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Abstract. In this paper we introduce and study the concepts of HC-closed set and HC-
limit (HC-cluster) points of L-nets and L-ideals using the notion of almost N -compact
remoted neighbourhoods in L-topological spaces. Then we introduce and study the concept
of HL-continuous mappings. Several characterizations based on HC-closed sets and the
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1. Introduction

Wang in [12], [13] established the Moore-Smith convergence theory in both L-

topological spaces (in the sense of [7]) and L-topological molecular lattices [13] by

using remoted neighbourhoods. Yang in [15] established the convergence theory

of L-ideals in L-topological molecular lattices by using remoted neighbourhoods.

In [1], [3], [5], some extended convergence theories are developed. In [2], [3], the

concept of the N -convergence theory in L-topological spaces by means of the near

N -compactness and remoted neighbourhoods is introduced. In this paper, we further

develop the convergence theory in L-topological spaces by (i) introducing the con-

cepts of the HC-convergence of L-nets and L-ideals, (ii) presenting the notions of the

HC-closure and HC-interior operators in L-topological spaces, and (iii) giving a new

definition of H-continuity in L-topological spaces for the so called HL-continuous

mapping. Then we show several applications of HL-continuity by means of HC-

convergence theory. In Section 3 we define an HC-closed (HC-open) set and discuss

its basic properties. In Section 4 we introduce and study HC-convergence theory of

L-nets and L-ideals, and discuss their various properties and mutual relationships. In
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Section 5 we give and study the concept of an HL-continuous mapping. Several char-

acterizations of HL-continuous mappings by HC-convergence theory of L-nets and

L-ideals are given. In Section 6 we study the relationships between HL-continuous

mappings and other L-valued Zadeh mappings such as L-continuous, CL-continuous

and almost CL-continuous mappings.

2. Preliminaries and definitions

Throughout the paper L denotes a completely distributive complete lattice with

different least and greatest elements 0 and 1 and with an order reversing involution

a → a′. By M(L) we denote the set of all nonzero irreducible elements of L. Let X

be a nonempty crisp set. LX denotes the set of all L-fuzzy sets on X and M(LX) =

{xα ∈ LX : x ∈ X, α ∈ M(L)} is the set of all nonzero irreducible elements (the

so-called L-fuzzy points or molecules) of LX ; 0X and 1X denote respectively the

least and the greatest elements of LX .

Let (LX , τ) be an L-topological space [7], briefly L-ts. For each µ ∈ LX , cl(µ),

int(µ) and µ′ will denote the closure, the interior and the pseudo-complement of µ,

respectively.

An L-fuzzy set µ ∈ LX is called regular closed (regular open) set iff cl(int(µ)) = µ

(int(cl(µ)) = µ). The class of all regular closed and regular open sets in (LX , τ) will

be denoted by RC(LX , τ) and RO(LX , τ), respecively. An L-ts (LX , τ) is called fully

stratified [8] if for each α ∈ L, the L-fuzzy set which assumes the value α at each

point x ∈ X belongs to τ . A mapping F : LX → LY is said to be an L-valued Zadeh

mapping induced by a mapping f : X → Y , iff F (µ)(y) =
∨

{µ(x) : f(x) = y} for

every µ ∈ LX and every y ∈ Y [13]. For Ψ ⊆ LX we define Ψ′ = {µ′ : µ ∈ Ψ}. An L-

valued Zadeh mapping F : (LX , τ) → (LY , ∆) is called L-continuous iff F−1(η) ∈ τ ′

for each η ∈ ∆′. In an obvious way L-topological spaces and L-continuous maps

form a category denoted by L-TOP. For other undefined notions and symbols in this

paper we refer to [7].

Definition 2.1 [12], [13]. Let (LX , τ) be an L-ts and let xα ∈ M(LX). Then

λ ∈ τ ′ is called a remoted neighbourhood (R-nbd, for short) of xα if xα /∈ λ. The

set of all R-nbds of xα is denoted by Rxα
.

