HAMILTONIAN COLORINGS OF GRAPHS WITH LONG CYCLES

Ladislav Nebeský, Praha
(Received April 11, 2002)

Abstract. By a hamiltonian coloring of a connected graph G of order $n \geqslant 1$ we mean a mapping c of $V(G)$ into the set of all positive integers such that $|c(x)-c(y)| \geqslant n-1-$ $D_{G}(x, y)$ (where $D_{G}(x, y)$ denotes the length of a longest $x-y$ path in G) for all distinct $x, y \in G$. In this paper we study hamiltonian colorings of non-hamiltonian connected graphs with long cycles, mainly of connected graphs of order $n \geqslant 5$ with circumference $n-2$.

Keywords: connected graphs, hamiltonian colorings, circumference
MSC 2000: 05C15, 05C38, 05C45, 05C78

The letters $f-n$ (possibly with indices) will be reserved for denoting non-negative integers. The set of all positive integers will be denoted by \mathbb{N}. By a graph we mean a finite undirected graph with no loop or multiple edge, i.e. a graph in the sense of [1], for example.
0. Let G be a connected graph of order $n \geqslant 1$. If $u, v \in V(G)$, then we denote by $D_{G}(u, v)$ the length of a longest $u-v$ path in G. If $x, y \in G$, then we denote

$$
D_{G}^{\prime}(x, y)=n-1-D_{G}(x, y)
$$

We say that a mapping c of $V(G)$ into \mathbb{N} is a hamiltonian coloring of G if

$$
|c(x)-c(y)| \geqslant D_{G}^{\prime}(x, y)
$$

for all distinct $x, y \in V(G)$. If c is a hamiltonian coloring of G, then we denote

$$
\operatorname{hc}(c)=\max \{c(w) ; w \in V(G)\}
$$

Research supported by Grant Agency of the Czech Republic, grant No. 401/01/0218.

The hamiltonian chromatic number $\mathrm{hc}(G)$ of G is defined by

$$
\operatorname{hc}(G)=\min \{\mathrm{hc}(c) ; c \text { is a hamiltonian coloring of } G\} .
$$

Fig. 1 shows four connected graphs of order six, each of them with a hamiltonian coloring.

Fig. 1
The notions of a hamiltonian coloring and the hamiltonian chromatic number of a connected graph were introduced by G. Chartrand, L. Nebeský and P. Zhang in [2]. These concepts have a transparent motivation: a connected graph G is hamiltonianconnected if and only if $\operatorname{hc}(G)=1$.
The following useful result on the hamiltonian chromatic number was proved in [2]; its proof is easy.

Proposition 1. Let G_{1} and G_{2} be connected graphs. If G_{1} is spanned by G_{2}, then $\mathrm{hc}\left(G_{1}\right) \leqslant \mathrm{hc}\left(G_{2}\right)$.

It was proved in [2] that

$$
\mathrm{hc}(G) \leqslant(n-2)^{2}+1
$$

for every connected graph G of order $n \geqslant 2$ and that $\operatorname{hc}(S)=(n-2)^{2}+1$ for every star S of order $n \geqslant 2$. These results were extended in [3]: there exists no connected graph of order $n \geqslant 5$ with $\operatorname{hc}(G)=(n-2)^{2}$, and if T is a tree of order $n \geqslant 5$ obtained from a star of order $n-1$ by inserting a new vertex into an edge, then $\mathrm{hc}(T)=(n-2)^{2}-1$.
The following definition will be used in the next sections. Let G be a connected graph containing a cycle; by the circumference of G we mean the length of a longest cycle in G; similarly as in [2] and [3], the circumference of G will be denoted by $\operatorname{cir}(G)$. If G is a tree, then we put $\operatorname{cir}(G)=0$.

1. It was proved in [2] that if G is a cycle of order $n \geqslant 3$, then $\operatorname{hc}(G)=n-2$. Proposition 1 implies that if G is a hamiltonian graph of order $n \geqslant 3$, then $\mathrm{hc}(G) \leqslant$ $n-2$.

As was proved in [2], if G is a connected graph of order $n \geqslant 4$ such that $\operatorname{cir}(G)=$ $n-1$ and G contains a vertex of degree 1 , then $\operatorname{hc}(G)=n-1$. Thus, by Proposition 1, if G is a connected graph of order $n \geqslant 4$ such that $\operatorname{cir}(G)=n-1$, then hc $(G) \leqslant n-1$.

