GENERALIZED DEDUCTIVE SYSTEMS IN SUBREGULAR VARIETIES

Ivan Chajda, Olomouc

(Received November 18, 2002)

Abstract

An algebra $\mathscr{A}=(A, F)$ is subregular alias regular with respect to a unary term function g if for each $\Theta, \Phi \in \operatorname{Con} \mathscr{A}$ we have $\Theta=\Phi$ whenever $[g(a)]_{\Theta}=[g(a)]_{\Phi}$ for each $a \in A$. We borrow the concept of a deductive system from logic to modify it for subregular algebras. Using it we show that a subset $C \subseteq A$ is a class of some congruence on Θ containing $g(a)$ if and only if C is this generalized deductive system. This method is efficient (needs a finite number of steps).

Keywords: regular variety, subregular variety, deductive system, congruence class, difference system

MSC 2000: 08A30, 08B05, 03B22

Let $\mathscr{A}=(A, F)$ be an algebra and $\emptyset \neq C \subseteq A$ a subset. The problem to decide whether C is a class of some congruence $\Theta \in \operatorname{Con} \mathscr{A}$ has been a problem of long standing. In general, it was solved by A.I. Mal'cev in 1954. However, his method is far from being effective. Essential progress was done for certain subsets of A for algebras having a constant 0 . A. Ursini introduced a concept of an ideal in universal algebra [8] and it was shown by him and H.-P. Gumm [7] that in varieties permutable at 0 every 0 -class of each congruence on \mathscr{A} is just an ideal of \mathscr{A} and vice versa. It turns out that for varieties which are permutable at 0 and weakly regular this method is effective, i.e. for a finite algebra of a finite type it can be decided by a finite number of steps of the corresponding algorithmical scheme. This method was extended for an arbitrary congruence class of algebra \mathscr{A} of a regular and permutable variety and it was generalized by the author and R. Bělohlávek [2] to algebras in regular varieties. Recently, we have used another method, the so called deductive systems,

[^0]to characterize 0 -classes in weakly regular varieties (see [5]) or arbitrary congruence classes in algebras of regular varieties, see [3].

If the concept of regularity is weakened to the so called subregularity (see e.g. [1]), one can still use an effective method to characterize certain congruence classes. This is the aim of our paper.
Let us recall that an algebra $\mathscr{A}=(A, F)$ is regular if every $\Theta, \Phi \in$ Con \mathscr{A} coincide whenever they have a class in common. An algebra \mathscr{A} with a constant 0 is weakly regular if every $\Theta, \Phi \in \operatorname{Con} \mathscr{A}$ coincide whenever $[0]_{\Theta}=[0]_{\Phi}$.

These concepts have a common generalization.
Definition 1. Let g be a unary term function of an algebra $\mathscr{A}=(A, F)$. \mathscr{A} is regular with respect to g if $\Theta=\Phi$ for $\Theta, \Phi \in \operatorname{Con} \mathscr{A}$ whenever $[g(a)]_{\Theta}=[g(a)]_{\Phi}$ for each $a \in A$. Let g be a unary term of variety \mathscr{V}. We say that \mathscr{V} is regular with respect to g if each $\mathscr{A} \in \mathscr{V}$ has this property (with respect to the corresponding term function g^{A}).

Regularity with respect to g is known also under the name subregularity, see [1], provided the term g is implicitly given.

Let us mention that if $g(x)=x$ (the identity term) then regularity with respect to g is the regularity; if 0 is a constant of \mathscr{A} and $g(x)=0$ then regularity with respect to g is just the weak regularity.

Definition 2. Let g be a unary term of a variety \mathscr{V}. A finite set $\left\{p_{1}, \ldots, p_{n}\right\}$ of ternary terms $p_{1}, \ldots p_{n}$ of \mathscr{V} is called a g-difference system for \mathscr{V} if

$$
\left[p_{1}(x, y, z)=g(z) \& \ldots \& p_{n}(x, y, z)=g(z)\right] \text { if and only if } x=y
$$

Example. If $g(z)=0$ where 0 is a constant of \mathscr{V} then the g-difference system is just the Gödel equivalence system as introduced in [4] (of course, then every $p_{i}(x, y, z)$ is independent of the last variable thus it is properly binary). If $g(z)=z$ then we have the difference system as introduced in [3].