Definition 2.2 [16]. Let (LX , τ) be an L-ts and let µ ∈ LX . Now Ψ ⊂ τ ′ is

called

(i) an α-remoted neighbourhood family of µ, briefly α-RF of µ, if for each molecule

xα ∈ µ, there is η ∈ Ψ such that η ∈ Rxα
;

(ii) an α-remoted neighbourhood family of µ, briefly α-RF of µ, if there exists

γ ∈ β∗(α) such that Ψ is an γ-RF of µ where β∗(α) = β(α) ∩ M(L), and β(α)

denotes the union of all minimal sets relative to α.
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Definition 2.3 [6]. Let (LX , τ) be an L-ts and let µ ∈ LX . Now Ψ ⊂ τ ′ is called

(i) an almost α-remoted neighbourhood family of µ, briefly almost α-RF of µ, if

for each molecule xα ∈ µ, there is η ∈ Ψ such that int(η) ∈ Rxα
;

(ii) an almost α-remoted neighbourhood family of µ, briefly almost α-RF of µ, if

there exists γ ∈ β∗(α) such that Ψ is an almost γ-RF of µ.

We denote the set of all nonempty finite subfamilies of Ψ by 2(Ψ).

Definition 2.4 [6]. Let (LX , τ) be an L-ts. µ ∈ LX is almost N -compact in

(LX , τ), if for any α ∈ M(L) and every α-RF Ψ of µ there exists Ψ◦ ∈ 2(Ψ) such that

Ψ◦ is an almost α-RF of µ. An L-ts (LX , τ) is called an almost N -compact space if

1X is an almost N -compact set in (LX , τ).

We need the following result.

Theorem 2.5 [6]. Let (LX , τ) be an L-ts and let µ ∈ LX . Then:

(i) If µ is an almost N -compact set, then for each % ∈ τ ′ (or % ∈ RC(LX , τ)), µ∧ %

is almost N -compact.

(ii) Every closed L-fuzzy set of an almost N -compact set is almost N -compact.

(iii) Every almostN -compact set in a fully stratified LT2-space [8] is a closed L-fuzzy

set.

3. HC-closed L-fuzzy sets

In this section, we first introduce and study the concepts of the HC-closure (NC-

closure) and the HC-interior (NC-interior) operators in L-topological spaces. Sec-

ondly, we discuss the relationships between the HC-closure (HC-interior), NC-closure

(NC-interior),N -closure (N -interior) [3] and closure (interior) [13] operators. Finally,

we give the definition of the HC ·L-topological space and NC ·L-topological space.

Definition 3.1. Let (LX , τ) be an L-ts and let µ ∈ LX . A molecule xα ∈ M(LX)

is called an HC-adherent (NC-adherent) point of µ, written as xα ∈ HC · cl(µ)

(xα ∈ NC · cl(µ)) iff µ /∈ λ for each λ ∈ HC Rxα
(λ ∈ NC Rxα

), where HC Rxα

(NC Rxα
) is the family of all almost N -compact (N -compact) remoted neigh-

bourhoods of xα. Further HC · cl(µ) (NC · cl(µ)) is called the HC-closure (NC-

closure) of µ. If HC · cl(µ) 6 µ (NC · cl(µ) 6 µ), then µ is called an HC-closed

(NC-closed) L-fuzzy set. The complement of an HC-closed (NC-closed) L-fuzzy

set is called an HC-open (NC-open) L-fuzzy set. Let HC · int(µ) =
∨

{% ∈

LX : % is an HC-open L-fuzzy set contained in µ}. We say that HC · int(µ) is the

HC-interior of µ. Similarly, we can define NC · int(µ).
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3.2. It is clear that NC Rxα

⊆ HC Rxα
, because every N -compact set

[15] is almost N -compact [6]. So the properties and characterizations of an NC-

closed set and its related notions are similar to those of an HC-closed set and hence

omitted.