Consider arbitrary j and n such that $j \geqslant 0$ and $n-j \geqslant 3$. We denote by $\operatorname{hc}_{\max }(n, j)$ the maximum integer $i \geqslant 1$ with the property that there exists a connected graph G of order n such that $\operatorname{cir}(G)=n-j$ and $\operatorname{hc}(G)=i$.

As follows from the results of [2] mentioned above,

$$
\mathrm{hc}_{\max }(n, 0)=n-2 \text { for every } n \geqslant 3
$$

and

$$
\operatorname{hc}_{\max }(n, 1)=n-1 \text { for every } n \geqslant 4
$$

Using Proposition 1, it is not difficult to show that $\mathrm{hc}_{\max }(5,2)=6$. Combining Proposition 1 with Fig. 1 we easily get $\mathrm{hc}_{\max }(6,2) \leqslant 10$. In this section, we will find an upper bound of $\operatorname{hc}_{\max }(n, 2)$ for $n \geqslant 7$.

Let $n \geqslant 7$, let $0 \leqslant i \leqslant\left\lfloor\frac{1}{2}(n-2)\right\rfloor$, and let V be a set of n elements, say elements $u_{0}, u_{1}, \ldots, u_{n-4}, u_{n-3}, v, w$. We denote by $F(n, i)$ the graph defined as follows: $V(F(n, i))=V$ and

$$
E(F(n, i))=\left\{u_{0} u_{1}, u_{1} u_{2}, \ldots, u_{n-4} u_{n-3}, u_{n-3} u_{0}\right\} \cup\left\{u_{0} v, u_{i} w\right\}
$$

Lemma 1. Let $n \geqslant 7$. Then there exists a hamiltonian coloring c_{i} of $F(n, i)$ with

$$
\mathrm{hc}\left(c_{i}\right)=3 n-\left\lfloor\frac{1}{3}(n-2)\right\rfloor-6-i
$$

for each $i, 0 \leqslant i \leqslant\left\lfloor\frac{1}{3}(n-2)\right\rfloor$.
Proof. Put $j=\left\lfloor\frac{1}{3}(n-2)\right\rfloor$. Let $0 \leqslant i \leqslant j$. Consider a mapping c_{i} of $V(F(n, i))$ into \mathbb{N} defined as follows:

$$
\begin{gathered}
c_{i}\left(u_{0}\right)=n-1, c_{i}\left(u_{1}\right)=n-3, \ldots, c_{i}\left(u_{j-1}\right)=n-2(j-1)-1, \\
c_{i}\left(u_{j}\right)=n-2 j-1, c_{i}\left(u_{j+1}\right)=3 n-2 j-7, c_{i}\left(u_{j+2}\right)=3 n-2 j-9, \ldots, \\
c_{i}\left(u_{n-4}\right)=n+3, c_{i}\left(u_{n-3}\right)=n+1, c_{i}(v)=1 \text { and } c_{i}(w)=3 n-j-6-i .
\end{gathered}
$$

(A diagram of $F(21,0)$ with c_{0} can be found in Fig. 2.)
Consider arbitrary distinct vertices r and s of $F(n, i)$ such that $c_{i}(r) \geqslant c_{i}(s)$. Put $D_{i}^{\prime}(r, s)=D_{F(n, i)}^{\prime}(r, s)$. Obviously, $c_{i}(r)>c_{i}(s)$. If $(r, s)=\left(w, u_{j+1}\right)$ or $\left(u_{n-3}, u_{0}\right)$ or $\left(u_{f+1}, u_{f}\right)$, where $0 \leqslant f \leqslant n-4$, then $c_{i}(r)-c_{i}(s)=D_{i}^{\prime}(r, s)$. If $(r, s)=\left(u_{j}, v\right)$, then $D_{i}^{\prime}(r, s)+2 \geqslant c_{i}(r)-c_{i}(s) \geqslant D_{i}^{\prime}(r, s)$. Otherwise, $c_{i}(r)-c_{i}(s)>D_{i}^{\prime}(r, s)$. Thus c_{i} is a hamiltonian coloring of $F(n, i)$. We see that $\mathrm{hc}\left(c_{i}\right)=c_{i}(w)$.

Let $n \geqslant 7$. We define $F^{\prime}(n)=F(n, 0)-u_{0} w+v w$.

Corollary 1. Let $n \geqslant 7$. Then there exists a hamiltonian coloring c_{0}^{\prime} of $F^{\prime}(n)$ with hc $\left(c_{0}^{\prime}\right)=3 n-\left\lfloor\frac{1}{3}(n-2)\right\rfloor-7$.