If $g(z)=z$ and \mathscr{V} is a variety of groups then for $p(x, y, z)=x-y+z$ the singleton $\{p\}$ is a g-difference system; if \mathscr{V} is the variety of Boolean algebras then $\{p\}$ is a g difference system for $p(x, y, z)=x \oplus y \oplus z$, where \oplus denotes the so called symmetrical difference.

Analogously, if \mathscr{V} is the variety of pseudocomplemented semilattices and $g(x)=$ $x^{* *}$ then $\{p\}$ is a g-difference system for $p(x, y, z)=(x+y)+z$ where

$$
x+y=\left(\left(x \wedge y^{*}\right)^{*} \wedge\left(x^{*} \wedge y\right)^{*}\right)^{*} .
$$

An example of a difference system having more than one term was found for MValgebras in [3].

The following useful result was proved in [1]:
Proposition 1. Let g be a unary term of a variety \mathscr{V}. Then \mathscr{V} is regular with respect to g if and only if there exist ternary terms p_{1}, \ldots, p_{m} such that

$$
\left\{p_{1}, \ldots, p_{m}\right\} \text { is a } g \text {-difference system of } \mathscr{V} .
$$

Moreover, every variety \mathscr{V} which is regular with respect to g is n-permutable for some $n \geqslant 2$.

Let us note that m and n in Proposition 1 need not coincide. E.g. for groups we have $n=2$ and $m=1$.
In the sequel we will use the following result which is considered to be a folklore but its formal proof can be found in [6]:

Proposition 2. A variety \mathscr{V} is n-permutable for some $n \geqslant 2$ if and only if for each $\mathscr{A} \in \mathscr{V}$ and every binary relation R on \mathscr{A} the following implication holds: if R is reflexive, transitive and compatible then $R \in \operatorname{Con} \mathscr{A}$.

Recall that a relation R on an algebra $\mathscr{A}=(A, F)$ is compatible (with respect to $F)$ if for each n-ary $f \in F$ and $a_{1}, \ldots, a_{n}, b_{1}, \ldots b_{n} \in A$,

$$
\left\langle a_{i}, b_{i}\right\rangle \in R(i=1, \ldots, n) \Rightarrow\left\langle f\left(a_{1}, \ldots, a_{n}\right), f\left(b_{1}, \ldots, b_{n}\right)\right\rangle \in R ;
$$

in other words, R is compatible if it is a subalgebra of the square $\mathscr{A} \times \mathscr{A}$.
The crucial concept of our paper is the following one:
Definition 3. Let g be a unary term function of an algebra $\mathscr{A}=(A, F)$ and let t_{1}, \ldots, t_{n} be ternary term functions of $\mathscr{A}, z \in A$. A subset $D \subseteq A$ is called a (g, z)-deductive system of \mathscr{A} with respect to $\left\{t_{1}, \ldots, t_{n}\right\}$ if
(i) $g(z) \in D$,
(ii) $a \in D$ and $t_{i}(a, b, z) \in D$ for $i=1, \ldots, n$ imply $b \in D$,
(iii) $a \in D$ implies $t_{i}(g(z), a, z) \in D$ for $i=1, \ldots, n$.

Let us note that (i) and (ii) imply the converse of (iii), thus

$$
a \in D \Leftrightarrow t_{i}(g(z), a, z) \in D \text { for } i=1, \ldots, n .
$$

Example. Let " \Rightarrow " be the connective implication of an arbitrary (e.g. classical, non-classical, intuitionistic, multiple-valued, etc.) logic and D the subset of "tautologies". Then for $g(z)=1$ (the tautology) and $n=1, t_{1}(x, y, z):=x \Rightarrow y$ we surely have
$1 \in D$,
$a \in D$ and $(a \Rightarrow b) \in D$ implies $b \in D$,
$a \in D$ implies $(1 \Rightarrow a) \in D$.
Let R be a binary relation on a set A and $x \in A$. Denote $[x]_{R}=\{a \in A ;\langle a, x\rangle \in$ $R\}$.

