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OSCILLATION OF A NONLINEAR DIFFERENCE EQUATION

WITH SEVERAL DELAYS
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Abstract. In this paper we consider the nonlinear difference equation with several delays

(axn+1 + bxn)
k − (cxn)

k +

m�
i=1

pi(n)x
k
n−σi

= 0

where a, b, c ∈ (0,∞), k = q/r, q, r are positive odd integers, m, σi are positive integers,
{pi(n)}, i = 1, 2, . . . , m, is a real sequence with pi(n) > 0 for all large n, and lim inf

n→∞

pi(n) =

pi < ∞, i = 1, 2, . . . , m. Some sufficient conditions for the oscillation of all solutions of the
above equation are obtained.

Keywords: nonlinear difference equtions, oscillation, eventually positive solutions, char-
acteristic equation
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1. Introduction

Consider the nonlinear difference equation

(1) (axn+1 + bxn)k − (cxn)k +

m
∑

i=1

pi(n)xk
n−σi

= 0

where a, b, c ∈ (0,∞), c > b, k = q/r, q, r are positive odd integers, m, σi are positive

integers, {pi(n)} are real sequences with pi(n) > 0 for all large n, and lim inf
n→∞

pi(n) =
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pi < ∞, i = 1, 2, . . . , m. It is easy to see that if c < b then (1) cannot have an

eventually positive solution. The corresponding “limiting” equation of (1) is

(2) (axn+1 + bxn)k − (cxn)k +

m
∑

i=1

pix
k
n−σi

= 0

with the characteristic equation

(3) (aλ + b)k − ck +

m
∑

i=1

piλ
−kσi = 0.

For the special case where k = a = 1, c = b + 1, equation (1) reduces to the linear

difference equation

xn+1 − xn +

m
∑

i=1

pi(n)xn−σi
= 0.

There have been a lot of activities concerning the oscillation of solutions of linear

difference equations. But there have been few results for the oscillation of solutions

of the nonlinear equation (1). Under the condition that 0 < c−b
a

6 1, a sufficient

condition of nonexistence of eventually positive solutions for (1) was obtained in

[5], [6]. In this paper we obtain several new sufficient conditions for oscillation of

all solutions of (1) by removing the condition c−b
a

6 1. A sufficient and necessary

condition for oscillation of all solutions of (2) is obtained as well.

A solution {xn} of equation (1) is said to oscillate about zero or simply to oscillate

if the terms xn of the sequence {xn} are neither eventually all positive nor eventually

all negative. Otherwise, the solution is called nonoscillatory.

2. Main results

Lemma 1 [3]. If x, y are positive numbers and x 6= y, then

rxr−1(x − y) > xr − yr > ryr−1(x − y) for r > 1.

Theorem 1. If (3) has no positive roots, then every solution of (1) oscillates.

���������
. By way of contradiction, assume that {xn} is an eventually positive

solution of (1). By (1) we have

(4)

(

a
xn+1

xn

+ b

)k

− ck +

m
∑

i=1

pi(n)

(

xn−σi

xn

)k

= 0.
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For sufficiently large n, set xn+1

xn

= βn. Then eventually

0 < βn 6
c − b

a
,

and (4) yields

(5) (aβn + b)k − ck +
m

∑

i=1

pi(n)

( σi
∏

j=1

β−1
n−j

)k

= 0.

Set

lim sup
n→∞

βn = β.

It follows from (5) that 0 < β 6 c−b
a
. We also claim that

(aβ + b)k − ck +

m
∑

i=1

piβ
−kσi 6 0.

Indeed, by virtue of lim inf
n→∞

pi(n) = pi < ∞, for every ε ∈ (0, 1) there exists an nε > 0

such that

pi(n) > (1 − ε)pi for i = 1, 2, . . . , m and n > nε.

Therefore,

(aβn + b)k − ck + (1 − ε)
m

∑

i=1

pi

( σi
∏

j=1

β−1
n−j

)k

6 0 for n > nε.

Let Nε > nε be such that

βn < (1 + ε)β for n > Nε.

Then

(aβn + b)k − ck + (1 − ε)

m
∑

i=1

pi(1 + ε)−kσiβ−kσi 6 0 for n > Nε + σi,

i.e.,

(aβn + b)k 6 ck − (1 − ε)
m

∑

i=1

pi(1 + ε)−kσiβ−kσi ,

which implies

(aβ + b)k 6 ck − (1 − ε)

m
∑

i=1

pi(1 + ε)−kσiβ−kσi .
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As this is true for every ε ∈ (0, 1), it follows that

(6) (aβ + b)k
6 ck −

m
∑

i=1

piβ
−kσi ,

which proves our claim. Set

(7) F (λ) = (aλ + b)k − ck +
m

∑

i=1

piλ
−kσi .