Proposition 3.3. Let (LX , τ) be an L-ts and let µ ∈ LX . Then the following

hold:

(i) µ 6 cl(µ) 6 HC · cl(µ) 6 N · cl(µ) 6 NC · cl(µ) (NC · int(µ) 6 N · int(µ) 6

HC · int(µ) 6 int(µ) 6 µ) for every µ ∈ LX .

(ii) If µ 6 % then HC · cl(µ) 6 HC · cl(%) (HC · int(µ) 6 HC · int(%)).

(iii) µ is HC-open iff µ = HC · int(µ).

(iv) HC · cl(HC · cl(µ)) = HC · cl(µ) (HC · int(HC · int(µ)) = HC · int(µ)).

(v) (HC · cl(µ))′ = HC · int(µ′) and (HC · int(µ))′ = HC · cl(µ′).

(vi) HC · cl(µ) =
∧

{η ∈ LX : η is an HC-closed set containing µ}.

���������
. (i), (ii) and (v) follow directly from the definitions.

(iii) Let µ ∈ LX be HC-open, then HC · int(µ) =
∨

{% ∈ LX : % is HC-open set

contained in µ} = µ. Conversely; let µ = HC · int(µ). Since HC · int(µ) is the join of

all HC-open sets contained in µ, so HC · int(µ) is HC-open and hence µ is HC-open.

(iv) Let xα ∈ M(LX) with xα ∈ HC · cl(HC · cl(µ)). Then HC · cl(µ) � η for

each η ∈ HC Rxα
. Hence there exists yν ∈ M(LX) such that yν ∈ HC · cl(µ) and

yν /∈ η. So µ � η, that is xα ∈ HC · cl(µ). Thus HC · cl(HC · cl(µ)) 6 HC · cl(µ).

On the other hand, HC · cl(µ) 6 HC · cl(HC · cl(µ)) follows from (i) and (ii). Thus

HC · cl(µ) = HC · cl(HC · cl(µ)). The proof of the other case is similar.

(vi) By (i) and (iv), we have that HC · cl(µ) is an HC-closed set containing µ

and so HC · cl(µ) >
∧

{η ∈ LX : η is an HC-closed set containing µ}. Conversely, let

xα ∈ M(LX) be such that xα ∈ HC · cl(µ). Then µ � % for each % ∈ HC Rxα
. Hence,

if η ∈ LX is an HC-closed set containing µ, then η � % and then xα ∈ HC · cl(η) =

η. This implies that HC · cl(µ) 6
∧

{η ∈ LX : η is an HC-closed set containing µ}.

Thus, we have HC · cl(µ) =
∧

{η ∈ LX : η is an HC-closed set containing µ}. �

Theorem 3.4. Let (LX , τ) be an L-ts. The following statements hold:

(i) 1X and 0X are both HC-closed (HC-open).

(ii) Every almost N -compact closed set is HC-closed.

(iii) The union (intersection) of finite HC-closed (HC-open) sets is HC-closed (HC-

open).

(iv) The intersection (union) of arbitrary HC-closed (HC-open) sets is HC-closed

(HC-open).

(v) µ ∈ LX is HC-closed iff there exists η ∈ HC Rxα
such that µ 6 η for each

xα ∈ M(LX) with xα /∈ µ.
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. (i) Obvious.

(ii) Let µ ∈ LX be an almost N -compact closed set in (LX , τ). Let xα ∈ M(LX)

with xα /∈ µ. Since µ is almost N -compact closed, so µ ∈ HC Rxα
. Also, since µ 6 µ,

so by Definition 3.1 we have xα /∈ HC · cl(µ). Thus HC · cl(µ) 6 µ and hence µ is an

HC-closed set.

(iii) Let µ, η ∈ LX be two HC-closed sets in (LX , τ). Let xα ∈ M(LX) and xα ∈

HC · cl(µ ∨ η). Then for each % ∈ HC Rxα
we have µ ∨ η � % and so µ � % or η � %.

