may assume that there exists $t \in V(G(i, j))$ such that c(t) = 1.

Put $X^+ = X \cup \{u, w\}$. By virtue of (2), (4) and (12),

(13)
$$|c(x_1^+) - c(x_2^+)| \ge 2$$
 for all distinct $x_1^+, x_2^+ \in X^+$.

By virtue of (2), (7) and (12),

(14)
$$c(r) \neq c(x^+) \neq c(v) \text{ for all } x^+ \in X^+,$$

(15)
$$c(r) \neq c(v), \ c(s) \neq c(u)$$

and

$$|c(u) - c(v)| \ge 2.$$

Obviously, $|X^+| = i + 2$. As follows from (13),

(16)
$$\max c(X^+) \ge 2i + 2 + \min c(X^+).$$

Thus $hc(c) \ge 2i + 3$. Since $hc(c) \le i + j + 4$, we get

$$(17) i-1 \leqslant j \leqslant i.$$

If $\{c(r), c(v)\} = \{1, 2\}$, then (14) implies that $\max c(X^+) \ge 2i + 5$; a contradiction. If $\{c(r), c(v)\} = \{\operatorname{hc}(c), \operatorname{hc}(c) - 1\}$, then $\max c(X^+) \le 2i + 2$; a contradiction. Thus

(18)
$$\{1,2\} \neq \{c(r),c(v)\} \neq \{\operatorname{hc}(c),\operatorname{hc}(c)-1\}.$$

Moreover, if

$$c(u) = \min c(X^+)$$
 and $c(v) = c(u) + 2$

or

$$c(u) = \max c(X^+)$$
 and $c(v) = c(u) - 2$

then $\max c(X^+) \ge 2i + 3 + \min c(X^+)$.

Combining (11) and (12) with (17), we have

(19)
$$|c(r) - c(u)| \ge i + 1, |c(r) - c(w)| \ge i + 1 \text{ and } |c(u) - c(w)| \ge i + 2.$$

We denote by c' a mapping of V(G(i, j)) into \mathbb{N} defined as follows:

$$c'(t) = \operatorname{hc}(c) + 1 - c(t) \text{ for each } t \in V(G(i, j)).$$

We see that c' is a hamiltonian coloring of G(i, j) and that hc(c') = hc(c). Obviously, $c(u) \leq c(v)$ or $c'(u) \leq c'(v)$. Without loss of generality we assume that $c(u) \leq c(v)$. Thus

$$c(v) \ge c(u) + 2$$

and if c(u) = 1 and hc(c) = 2i + 3, then $c(v) \ge 4$.

We distinguish two cases.

Case 1. Assume that j = i - 1. Then hc(c) = 2i + 3. By virtue of (9) and (10),

$$|c(s) - c(v)| \ge i, |c(s) - c(w)| \ge i \text{ and } |c(v) - c(w)| \ge i + 1.$$

If c(r) < c(u) < c(w) or c(r) < c(w) < c(u) or c(u) < c(w) < c(r) or c(w) < c(u) < c(u) < c(u) < c(r), then (19) implies that $hc(c) \ge 2i + 4$, which is a contradiction.

Let c(w) < c(r) < c(u). As follows from (19), c(u) = 2i + 3 and therefore $c(v) \ge 2i + 5$; a contradiction.

Finally, let c(u) < c(r) < c(w). Thus c(w) = 2i + 3 and therefore c(u) = 1 and c(r) = i + 2. Since c(u) = 1 and hc(c) = 2i + 3, we get $c(v) \ge 4$. If c(v) < c(s), then $c(s) \ge i + 4$ and therefore $|c(s) - c(w)| \le i - 1$; a contradiction. Let c(s) < c(v). Since $c(s) \ne c(u)$, we have $c(s) \ge 2$. This implies that $c(v) \ge i + 2$. Since c(w) = 2i + 3, we get c(v) = i + 2. Thus c(v) = c(r), which contradicts (15).

Case 2. Assume that i = j. Recall that $hc(c) \leq 2i + 4$. By virtue of (9) and (10),

$$|c(s) - c(v)| \ge i + 1, |c(s) - c(w)| \ge i + 1$$
 and $|c(v) - c(w)| \ge i + 2.$

If c(r) < c(w) < c(u) or c(w) < c(r) < c(u), then (19) implies that $c(u) \ge 2i + 3$ and therefore $c(v) \ge 2i + 5$, which is a contradiction.

Let c(r) < c(u) < c(w). Then c(w) = 2i+4 and therefore c(r) = 1 and c(u) = i+2. This implies that $c(v) \ge i+4$ and therefore $|c(v) - c(w)| \le i$; a contradiction.

Let c(u) < c(w) < c(r). Then c(u) = 1, c(w) = i + 3 and c(r) = 2i + 4. Since $3 \leq c(v) \neq c(r)$, we get $|c(v) - c(w)| \leq i$; a contradiction.

Let c(w) < c(u) < c(r). Then c(w) = 1, c(u) = i + 3 and c(r) = 2i + 4. Assume that c(s) < c(v); since c(w) = 1, we get $c(s) \ge i + 2$ and therefore $c(v) \ge 2i + 3$; since c(r) = 2i + 4 and $c(v) \ne c(r)$, we get c(v) = 2i + 3, which contradicts (18). Assume that c(v) < c(s); since c(u) = i + 3, we get $c(v) \ge i + 5$ and therefore $c(s) \ge 2i + 6$; a contradiction.