Then F (0+) = +∞ and F (β) 6 0. It follows that (3) has a positive root. This

contradiction completes the proof. �

Corollary 1. Every solution of (2) oscillates if and only if (3) has no positive

roots.

���������
. Sufficiency can be directly derived from Theorem 1. So it suffices to

prove Necessity. Suppose that (3) has a positive root λ.

Let

xn = λn, n = 1, 2, . . . .

Then we have

(axn+1 + bxn)k − (cxn)k +

m
∑

i=1

pix
k
n−σi

= λkn

[

(aλ + b)k − ck +

m
∑

i=1

piλ
−kσi

]

= 0.

Hence, {xn} is an eventually positive solution of (2). This contradiction completes

the proof. �

Corollary 2. Assume that lim inf
n→∞

pi(n) = pi < ∞, i = 1, 2, . . . , m, k > 1, and

that
m

∑

i=1

pia
kσi (kσi + 1)kσi+1

kck−1(c − b)kσi+1(kσi)kσi

> 1.

Then every solution of (1) oscillates.

���������
. Let

F (λ) = (aλ + b)k − ck +

m
∑

i=1

piλ
−kσi .

Then

F (λ) > 0 for λ >
c − b

a
.
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For λ < c−b
a
, by Lemma 1, we have

F (λ) > {ck − (aλ + b)k}

{

− 1 +

m
∑

i=1

piλ
−kσi

kck−1(c − aλ − b)

}

.

Since

min
0<λ< c−b

a

{

λ−kσi

kck−1(c − aλ − b)

}

=
akσi(kσi + 1)kσi+1

kck−1(c − b)kσi+1(kσi)kσi

,

by the condition of Corollary 2 we get

F (λ) > {ck−(aλ+b)k}

{

−1+
m

∑

i=1

pia
kσi(kσi + 1)kσi+1

kck−1(c − b)kσi+1(kσi)kσi

}

> 0 for λ <
c − b

a
.

By Theorem 1, every solution of (1) oscillates. The proof is completed. �

Define a sequence {λl} by

(8) λ1 =
c − b

a
, λl+1 =

1

a

[(

ck −
m

∑

i=1

piλ
−kσi

l

)
1
k

− b

]

, l = 1, 2, . . .

Lemma 2. Suppose that {λl} is defined by (8). Then 0 < λ∗ 6 λl 6 c−b
a
and

lim
l→∞

λl = λ∗, where λ∗ is the largest root of equation (3) on (0, c−b
a

].

���������
. First, we prove the sequence {λl} is nonincreasing. Since

λ2 =
1

a

[(

ck −

m
∑

i=1

piλ
−kσi

1

)
1
k

− b

]

<
c − b

a
= λ1,

hence, by induction, supposing that λl 6 λl−1, we have

λl+1 =
1

a

[(

ck −

m
∑

i=1

piλ
−kσi

l

)
1
k

− b

]

6
1

a

[(

ck −

m
∑

i=1

piλ
−kσi

l−1

)
1
k

− b

]

= λl.

Hence, the sequence {λl} is nonincreasing. From (3) it is obvious that λ1 > λ∗, and

by induction

λl+1 =
1

a

[(

ck −

m
∑

i=1

piλ
−kσi

l

)
1
k

− b

]

>
1

a

[(

ck −

m
∑

i=1

piλ
−kσi

∗

)
1
k

− b

]

= λ∗.

Hence, {λl} is nonincreasing and bounded. Therefore, lim
l→∞

λl exists. Letting l → ∞

in (8) and noting that λ∗ is the largest root of (3), we conclude lim
l→∞

λl = λ∗. The

proof is completed. �
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Theorem 2. Assume that (3) has positive roots, λ∗ is the largest root of (3) and

(9) lim sup
n→∞

{[

a

(

1

ck − bk

m
∑

i=1

pi(n + 1)λ
k(1−σi)
∗

)
1
k

+ b

]k

+
m

∑

i=1

pi(n)λ−kσi

∗

}

> ck.

Then every solution of (1) oscillates.

���������
. Suppose that {xn} is an eventually positive solution of (1). Then there

exists n1 > 0 such that xn > 0 and xn−σi
> 0, i = 1, 2, . . . , m, for n > n1. From (1)

we have

(axn+1 + bxn)k − (cxn)k = −

m
∑

i=1

pi(n)xk
n−σi

6 0,

i.e.,

(axn+1 + bxn)k 6 (cxn)k.

Since k = q/r, q, r are positive odd integers, we have

(10) xn+1 6 θxn for n > n1,

where θ = c−b
a
. By virtue of lim inf

n→∞

pi(n) = pi < ∞, for every ε ∈ (0, 1) there exists

an nε > n1 such that

(11) pi(n) > (1 − ε)pi for i = 1, 2, . . . , m and n > nε.