Hence xα ∈ HC · cl(µ) or xα ∈ HC · cl(η) and so xα ∈ HC · cl(µ) ∨ HC · cl(η) = µ ∨ η.

Thus µ ∨ η is HC-closed. The proof of the other case is similar.

(iv) Let {µj ∈ LX : j ∈ J} be a family of HC-closed sets. Let xα ∈ M(LX) be

such that xα ∈ HC · cl
(

∧

j∈J

µj

)

. Then for each η ∈ HC Rxα
we have

∧

j∈J

µj � η,

equivalently, µj � η for every j ∈ J . Hence xα ∈ HC · cl(µj) 6 µj for every j ∈ J .

Then xα ∈
∧

j∈J

µj . Thus
∧

J∈J

µj is an HC-closed set in (LX , τ). The proof of the

other case is similar.

(v) Suppose that µ ∈ LX is HC-closed, xα ∈ M(LX) and xα /∈ µ. By Definition 3.1

there exists η ∈ HC Rxα
such that µ 6 η. Conversely, suppose that µ ∈ LX is not

HC-closed, then there exists xα ∈ M(LX) such that xα ∈ HC · cl(µ) and xα /∈ µ.

Hence, µ � η for each η ∈ HC Rxα
, a contradiction with the hypothesis and so µ is

HC-closed. �

Theorem 3.5. Let (LX , τ) be an L-ts. Then the families τHC = {µ ∈ LX :

HC · cl(µ′) = µ′} and τNC = {µ ∈ LX : NC · cl(µ′) = µ′} are L-topologies on LX .

We call (LX , τHC) and (LX , τNC) the HC ·L-topological space and NC ·L-topological

space induced by (LX , τ).

���������
. It is an immediate consequence of Definition 3.1 and Proposition 3.3

and Theorem 3.4. �

Theorem 3.6. Let (LX , τ) be an L-ts. Then:

(i) τNC ⊆ τN [3] ⊆ τHC ⊆ τ .

(ii) If (LX , τ) is N -compact (nearly N -compact, almost N -compact), then τ = τNC

(τ = τN , τ = τHC).

(iii) If (LX , τ) is an LR2-space [13], then τNC = τN = τHC.

(iv) If (LX , τ) is an induced L-ts [9], then τN = τNC.

(v) L-ts (LX , τNC) is an N -compact space.

(vi) L-ts (LX , τHC) is an almost N -compact space.

���������
. Follows immediately from Definition 3.5. �
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4. HC-convergence theory of L-nets and L-ideals

In this section we establish the HC-convergence theories of both the L-nets and

the L-ideals. We discuss the relationship between the HC-convergence of L-ideals

and that of L-nets.

Definition 4.1 [13], [14]. Let (LX , τ) be an L-ts. An L-net in (LX , τ) is a

mapping S : D → M(LX) denoted by S = {S(n); n ∈ D}, where D is a directed set.

S is said to be in µ ∈ LX if for every n ∈ D, S(n) ∈ µ.

Definition 4.2. Let S be an L-net in an L-ts (LX , τ) and let xα ∈ M(LX).

(i) xα is said to be an HC-limit point of S, or net S HC-converges to xα, in symbol

S
HC
−→xα if (∀λ ∈ HC Rxα

) (∃n ∈ D) (∀m ∈ D, m > n) (S(m) /∈ λ).

(ii) xα is said to be an HC-cluster point of S, or net S HC-acumulates to xα, in

symbol S
HC
∝ xα if (∀λ ∈ HC Rxα

) (∀n ∈ D) (∃m ∈ D, m > n) (S(m) /∈ λ).

The union of all HC-limit points and HC-cluster points of S will be denoted by

HC · lim(S) and HC · adh(S), respectively.

Theorem 4.3. Suppose that S is an L-net in (LX , τ), µ ∈ LX and xα ∈ M(LX).