Proof. Put $c_{0}^{\prime}=c_{1}$, where c_{1} is defined in the proof of Lemma 1. It is clear that c_{0}^{\prime} is a hamiltonian coloring of $F^{\prime}(n)$. Applying Lemma 1 , we get the desired result.

Lemma 2. Let $n \geqslant 7$. Then there exists a hamiltonian coloring c_{i}^{+}of $F(n, i)$ with

$$
\operatorname{hc}\left(c_{i}^{+}\right)=2 n-4+2\left\lfloor\frac{1}{2}(n-2)\right\rfloor-i
$$

for each $i,\left\lfloor\frac{1}{3}(n-2)\right\rfloor+1 \leqslant i \leqslant\left\lfloor\frac{1}{2}(n-2)\right\rfloor$.
Proof. Put $j=\left\lfloor\frac{1}{2}(n-2)\right\rfloor$ and $k=\left\lfloor\frac{1}{2}(n-2)\right\rfloor$. Let $j+1 \leqslant i \leqslant k$. Consider a mapping c_{i}^{+}of $V(F(n, i))$ into \mathbb{N} defined as follows:

$$
\begin{gathered}
c_{i}^{+}\left(u_{0}\right)=3 k+1, c_{i}^{+}\left(u_{1}\right)=3 k-1, \ldots, c_{i}^{+}\left(u_{k-1}\right)=k+3, c_{i}^{+}\left(u_{k}\right)=k+1, \\
c_{i}^{+}\left(u_{k+1}\right)=2(n-3)+k+1, c_{i}^{+}\left(u_{k+2}\right)=2(n-3)+k-1, \ldots \\
c_{i}^{+}\left(u_{n-4}\right)=3 k+5, c_{i}^{+}\left(u_{n-3}\right)=3 k+3, c_{i}^{+}(v)=1 \text { and } c_{i}^{+}(w)=2 n-4+2 k-i .
\end{gathered}
$$

(A diagram of $F(21,7)$ with c_{7}^{+}can be found in Fig. 3.)
Put $D_{i}^{\prime}=D_{F(n, i)}^{\prime}$. We see that $c_{i}^{+}\left(u_{k}\right)-c_{i}^{+}(v)=D_{i}^{\prime}\left(u_{k}, v\right)$ and $c_{i}^{+}(w)-c_{i}^{+}\left(u_{k+1}\right)=$ $D_{i}^{\prime}\left(w, u_{k+1}\right)$. It is easy to show that c_{i}^{+}is a hamiltonian coloring of $F(n, i)$. We have $\mathrm{hc}\left(c_{i}^{+}\right)=c_{i}^{+}(w)$.

Theorem 1. Let $n \geqslant 7$. Then

$$
\mathrm{hc}_{\max }(n, 2) \leqslant 3 n-\left\lfloor\frac{1}{3}(n-2)\right\rfloor-6 .
$$

Proof. Consider an arbitrary connected graph G of order n with $\operatorname{cir}(G)=n-2$. Obviously, G is spanned by a connected graph F such that $\operatorname{cir}(F)=n-2$ and F

has exactly one cycle. By Proposition $1, \mathrm{hc}(G) \leqslant \mathrm{hc}(F)$. Thus we need to show that $\mathrm{hc}(F) \leqslant 3 n-\left\lfloor\frac{1}{3}(n-2)\right\rfloor-6$.

If F is isomorphic to $F^{\prime}(n)$, then the result follows from Corollary 1. Let F be not isomorphic to $F^{\prime}(n)$. Then there exists $i, 0 \leqslant i \leqslant\left\lfloor\frac{1}{2}(n-2)\right\rfloor$, such that F is isomorphic to $F(n, i)$. If $0 \leqslant i \leqslant\left\lfloor\frac{1}{3}(n-2)\right\rfloor$, then the result follows from Lemma 1. Let $\left\lfloor\frac{1}{3}(n-2)\right\rfloor \leqslant i \leqslant\left\lfloor\frac{1}{2}(n-2)\right\rfloor$. By Lemma $2, \mathrm{hc}(F) \leqslant 2 n-4+2\left\lfloor\frac{1}{2}(n-2)\right\rfloor-i \leqslant$ $2 n-4+2\left\lfloor\frac{1}{2}(n-2)\right\rfloor-\left\lfloor\frac{1}{3}(n-2)\right\rfloor-1 \leqslant 3 n-\left\lfloor\frac{1}{3}(n-2)\right\rfloor-7$, which completes the proof.