Define a sequence {µl(ε)} by

µ1(ε) = θ, µl+1(ε) =
1

a

{[

ck − (1 − ε)

m
∑

i=1

pi(µl(ε))
−kσi

]
1
k

− b

}

, l = 1, 2, . . . .

From (10) we get

(12) xk
n−σi

> (µ1(ε))
−kσixk

n for n > nε + σi.

From (1), (11), and (12) we have

(axn+1 + bxn)k 6 (cxn)k − (1 − ε)

m
∑

i=1

pi(µ1(ε))
−kσixk

n,

i.e.,

xn+1 6
1

a

{[

ck − (1 − ε)

m
∑

i=1

pi(µ1(ε))
−kσi

]
1
k

− b

}

xn.
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That is

xn+1 6 µ2(ε)xn, n > nε + σi,

which gives

xn 6 µ2(ε)xn−1 6 (µ2(ε))
2xn−2 6 . . . 6 (µ2(ε))

σixn−σi
, n > nε + 2σi,

i.e.,

xn−σi
> (µ2(ε))

−σixn.

Repeating the above process, we obtain

xn+1 6
1

a

{[

ck −

m
∑

i=1

pi(µl−1(ε))
−kσi

]
1
k

− b

}

xn,

i.e.,

(13) xn+1 6 µl(ε)xn, n > nε + (l − 1)σi.

Since lim
ε→0

µl(ε) = λl and lim
l→∞

λl = λ∗, for a sequence {εl} with εl > 0 and εl → 0 as

l → ∞, by (13) there exists a sequence {nl} such that nl → ∞ as l → ∞ and

(14) xn+1 6 (λ∗ + εl)xn, n > nl,

and

(15) xn−σi
> (λ∗ + εl)

−σixn, n > nl + σi.

On the other hand, from (1) we have

(bk − ck)xk
n +

m
∑

i=1

pi(n)xk
n−σi

6 0,

i.e.,

(16) (ck − bk)xk
n >

m
∑

i=1

pi(n)xk
n−σi

.

From (15) and (16) we obtain

(ck − bk)xk
n >

m
∑

i=1

pi(n)(λ∗ + εl)
k(1−σi)xk

n−1,
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i.e.,

(17)
xn

xn−1
>

[

1

ck − bk

m
∑

i=1

pi(n)(λ∗ + εl)
k(1−σi)

]
1
k

, n > nl + σi.

From (1) we have

(18) ck =

(

axn+1 + bxn

xn

)k

+

m
∑

i=1

pi(n)
xk

n−σi

xk
n

.

From (15), (17) and (18) we obtain

(19)

ck
>

{[

a

(

1

ck − bk

m
∑

i=1

pi(n + 1)(λ∗ + εl)
k(1−σi)

)
1
k

+ b

]k

+

m
∑

i=1

pi(n)(λ∗ + εl)
−kσi

}

.

Let l → ∞, then (19) implies

lim sup
n→∞

{[

a

(

1

ck − bk

m
∑

i=1

pi(n + 1)λ
k(1−σi)
∗

)
1
k

+ b

]k

+

m
∑

i=1

pi(n)λ−kσi

∗

}

6 ck,

which contradicts (9) and completes the proof. �

���������� "!
1. Theorems 1 and 2 extend the results on linear difference equations

in [2], [9].

# $%���'&)(*�
1. Consider equation (1). Let

p1(0) =
4

3
, p1(1) =

3

4
, p1(n + 2) = p1(n) for n = 0, 1, 2, . . . ,

p2(0) =
3

4
, p2(1) =

1

2
, p2(n + 2) = p2(n) for n = 0, 1, 2, . . . ,

k = 3, a = 1, b = 1, c = 2, σ1 = 1, σ2 = 2, m = 2.

Then

lim inf
n→∞

p1(n) =
3

4
, lim inf

n→∞

p2(n) =
1

2
,

and
2

∑

i=1

pia
kσi(kσi + 1)kσi+1

kck−1(c − b)kσi+1(kσi)kσi

= 1.32 . . . > 1.

Thus according to Corollary 2, every solution of (1) oscillates.
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# $%���'&)(*�
2. Consider equation (1). Let

p1(0) = 1, p1(1) = 7, p1(n + 2) = p1(n) for n = 0, 1, 2, . . . ,

k = 3, a = 1, b = 1, c = 2, σ1 = 1, m = 1.

Then

lim inf
n→∞

p1(n) = 1.

Hence, the characteristic equation (3) has the largest root λ∗ = 0.8586. Therefore,

lim sup
n→∞

{[

a

(

1

ck − bk

m
∑

i=1

pi(n + 1)λ
k(1−σi)
∗

)
1
k

+ b

]k

+
m

∑

i=1

pi(n)λ−kσi

∗

}

= 9.5799 > 8.

Thus according to Theorem 2, every solution of (1) oscillates.

+-,  �.)�0/1(*�02"3��'��.�4
. The authors thank the referee for useful comments and
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