Then the following results are true:

(i) xα ∈ HC · lim(S) iff S
HC
−→xα (xα ∈ HC · adh(S) iff S

HC
∝ xα).

(ii) lim(S) [14] 6 HC · lim(S) (adh(S) [14] 6 HC · adh(S)).

(iii) HC · lim(S) 6 HC · adh(S).

(iv) HC · lim(S) and HC · adh(S) are HC-closed sets in LX .

���������
. (i) Let S

HC
−→xα, so by definition xα ∈ HC · lim(S). Conversely, let

xα ∈ HC · lim(S) and λ ∈ HC Rxα
. Since xα /∈ λ, so HC · lim(S) 66 λ. Therefore

there exists yβ ∈ M(LX) such that yβ ∈ HC · lim(S) but yβ /∈ λ and so λ ∈ HC Ryβ
.

Hence (∃n ∈ D) (∀m ∈ D, m > n) (S(m) /∈ λ). Thus S
HC
−→xα. The proof of the

other case is similar.

(ii) Let xα ∈ lim(S) and η ∈ HC Rxα
. Since HC Rxα

⊆ Rxα
, we have η ∈ Rxα

.

And since xα ∈ lim(S), we have (∃n ∈ D) (∀m ∈ D, m > n) (S(m) /∈ η). Hence

xα ∈ HC · lim(S). So lim(S) 6 HC · lim(S). The proof of the other case is similar.

(iii) Obvious.

(iv) Let xα ∈ HC · cl(HC · lim(S)) and λ ∈ HC Rxα
. Then HC · lim(S) 66 λ. So

there exists yβ ∈ M(LX) such that yβ ∈ HC · lim(S) and yβ /∈ λ. Then (∀% ∈

HC Ryβ
) (∃n ∈ D) (∀m ∈ D, m > n) (S(m) /∈ %) and so S(m) /∈ λ. Hence xα ∈

HC · lim(S). Thus HC · cl(HC · lim(S)) 6 HC · lim(S) and so HC · lim(S) is an HC-

closed set. Similarly, one can easily verify that HC · adh(S) is an HC-closed set. �
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Theorem 4.4. Let (LX , τ) be an L-ts, µ ∈ LX and xα ∈ M(LX). Then xα ∈

HC · cl(µ) iff there is an L-net in µ which HC-converges to xα.���������
. Let xα ∈ HC · cl(µ). Then (∀λ ∈ HC Rxα

) (µ 66 λ) and so there exists

α(µ, λ) ∈ L\{0} such that xα(µ,λ)
∈ µ and xα(µ,λ)

/∈ λ. Since the pair (HC Rxα
, >) is a

directed set so we can define an L-net S : HC Rxα
→ M(LX) given by S(λ) = xα(µ,λ)

,

∀λ ∈ HC Rxα
. Then S is an L-net in µ. Now let % ∈ HC Rxα

be such that % > λ,

so there exists S(%) = xα(µ,%)
/∈ %. Then xα(µ,%)

/∈ λ. So S
HC
−→xα. Conversely; let S

be an L-net in µ with S
HC
−→xα. Then (∀λ ∈ HC Rxα

) (∃n ∈ D) (∀m ∈ D, m > n)

(S(m) /∈ λ). Since S is an L-net in µ, we have µ > S(m) > λ. Hence (∀λ ∈ HC Rxα
)

(µ 66 λ). So xα ∈ HC · cl(µ). �

Theorem 4.5. Let both S = {S(n); n ∈ D} and T = {T (n); n ∈ D} be L-nets in

L-ts (LX , τ) with the same domain and for each n ∈ D, let T (n) > S(n) hold. Then

the following statements hold:

(i) HC · lim(S) 6 HC · lim(T ).

(ii) HC · adh(S) 6 HC · adh(T ).
���������

. (i). Let xα ∈ M(LX) with xα ∈ HC · lim(S), then (∀η ∈ HC Rxα
)

(∃n ∈ D) (∀m ∈ D, m > n) (S(m) /∈ η). Since T (n) > S(n), ∀n ∈ D, so T (m) /∈ η.