Definition 4. Let t_{1}, \ldots, t_{n} be ternary term functions of an algebra $\mathscr{A}=(A, F)$ and $D \subseteq A, z \in A$. Define a binary relation $\Theta_{D, z}$ on A induced by $\left\{t_{1}, \ldots, t_{n}\right\}$ as follows:
$(*) \quad\langle a, b\rangle \in \Theta_{D, z}$ if and only if $t_{i}(b, a, z) \in D$ for $i=1, \ldots, n$.

We are ready to characterize the classes $[g(z)]_{\Theta_{D, z}}$ of $\Theta_{D, z}$.

Lemma 1. Let t_{1}, \ldots, t_{n} be ternary term functions of an algebra $\mathscr{A}=(A, F)$, let g be a unary term function of \mathscr{A} and $z \in A$. If D is a (g, z)-deductive system of \mathscr{A} with respect to $\left\{t_{1}, \ldots, t_{n}\right\}$ and $\Theta_{D, z}$ is induced by $\left\{t_{1}, \ldots, t_{n}\right\}$ then $D=[g(z)]_{\Theta_{D, z}}$.

Proof. Let $a \in D$. By (iii) we have $t_{i}(g(z), a, z) \in D$ for $i=1, \ldots, n$ and, by $(*),\langle a, g(z)\rangle \in \Theta_{D, z}$ which yields $a \in[g(z)]_{\Theta_{D, z}}$. Conversely, if $a \in[g(z)]_{\Theta_{D, z}}$ then $\langle a, g(z)\rangle \in \Theta_{D, z}$, thus $t_{i}(g(z), a, z) \in D$ for $i=1, \ldots, n$. Applying (i) we infer $g(z) \in D$ and, by virtue of (ii), also $a \in D$. Together, $D=[g(z)]_{\Theta_{D, z}}$.

Lemma 2. Let t_{1}, \ldots, t_{n} be ternary term functions of an algebra $\mathscr{A}=(A, F)$, let g be a unary term function of \mathscr{A} and $z \in A, D \subseteq A$. Let $\Theta_{D, z}$ be induced by $\left\{t_{1}, \ldots, t_{n}\right\}$. If $\Theta_{D, z}$ is reflexive and transitive and $D=[g(z)]_{\Theta_{D, z}}$ then D is a (g, z)-deductive system of \mathscr{A} with respect to $\left\{t_{1}, \ldots, t_{n}\right\}$.

Proof. Suppose $a \in D$ and $t_{i}(a, b, z) \in D$ for $i=1, \ldots, n$. Then $\langle b, a\rangle \in \Theta_{D, z}$. Since $D=[g(z)]_{\Theta_{D, z}}$, also $\langle a, g(z)\rangle \in \Theta_{D, z}$. Due to transitivity of $\Theta_{D, z}$, we have $b \in$ $[g(z)]_{\Theta_{D, z}}$, i.e. D satisfies (ii) of Definition 3. The condition (i) follows by reflexivity of $\Theta_{D, z}$ (since $g(z) \in[g(z)]_{\Theta_{D, z}}=D$).

If $a \in D$ then $\langle a, g(z)\rangle \in \Theta_{D, z}$, thus $t_{i}(g(z), a, z) \in D$ for $i=1, \ldots, n$, i.e. D satisfies also (iii) and hence it is a (g, z)-deductive system of \mathscr{A} w.r.t. $\left\{t_{1}, \ldots, t_{n}\right\}$.

Since congruences are compatible relations on an algebra $\mathscr{A}=(A, F)$, we must respect also the substitution property (with respect to F) to describe their classes. Hence, we define:

Definition 5. Let g be a unary and $p_{1}, \ldots, p_{n} n$-ary term functions of an algebra $\mathscr{A}=(A, F)$. We say that $D \subseteq A$ is a compatible (g, z)-deductive system of \mathscr{A}
with respect to $\left\{p_{1}, \ldots, p_{n}\right\}$ if D is a (g, z)-deductive system of \mathscr{A} with respect to $\left\{p_{1}, \ldots, p_{n}\right\}$ and for each k-ary operation $f \in F$ and every $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k} \in A$ the following implication holds:

$$
\begin{aligned}
& \text { if } p_{i}\left(a_{1}, b_{1}, z\right) \in D, \ldots, p_{i}\left(a_{k}, b_{k}, z\right) \in D \text { for } i=1, \ldots, n \\
& \text { then } p_{i}\left(f\left(a_{1}, \ldots, a_{k}\right), f\left(b_{1}, \ldots, b_{k}\right), z\right) \in D \text { for } i=1, \ldots, n
\end{aligned}
$$

Theorem 1. Let g be a unary term of a variety \mathscr{V} and $\left\{p_{1}, \ldots, p_{n}\right\}$ a g-difference system for \mathscr{V}. Let $\mathscr{A}=(A, F) \in \mathscr{V}, \Theta \in \operatorname{Con} \mathscr{A}, z \in A$ and $D=[g(z)]_{\Theta}$. Then
(a) $\Theta_{D, z}=\Theta$;
(b) D is a compatible (g, z)-deductive system of \mathscr{A} with respect to $\left\{p_{1}, \ldots, p_{n}\right\}$.

Proof. If $\langle a, b\rangle \in \Theta_{D, z}$ then $p_{i}(b, a, z) \in D=[g(z)]_{\Theta}$ for $i=1, \ldots, n$ and hence $\left\langle p_{i}(b, a, z), g(z)\right\rangle \in \Theta$. Applying Proposition 1, we infer $\langle b, a\rangle \in \Theta$, thus also $\langle a, b\rangle \in \Theta$ proving $\Theta_{D, z} \subseteq \Theta$.

Conversely, if $\langle a, b\rangle \in \Theta$ then $\langle b, a\rangle \in \Theta$ and, by Proposition 1 again, $\left\langle p_{i}(b, a, z)\right.$, $g(z)\rangle \in \Theta$ for $i=1, \ldots, n$, thus $p_{i}(b, a, z) \in[g(z)]_{\Theta}=D$. By $(*)$ of Definition 4 we conclude $\langle a, b\rangle \in \Theta_{D, z}$ giving $\Theta \subseteq \Theta_{D, z}$. We have shown $\Theta=\Theta_{D, z}$.

By Lemma 2, D is a (g, z)-deductive system of \mathscr{A} with respect to $\left\{p_{1}, \ldots, p_{n}\right\}$. Since $\Theta \in \operatorname{Con} \mathscr{A}$ is compatible, it is an easy exercise to show that also D is compatible.

Theorem 2. Let g be a unary term of a variety \mathscr{V} and $\left\{p_{1}, \ldots, p_{n}\right\}$ a g-difference system for \mathscr{V}. Let $\mathscr{A}=(A, F) \in \mathscr{V}, z \in A$ and let D be a compatible (g, z)deductive system of \mathscr{A} with respect to $\left\{p_{1}, \ldots, p_{n}\right\}$. Then the relation $\Theta_{D, z}$ induced by $\left\{p_{1}, \ldots, p_{n}\right\}$ is a congruence on \mathscr{A} and $D=[g(z)]_{\Theta_{D, z}}$.

Proof. By Proposition $1, \mathscr{V}$ satisfies $p_{i}(x, x, z)=g(z)$ for $i=1, \ldots, n$ and hence the relation $\Theta_{D, z}$ induced by $\left\{p_{1}, \ldots, p_{n}\right\}$ is reflexive. Since the (g, z)-deductive system D is compatible, also $\Theta_{D, z}$ is compatible. Prove transitivity of $\Theta_{D, z}$: let $\langle a, b\rangle \in \Theta_{D, z}$ and $\langle b, c\rangle \in \Theta_{D, z}$. Then $p_{i}(c, b, z) \in D$ for $i=1, \ldots, n$ and, by virtue of compatibility of $\Theta_{D, z}$,

$$
\langle a, b\rangle \in \Theta_{D, z} \Rightarrow\left\langle p_{i}(c, a, z), p_{i}(c, b, z)\right\rangle \in \Theta_{D, z}
$$

whence $p_{j}\left(p_{i}(c, b, z), p_{i}(c, a, z), z\right) \in D$ for $j=1, \ldots, n$. However, D is a (g, z) deductive system of \mathscr{A} with respect to $\left\{p_{1}, \ldots, p_{n}\right\}$, thus, by (ii) of Definition 3, we conclude $p_{i}(c, a, z) \in D$ for $i=1, \ldots, n$. Hence $\langle a, c\rangle \in \Theta_{D, z}$.