Corollary 2. Let $n \geqslant 7$. Then

$$
\mathrm{hc}_{\max }(n, 2) \leqslant \frac{1}{3}(8 n-14) .
$$

2. Consider arbitrary j and n such that $j \geqslant 0$ and $n-j \geqslant 3$. We denote by $\mathrm{hc}_{\min }(n, j)$ the minimum integer $i \geqslant 1$ with the property that there exists a connected graph G of order n such that $\operatorname{cir}(G)=n-j$ and $\operatorname{hc}(G)=i$. Since every hamiltonianconnected graph of order $\geqslant 3$ is hamiltonian, we get $\operatorname{hc}_{\min }(n, 0)=1$ for every $n \geqslant 3$. In this section we will find an upper bound of $\operatorname{hc}_{\min }(n, j)$ for $j \geqslant 1$ and $n \geqslant j(j+3)+1$.

We start with two auxiliary definitions. If U is a set, then we denote

$$
E_{\mathrm{com}}(U)=\{A \subseteq U ;|A|=2\} .
$$

If W_{1} and W_{2} are disjoint sets, then we denote

$$
E_{\mathrm{combi}}\left(W_{1}, W_{2}\right)=\left\{A \in E_{\mathrm{com}}\left(W_{1} \cup W_{2}\right) ;\left|A \cap W_{1}\right|=1=\left|A \cap W_{2}\right|\right\}
$$

Lemma 3. Consider arbitrary j, k and n such that $j \geqslant 1, k \geqslant j+1$, and

$$
k+j(k+1) \leqslant n \leqslant k+(k-1)^{2}+2 j .
$$

Then there exists a k-connected graph G of order n such that $\operatorname{cir}(G)=n-j$ and $\mathrm{hc}(G) \leqslant 2 j(k-1)+1$.

Proof. Clearly, there exist f_{1}, \ldots, f_{k-1} such that

$$
j \leqslant f_{g} \leqslant k-1 \text { for all } g, 0 \leqslant g \leqslant k-1
$$

and

$$
f_{1}+\ldots+f_{k-1}=n-2 j-k
$$

Consider pairwise disjoint finite sets U, W_{1}, \ldots, W_{k} and W_{k+1} such that $|U|=k$,

$$
\left|W_{g}\right|=f_{g} \text { for each } g, 0 \leqslant g \leqslant k-1
$$

and $\left|W_{k}\right|=\left|W_{k+1}\right|=j$. We denote by G the graph with

$$
V(G)=U \cup W_{1} \cup \ldots W_{k} \cup W_{k+1}
$$

and

$$
E(G)=E_{\mathrm{com}}\left(V_{1}\right) \cup \ldots \cup E_{\mathrm{com}}\left(V_{k+1}\right) \cup E_{\mathrm{combi}}\left(U, V_{1} \cup \ldots \cup V_{k+1}\right)
$$

It is easy to see that G is a k-connected graph of order n and $\operatorname{cir}(G)=n-j$.
Put $D^{\prime}(x, y)=D_{G}^{\prime}(x, y)$ for $x, y \in U$. It is clear that

$$
D^{\prime}\left(u, u^{*}\right)=2 j
$$

for all distinct $u, u^{*} \in U$,

$$
D^{\prime}(u, w)=j
$$

for all $u \in U$ and $w \in W_{1} \cup \ldots \cup W_{k+1}$,

$$
D^{\prime}\left(w, w^{*}\right)=0
$$

for all w and w^{*} such that there exist distinct $g, g^{*} \in\{1, \ldots, k+1\}$ such that $w \in W_{g}$ and $w^{*} \in W_{g^{*}}$, and

$$
D^{\prime}\left(w, w^{*}\right)=j
$$

for all distinct w and w^{*} such that there exists $h \in\{1, \ldots, k+1\}$ such that $w, w^{*} \in$ W_{h}.

Put $f_{k}=f_{k+1}=j$. Consider a mapping c of $V(G)$ into \mathbb{N} with the properties that

$$
c(U)=\{1,2 j+1,4 j+1, \ldots, 2 j(k-1)+1\}
$$

and

$$
c\left(W_{g}\right)=\left\{j+1,3 j+1, \ldots, 2 j\left(f_{g}-1\right)+j+1\right\}
$$

for each $g, 1 \leqslant g \leqslant k+1$. It is easy to see that c is a hamiltonian coloring of G. Hence $\mathrm{hc}(G) \leqslant \mathrm{hc}(c)=2 j(k-1)+1$.