Finally, let c(u) < c(r) < c(w). Then $c(w) \ge 2i + 3$. If c(v) < c(s), then $c(v) \ge 3$ and $c(s) \ge i+4$ and therefore $c(w) \ge 2i+5$; a contradiction. Assume that c(s) < c(v).

If $c(s) \ge 2$, then $c(v) \ge i+3$ and therefore $c(w) \ge 2i+5$, which is a contradiction. Let c(s) = 1. Then c(u) = 2, c(r) = i+3 and c(w) = 2i+4. This implies that c(v) = i+2. Obviously, $\min c(X^+) = 2$. Since c(v) = i+2 and c(r) = i+3, we see that $c(x^+) \notin \{i+2,i+3\}$ for each $x^+ \in X^+$. Therefore $\max c(X^+) \ge 2i+3 + \min c(X^+) = 2i+5$, which is a contradiction.

Thus the proof of the lemma is complete.

Theorem 3. For every $n \ge 8$, there exists a connected graph G of order n with $\operatorname{cir}(G) = n - 2$ and $\operatorname{hc}(G) = n$.

Proof. For every f and h such that $f \leq h$ we define

$$\mathrm{EVEN}[f,h] = \{g; \ f \leqslant g \leqslant h, g \text{ is even} \}$$

and

$$ODD[f, h] = \{g; \ f \leq g \leq h, g \text{ is odd}\}.$$

We will use graphs G(i, j) in the proof.

Consider an arbitrary $n \ge 8$. We distinguish four cases.

Case 1. Let n = 4f + 8, where $f \ge 0$. Put

$$G_1 = G(2f + 2, 2f + 1).$$

Then the order of G_1 is n. Let c_1 be an injective mapping of $V(G_1)$ into \mathbb{N} such that

$$c_1(r) = c_1(s) = 2f + 5, \ c_1(u) = 1, \ c_1(v) = 3, \ c_1(w) = 4f + 8,$$

 $c_1(X) = \text{EVEN}[4, 4f + 6] \text{ and } c_1(Y) = \text{EVEN}[6, 4f + 6].$

(For f = 0, G_1 and c_1 are presented in Fig. 4.) Combining (1)–(12) with the definition of a hamiltonian coloring, we see that c_1 is a hamiltonian coloring of G_1 . Clearly, $hc(c_1) = 4f + 8 = n$. Lemma 4 implies that $hc(c_1) = hc(G_1)$. Thus $hc(G_1) = n$.

273

Case 2. Let n = 4f + 9, where $f \ge 0$. Put

$$G_2 = G(2f + 2, 2f + 2).$$

Then the order of G_2 is n. Let c_2 be an injective mapping of $V(G_2)$ into \mathbb{N} such that

$$c_2(r) = c_2(s) = 2f + 6, \ c_2(u) = 1,$$

 $c_2(v) = 3, \ c_2(w) = 4f + 9 \text{ and } c_2(X) = c_2(Y) = \text{ODD}[5, 4f + 7].$

(For f = 0, G_2 and c_2 are presented in Fig. 5.) By virtue of (1)–(12), c_2 is a hamiltonian coloring of G_2 . Obviously, $hc(c_2) = n$. As follows from Lemma 4, $hc(G_2) = n$.

Case 3. Let n = 4f + 10, where $f \ge 0$. Put

$$G_3 = G(2f + 3, 2f + 2).$$

The order of G_3 is n. Let c_3 be an injective mapping of $V(G_3)$ into \mathbb{N} such that

 $c_3(r) = 2f + 5$, $c_3(s) = 2f + 6$, $c_3(u) = 1$, $c_3(v) = 3$, $c_3(w) = 4f + 10$, $c_3(X) = \text{EVEN}[4, 4f + 8]$ and $c_3(Y) = \text{ODD}[5, 4f + 7]$.

(See Fig. 6 for f = 0.) By (1)–(12), c_3 is a hamiltonian coloring of G_3 . By Lemma 4, $hc(G_3) = hc(c_3) = n$.

Case 4. Let n = 4f + 11, where $n \ge 0$. Put

$$G_4 = G(2f + 4, 2f + 2).$$

The order of G_4 is n again. Let c_4 be an injective mapping of $V(G_4)$ into \mathbb{N} such that

$$c_4(r) = 2f + 6, \ c_4(s) = 2f + 7, \ c_4(u) = 1, \ c_4(v) = 4, \ c_4(w) = 4f + 11,$$

 $c_4(X) = \text{ODD}[3, 4f + 9] \text{ and } c_4(Y) = \text{EVEN}[6, 4f + 8].$

(See Fig. 7 for f = 0.) Combining (1)–(12) with Lemma 4, we see that $hc(G_4) = hc(c_4) = n$.

Thus the proof is complete.

The author conjectures that there exists no connected graph G of order 7 such that hc(G) = 7.

The author sincerely thanks the referee for helpful comments and suggestions.

References

- [1] G. Chartrand, L. Lesniak: Graphs & Digraphs. Third edition. Chapman and Hall, London, 1996.
- [2] G. Chartrand, L. Nebeský, P. Zhang: Hamiltonian colorings of graphs. Preprint (2001).
- [3] G. Chartrand, L. Nebeský, P. Zhang: On hamiltonian colorings of graphs. Preprint (2001).

Author's address: Ladislav Nebeský, Univerzita Karlova v Praze, Filozofická fakulta, nám. J. Palacha 2, 11638 Praha 1, e-mail: Ladislav.Nebesky@ff.cuni.cz.