By Proposition 1, \mathscr{V} is m-permutable for some $m \geqslant 2$ and, by Proposition 2, $\Theta_{D, z}$ is also symmetrical. Together, we have $\Theta_{D, z} \in \operatorname{Con} \mathscr{A}$. By Lemma 1 we conclude $D=[g(z)]_{\Theta_{D, z}}$.

Corollary 1. Let \mathscr{V} be a variety which is regular with respect to g. Then \mathscr{V} has a g-difference system $\left\{p_{1}, \ldots, p_{n}\right\}$ and for each $\mathscr{A}=(A, F) \in \mathscr{V}, z \in A$ and $D \subseteq A$, D is a congruence class containing $g(z)$ if and only if D is a (g, z)-deductive system of \mathscr{A} with respect to $\left\{p_{1}, \ldots, p_{n}\right\}$.

Although the involved method of (g, z)-deductive systems enables us to characterize only the congruence classes containing $g(a)$ for some $a \in A$ and for $\mathscr{A}=(A, F)$ from a variety which is regular with respect to g, this method is effective in the following sense: if \mathscr{A} is finite and of a finite type, we need to verify only a finite number of conditions of Definition 3 and Definition 5. Thus there exists an algorithmical scheme deciding whether a subset $C \subseteq A$ is a congruence class of \mathscr{A} in a finite number of steps. This scheme depends on the computability of functions p_{1}, \ldots, p_{n}. Applying the same reasoning and a computation as in [3], we obtain:

Corollary 2. Let \mathscr{V} be a variety regular with respect to g and of a finite type with k fundamental operation symbols. Let $\sigma\left(f_{i}\right)$ be the arity of the i-th operation symbol f_{i}. Let $\left\{p_{1}, \ldots, p_{n}\right\}$ be its g-difference system. If $\mathscr{A}=(A, F) \in \mathscr{V}$ is finite and $C \subseteq A, a \in A, g(a) \in C$ and $|A|=m,|C|=r$ then there exists an algorithmical scheme for deciding whether C is a congruence class and this scheme needs

$$
n \sum_{i=1}^{k} m^{2 \sigma_{i}\left(f_{i}\right)}+k \cdot m^{2} \cdot n+r \cdot(m \cdot n+m+n)
$$

steps.

References

[1] Barbour G.D., Raftery J. G.: On the degrees of permutability of subregular varieties. Czechoslovak Math. J. 47 (1997), 317-325.
[2] Bělohlávek R., Chajda I.: Congruence classes in regular varieties. Acta Math. Univ. Comenian. (Bratislava) 68 (1999), 71-75.
[3] Bĕlohlávek R., Chajda I.: Relative deductive systems and congruence classes. Mult.Valued Log. 5 (2000), 259-266.
[4] Blok W., Köhler P., Pigozzi D.: On the structure of varieties with equationally definable principal congruences II. Algebra Univers. 18 (1984), 334-379.
[5] Chajda I.: Congruence kernels in weakly regular varieties. Southeast Asian Bull. Math. 24 (2000), 15-18.
[6] Chajda I., Rachionek J.: Relational characterization of permutable and n-permutable varieties. Czechoslovak Math. J. 33 (1983), 505-508.
[7] Gumm H.-P., Ursini A.: Ideals in universal algebras. Algebra Univers. 19 (1984), 45-54.
[8] Ursini A.: Sulla varietá di algebre con una buona teoria degli ideali. Boll. Unione Mat. Ital. 6 (1972), 90-95.

Author's address: Ivan Chajda, Department of Algebra and Geometry, Palacký University Olomouc, Tomkova 40, 77900 Olomouc, Czech Republic, e-mail: chajda@risc.upol.cz.

[^0]: This work is supported by the Research Grant J98:153100011 of the Czech Republic Government.