Theorem 2. Let n and j be integers such that $j \geqslant 1$ and $n \geqslant j(j+3)+1$, and let k be the smallest integer such that

$$
k \geqslant j+1 \text { and }(k-1)^{2}+k \geqslant n-2 j .
$$

Then

$$
\mathrm{hc}_{\min }(n, j) \leqslant 2 j(k-1)+1 .
$$

Proof. The theorem immediatelly follows from Lemma 3.

Corollary 3. Let $n \geqslant 5$ and let k be the smallest integer such that

$$
k \geqslant 2 \text { and } n \leqslant(k-1)^{2}+k+2
$$

Then

$$
\mathrm{hc}_{\min }(n, 1) \leqslant 2 k-1
$$

Corollary 4. Let $n \geqslant 11$ and let k be the smallest integer such that

$$
k \geqslant 3 \text { and } n \leqslant(k-1)^{2}+k+4
$$

Then

$$
\mathrm{hc}_{\min }(n, 2) \leqslant 4 k-3
$$

3. As follows from results obtained in [2], if (a) $n \geqslant 3$, then for every $k \in$ $\{1,2, \ldots, n-1\}$ there exists a connected graph G of order $n \geqslant 4$ such that hc $(G)=k$, and if (b) G is a graph of order n such that $\operatorname{hc}(G) \geqslant n$, then $\operatorname{cir}(G) \neq n, n-1$.
For $n=4$ or 5 , it is easy to find a connected graph of order n with $\operatorname{hc}(G)=$ $n: \operatorname{hc}\left(P_{4}\right)=4$ and $\mathrm{hc}\left(2 K_{2}+K_{1}\right)=5$. On the other hand, there exists no connected graph of order 6 with $\mathrm{hc}(G)=6$. We can state the folowing question: Given $n \geqslant 7$,
does there exist a connected graph G of order n with $\mathrm{hc}(G)=n$? Answering this question for $n \geqslant 8$ is the subject of the present section.

Let $1 \leqslant j \leqslant i$. Consider mutually distinct elements r, s, u, v, w and finite sets X and Y such that $|X|=i,|Y|=j$ and the sets X, Y and $\{r, s, u, v, w\}$ are pairwise disjoint. We define a graph $G(i, j)$ as follows:

$$
\begin{aligned}
V(G(i, j))= & X \cup Y \cup\{r, s, u, v, w\} \text { and } E(G(i, j)) \\
= & \{u v\} \cup E_{\mathrm{com}}(X) \cup E_{\mathrm{com}}(Y) \cup E_{\mathrm{combi}}(\{u, w\}, X \cup\{r\}) \\
& \cup E_{\mathrm{combi}}(\{v, w\}, Y \cup\{s\}) .
\end{aligned}
$$

Obviously, $\operatorname{cir}(G(i, j))=i+j+3=\mid V(G(i, j) \mid-2$.

Proposition 2. Let $1 \leqslant j \leqslant i$. Put $D^{\prime}\left(t_{1}, t_{2}\right)=D_{G(i, j)}^{\prime}\left(t_{1}, t_{2}\right)$ for all $t_{1}, t_{2} \in$ $V(G(i, j))$. Then
(1) $\quad D^{\prime}(x, y)=0$ for all $x \in X$ and all $y \in Y$,
(2) $\quad D^{\prime}(x, s)=0, D^{\prime}(x, r)=D^{\prime}(x, v)=1$ and $D^{\prime}(x, u)=D^{\prime}(x, w)=2$ for all $x \in X$,
(3) $\quad D^{\prime}(y, r)=0, D^{\prime}(y, s)=D^{\prime}(y, u)=1$ and $D^{\prime}(y, v)=D^{\prime}(y, w)=2$ for all $y \in Y$,
(4) $D^{\prime}\left(x_{1}, x_{2}\right)=2$ for all distinct $x_{1}, x_{2} \in X$,
(5) $D^{\prime}\left(y_{1}, y_{2}\right)=2$ for all distinct $y_{1}, y_{2} \in Y$,
(6) $D^{\prime}(r, s)=0$,
(7) $\quad D^{\prime}(r, v)=D^{\prime}(s, u)=1$,
(8) $D^{\prime}(u, v)=2$,
(9) $\quad D^{\prime}(s, v)=D^{\prime}(s, w)=j+1$,
(10) $\quad D^{\prime}(v, w)=j+2$,
(11) $D^{\prime}(r, u)=D^{\prime}(r, w)=\min (i+1, j+2)$,
and

$$
\begin{equation*}
D^{\prime}(u, w)=\min (i+2, j+3) . \tag{12}
\end{equation*}
$$

Proof is easy.