Hence (∀η ∈ HC Rxα
) (∃n ∈ D) (∀m ∈ D, m > n) (T (m) /∈ η). So xα ∈ HC · lim(T ).

Hence HC · lim(S) 6 HC · lim(T ).

(ii) The proof is similar to that of (i) and is omitted. �

Theorem 4.6. Let S be an L-net in an L-ts (LX , τ) and let xα ∈ M(LX), then:

(i) S
HC
∝ xα iff there exists an L-subnet T [14] of S such that T

HC
−→xα.

(ii) If S
HC
−→xα, then T

HC
−→xα for each L-subnet T of S.

���������
. (i) Sufficiency follows from the definition of an L-subnet and so we only

prove necessity. Let g : (HC Rxα
, D) → D, so g(η, n) ∈ D. Let xα ∈ HC · adh(S),

then (∀η ∈ HC Rxα
) (∀n ∈ D) (∃g(η, n) ∈ D) (g(η, n) > n) (S(g(η, n)) /∈ η).

Let E = {(g(η, n), η) : η ∈ HC Rxα
, n ∈ D} and define the relation 6 on E as

following: (g(η1, n1), η1) 6 (g(η2, n2), η2) iff n1 6 n2 and η1 6 η2. It is easy to

show that E is a directed set. So we can define an L-net T : E → M(LX) as

follows: T (g(η, n), η) = S(g(η, n)) and T is an L-subnet of S. Now we prove that

T
HC
−→xα. Let η ∈ HC Rxα

, n ∈ D, so (g(η, n), η) ∈ E. Then (∀(g(λ, m), λ) ∈ E)

(g(λ, m), λ) > (g(η, n), η)), hence T (g(λ, m), λ) = S(g(λ, m)) /∈ λ. Since λ > η, so

T (g(λ, m), λ)) /∈ η. Hence T
HC
−→xα.

(ii) follows from the definition of an L-subnet. �

Definition 4.7 [15]. A nonempty family L ⊂ LX is called an L-ideal if the

following conditions are fulfilled, for each µ1, µ2 ∈ LX :
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(i) If µ1 6 µ2 and µ2 ∈ L then µ1 ∈ L.

(ii) If µ1, µ2 ∈ L, then µ1 ∨ µ2 ∈ L.

(iii) 1X /∈ L.

Definition 4.8. Let (LX , τ) be an L-ts and let xα ∈ M(LX). An L-ideal L is

said

(i) to HC-converge to xα, in symbol L
HC
−→xα (or xα is an HC-limit point of L ) if

HC Rxα
⊆ L.

(ii) to HC-accumulates to xα, in symbol L
HC
∝ xα (or xα is an HC-cluster point of L)

if for each µ ∈ L and η ∈ HC Rxα
, µ ∨ η 6= 1X .

The union of all HC-limit points and HC-cluster points of L are denoted by

HC · lim(L) and HC · adh(L), respectively.

Theorem 4.9. Let L be an L-ideal in L-ts (LX , τ) and let xα ∈ M(LX). Then

the following statements hold:

(i) HC · lim(L) 6 HC · adh(L).

(ii) L
HC
−→xα iff xα ∈ HC · lim(L) (L

HC
∝ xα iff xα ∈ HC · adh(L)).

(iii) lim(L) [15] 6 HC · lim(L) (adh(L) [15] 6 HC · adh(L)).

���������
.

(i) Let xα ∈ HC · lim(L). Then for each η ∈ HC Rxα
we have η ∈ L. Hence for

each µ ∈ L, we have η ∨ µ ∈ L and so η ∨ µ 6= 1X . Hence xα ∈ HC · adh(L).