Lemma 4. Let $1 \leqslant j \leqslant i$. Then hc $(G(i, j)) \geqslant i+j+5$.
Proof. Suppose, to the contrary, that there exists a hamiltonian coloring c of $G(i, j)$ such that $\mathrm{hc}(c) \leqslant i+j+4$. Thus $\mathrm{hc}(c) \leqslant 2 i+4$. We may assume that there exists $t \in V(G(i, j))$ such that $c(t)=1$.

Put $X^{+}=X \cup\{u, w\}$. By virtue of (2), (4) and (12),

$$
\begin{equation*}
\left|c\left(x_{1}^{+}\right)-c\left(x_{2}^{+}\right)\right| \geqslant 2 \text { for all distinct } x_{1}^{+}, x_{2}^{+} \in X^{+} . \tag{13}
\end{equation*}
$$

By virtue of (2), (7) and (12),

$$
\begin{align*}
& c(r) \neq c\left(x^{+}\right) \neq c(v) \text { for all } x^{+} \in X^{+}, \tag{14}\\
& c(r) \neq c(v), c(s) \neq c(u) \tag{15}
\end{align*}
$$

and

$$
|c(u)-c(v)| \geqslant 2
$$

Obviously, $\left|X^{+}\right|=i+2$. As follows from (13),

$$
\begin{equation*}
\max c\left(X^{+}\right) \geqslant 2 i+2+\min c\left(X^{+}\right) \tag{16}
\end{equation*}
$$

Thus hc $(c) \geqslant 2 i+3$. Since hc $(c) \leqslant i+j+4$, we get

$$
\begin{equation*}
i-1 \leqslant j \leqslant i \tag{17}
\end{equation*}
$$

If $\{c(r), c(v)\}=\{1,2\}$, then (14) implies that max $c\left(X^{+}\right) \geqslant 2 i+5$; a contradiction. If $\{c(r), c(v)\}=\{\operatorname{hc}(c), \mathrm{hc}(c)-1\}$, then $\max c\left(X^{+}\right) \leqslant 2 i+2$; a contradiction. Thus

$$
\begin{equation*}
\{1,2\} \neq\{c(r), c(v)\} \neq\{\operatorname{hc}(c), \operatorname{hc}(c)-1\} \tag{18}
\end{equation*}
$$

Moreover, if

$$
c(u)=\min c\left(X^{+}\right) \text {and } c(v)=c(u)+2
$$

or

$$
c(u)=\max c\left(X^{+}\right) \text {and } c(v)=c(u)-2,
$$

then $\max c\left(X^{+}\right) \geqslant 2 i+3+\min c\left(X^{+}\right)$.
Combining (11) and (12) with (17), we have

$$
\begin{equation*}
|c(r)-c(u)| \geqslant i+1,|c(r)-c(w)| \geqslant i+1 \text { and }|c(u)-c(w)| \geqslant i+2 \tag{19}
\end{equation*}
$$

We denote by c^{\prime} a mapping of $V(G(i, j))$ into \mathbb{N} defined as follows:

$$
c^{\prime}(t)=\mathrm{hc}(c)+1-c(t) \text { for each } t \in V(G(i, j))
$$

We see that c^{\prime} is a hamiltonian coloring of $G(i, j)$ and that $\mathrm{hc}\left(c^{\prime}\right)=\mathrm{hc}(c)$. Obviously, $c(u) \leqslant c(v)$ or $c^{\prime}(u) \leqslant c^{\prime}(v)$. Without loss of generality we assume that $c(u) \leqslant c(v)$. Thus

$$
c(v) \geqslant c(u)+2
$$

and if $c(u)=1$ and $\mathrm{hc}(c)=2 i+3$, then $c(v) \geqslant 4$.
We distinguish two cases.
C ase 1. Assume that $j=i-1$. Then hc $(c)=2 i+3$. By virtue of (9) and (10),

$$
|c(s)-c(v)| \geqslant i,|c(s)-c(w)| \geqslant i \text { and }|c(v)-c(w)| \geqslant i+1
$$

If $c(r)<c(u)<c(w)$ or $c(r)<c(w)<c(u)$ or $c(u)<c(w)<c(r)$ or $c(w)<c(u)<$ $c(r)$, then (19) implies that hc $(c) \geqslant 2 i+4$, which is a contradiction.

Let $c(w)<c(r)<c(u)$. As follows from (19), $c(u)=2 i+3$ and therefore $c(v) \geqslant 2 i+5 ;$ a contradiction.

Finally, let $c(u)<c(r)<c(w)$. Thus $c(w)=2 i+3$ and therefore $c(u)=1$ and $c(r)=i+2$. Since $c(u)=1$ and $\mathrm{hc}(c)=2 i+3$, we get $c(v) \geqslant 4$. If $c(v)<c(s)$, then $c(s) \geqslant i+4$ and therefore $|c(s)-c(w)| \leqslant i-1 ;$ a contradiction. Let $c(s)<c(v)$. Since $c(s) \neq c(u)$, we have $c(s) \geqslant 2$. This implies that $c(v) \geqslant i+2$. Since $c(w)=2 i+3$, we get $c(v)=i+2$. Thus $c(v)=c(r)$, which contradicts (15).

Case 2. Assume that $i=j$. Recall that hc $(c) \leqslant 2 i+4$. By virtue of (9) and (10),

$$
|c(s)-c(v)| \geqslant i+1,|c(s)-c(w)| \geqslant i+1 \text { and }|c(v)-c(w)| \geqslant i+2
$$

If $c(r)<c(w)<c(u)$ or $c(w)<c(r)<c(u)$, then (19) implies that $c(u) \geqslant 2 i+3$ and therefore $c(v) \geqslant 2 i+5$, which is a contradiction.

Let $c(r)<c(u)<c(w)$. Then $c(w)=2 i+4$ and therefore $c(r)=1$ and $c(u)=i+2$. This implies that $c(v) \geqslant i+4$ and therefore $|c(v)-c(w)| \leqslant i$; a contradiction.

Let $c(u)<c(w)<c(r)$. Then $c(u)=1, c(w)=i+3$ and $c(r)=2 i+4$. Since $3 \leqslant c(v) \neq c(r)$, we get $|c(v)-c(w)| \leqslant i$; a contradiction.

Let $c(w)<c(u)<c(r)$. Then $c(w)=1, c(u)=i+3$ and $c(r)=2 i+4$. Assume that $c(s)<c(v)$; since $c(w)=1$, we get $c(s) \geqslant i+2$ and therefore $c(v) \geqslant 2 i+3$; since $c(r)=2 i+4$ and $c(v) \neq c(r)$, we get $c(v)=2 i+3$, which contradicts (18). Assume that $c(v)<c(s)$; since $c(u)=i+3$, we get $c(v) \geqslant i+5$ and therefore $c(s) \geqslant 2 i+6$; a contradiction.

Finally, let $c(u)<c(r)<c(w)$. Then $c(w) \geqslant 2 i+3$. If $c(v)<c(s)$, then $c(v) \geqslant 3$ and $c(s) \geqslant i+4$ and therefore $c(w) \geqslant 2 i+5 ;$ a contradiction. Assume that $c(s)<c(v)$.

If $c(s) \geqslant 2$, then $c(v) \geqslant i+3$ and therefore $c(w) \geqslant 2 i+5$, which is a contradiction. Let $c(s)=1$. Then $c(u)=2, c(r)=i+3$ and $c(w)=2 i+4$. This implies that $c(v)=i+2$. Obviously, $\min c\left(X^{+}\right)=2$. Since $c(v)=i+2$ and $c(r)=i+3$, we see that $c\left(x^{+}\right) \notin\{i+2, i+3\}$ for each $x^{+} \in X^{+}$. Therefore $\max c\left(X^{+}\right) \geqslant$ $2 i+3+\min c\left(X^{+}\right)=2 i+5$, which is a contradiction.

Thus the proof of the lemma is complete.

Theorem 3. For every $n \geqslant 8$, there exists a connected graph G of order n with $\operatorname{cir}(G)=n-2$ and $\mathrm{hc}(G)=n$.

Proof. For every f and h such that $f \leqslant h$ we define

$$
\operatorname{EVEN}[f, h]=\{g ; f \leqslant g \leqslant h, g \text { is even }\}
$$

and

$$
\mathrm{ODD}[f, h]=\{g ; f \leqslant g \leqslant h, g \text { is odd }\} .
$$

We will use graphs $G(i, j)$ in the proof.
Consider an arbitrary $n \geqslant 8$. We distinguish four cases.
Case 1. Let $n=4 f+8$, where $f \geqslant 0$. Put

$$
G_{1}=G(2 f+2,2 f+1)
$$

Then the order of G_{1} is n. Let c_{1} be an injective mapping of $V\left(G_{1}\right)$ into \mathbb{N} such that

$$
\begin{aligned}
c_{1}(r) & =c_{1}(s)=2 f+5, c_{1}(u)=1, c_{1}(v)=3, c_{1}(w)=4 f+8 \\
c_{1}(X) & =\operatorname{EVEN}[4,4 f+6] \text { and } c_{1}(Y)=\operatorname{EVEN}[6,4 f+6]
\end{aligned}
$$

(For $f=0, G_{1}$ and c_{1} are presented in Fig. 4.) Combining (1)-(12) with the definition of a hamiltonian coloring, we see that c_{1} is a hamiltonian coloring of G_{1}. Clearly, $\operatorname{hc}\left(c_{1}\right)=4 f+8=n$. Lemma 4 implies that $\operatorname{hc}\left(c_{1}\right)=\operatorname{hc}\left(G_{1}\right)$. Thus $\mathrm{hc}\left(G_{1}\right)=n$.

Fig. 4

Case 2. Let $n=4 f+9$, where $f \geqslant 0$. Put

$$
G_{2}=G(2 f+2,2 f+2)
$$

Then the order of G_{2} is n. Let c_{2} be an injective mapping of $V\left(G_{2}\right)$ into \mathbb{N} such that

$$
\begin{aligned}
& c_{2}(r)=c_{2}(s)=2 f+6, c_{2}(u)=1 \\
& c_{2}(v)=3, c_{2}(w)=4 f+9 \text { and } c_{2}(X)=c_{2}(Y)=\operatorname{ODD}[5,4 f+7]
\end{aligned}
$$

(For $f=0, G_{2}$ and c_{2} are presented in Fig. 5.) By virtue of (1)-(12), c_{2} is a hamiltonian coloring of G_{2}. Obviously, $\mathrm{hc}\left(c_{2}\right)=n$. As follows from Lemma 4, $\mathrm{hc}\left(G_{2}\right)=n$.

Fig. 5

Case 3. Let $n=4 f+10$, where $f \geqslant 0$. Put

$$
G_{3}=G(2 f+3,2 f+2) .
$$

The order of G_{3} is n. Let c_{3} be an injective mapping of $V\left(G_{3}\right)$ into \mathbb{N} such that

$$
\begin{aligned}
c_{3}(r) & =2 f+5, c_{3}(s)=2 f+6, c_{3}(u)=1, c_{3}(v)=3, c_{3}(w)=4 f+10 \\
c_{3}(X) & =\operatorname{EVEN}[4,4 f+8] \text { and } c_{3}(Y)=\operatorname{ODD}[5,4 f+7]
\end{aligned}
$$

(See Fig. 6 for $f=0$.) By (1)-(12), c_{3} is a hamiltonian coloring of G_{3}. By Lemma 4, $\mathrm{hc}\left(G_{3}\right)=\mathrm{hc}\left(c_{3}\right)=n$.

Fig. 6

Case 4. Let $n=4 f+11$, where $n \geqslant 0$. Put

$$
G_{4}=G(2 f+4,2 f+2)
$$

The order of G_{4} is n again. Let c_{4} be an injective mapping of $V\left(G_{4}\right)$ into \mathbb{N} such that

$$
\begin{aligned}
c_{4}(r) & =2 f+6, c_{4}(s)=2 f+7, c_{4}(u)=1, c_{4}(v)=4, c_{4}(w)=4 f+11 \\
c_{4}(X) & =\mathrm{ODD}[3,4 f+9] \text { and } c_{4}(Y)=\operatorname{EVEN}[6,4 f+8]
\end{aligned}
$$

(See Fig. 7 for $f=0$.) Combining (1)-(12) with Lemma 4, we see that hc $\left(G_{4}\right)=$ $\mathrm{hc}\left(c_{4}\right)=n$.

Fig. 7
Thus the proof is complete.
The author conjectures that there exists no connected graph G of order 7 such that $\mathrm{hc}(G)=7$.

The author sincerely thanks the referee for helpful comments and suggestions.

References

[1] G. Chartrand, L. Lesniak: Graphs \& Digraphs. Third edition. Chapman and Hall, London, 1996.
[2] G. Chartrand, L. Nebeský, P. Zhang: Hamiltonian colorings of graphs. Preprint (2001).
[3] G. Chartrand, L. Nebeský, P. Zhang: On hamiltonian colorings of graphs. Preprint (2001).

Author's address: Ladislav Nebeský, Univerzita Karlova v Praze, Filozofická fakulta, nám. J. Palacha 2, 11638 Praha 1, e-mail: Ladislav.Nebesky@ff.cuni.cz.