(ii) Let L
HC
−→xα, then by Definition 4.8(i), xα ∈ HC · lim(L). Conversely, let

xα ∈ HC · lim(L) and let η ∈ HC Rxα
. Since xα /∈ η = HC · cl(η), so we

have HC · lim(L) � η. Therefore there exists yγ ∈ M(LX) satisfying yγ ∈

HC · lim(L) but yγ /∈ η, hence η ∈ HC Ryγ
. So we have HC Rxα

⊆ HC Ryγ
⊆ L,

hence HC Rxα
⊆ L. So L

HC
−→xα. Similarly, one can easily verify that xα ∈

HC · adh(L).

(iii) Obvious. �

Definition 4.10 [15]. A nonempty family B ⊂ LX is called an L-ideal base if it

satisfies the following conditions, for each µ1, µ2 ∈ LX :

(i) If µ1, µ2 ∈ B, then there exists µ3 ∈ B such that µ3 > µ1 ∨ µ2 ∈ B.

(ii) 1X 6∈ B.

Then L = {% ∈ LX : % 6 µ for some µ ∈ B} is an L-ideal and it is said to be the

L-ideal generated by B.
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Theorem 4.11. Let L be an L-ideal in an L-ts (LX , τ) and let xα ∈ M(LX). If

xα ∈ HC · adh(L) then there is in LX an L-ideal J ⊇ L with xα ∈ HC · lim(J ).

���������
. Let xα ∈ HC · adh(L), then for each η ∈ HC Rxα

and each µ ∈ L,

η ∨ µ 6= 1X , hence there exists xα ∈ M(LX), xα /∈ η ∨ µ. Choose B = {η ∨ µ : µ ∈

L, η ∈ HC Rxα
}. Then B is an L-ideal base in LX . Then J = {% ∈ LX : % 6

λ for some λ = η ∨ µ} is an L-ideal in LX and we call J the L-ideal generated by

B. It is easy to show that J ⊃ L. Now let η ∈ HC Rxα
. Since xα ∈ HC · adh(L),

so η ∨ µ 6= 1X for each µ ∈ L, hence η ∨ µ ∈ B. Moreover, since η ∨ µ > η ∨ µ, so

η ∨ µ ∈ J and since η 6 η ∨ µ, so η ∈ J . Hence xα ∈ HC · lim(J ). �

Definition 4.12 [15]. An L-ideal L in LX is called maximal if for every L-ideal

L∗, L ⊆ L∗ implies L = L∗.

Theorem 4.13. If L is a maximal L-ideal in an L-ts (LX , τ), then

HC · adh(L) = HC · lim(L).

���������
. It follows from Theorems 4.9 (i) and 4.11. �

Theorem 4.14. Let both L1 and L2 be L-ideals in L-ts (LX , τ) with L1 ⊂ L2.

Then the following statements hold:

(i) HC · lim(L1) 6 HC · lim(L2).

(ii) HC · adh(L1) > HC · adh(L2).

���������
.

(i) Let xα ∈ HC · lim(L1), then η ∈ L1 for each η ∈ HC Rxα
. Since L1 ⊂ L2, so

η ∈ L2. Hence xα ∈ HC · lim(L2). Thus HC · lim(L1) 6 HC · lim(L2).

(ii) Let xα ∈ HC · adh(L2), then η ∨ µ 6= 1X for each η ∈ HC Rxα
and each µ ∈ L2.

Since L1 ⊂ L2, so for each µ ∈ L1 we have η∨µ 6= 1X . Hence xα ∈ HC · adh(L1).

Thus HC · adh(L1) > HC · adh(L2). �

Theorem 4.15. Let L be an L-ideal in an L-ts (LX , τ). Then both HC · lim(L)

and HC · adh(L) are HC-closed set in LX .

���������
. Let xα ∈ HC · cl(HC · lim(L)) and η ∈ HC Rxα

. Then HC · lim(L) 66 η,

so there exists yγ ∈ M(LX) such that yγ ∈ HC · lim(L) and yγ /∈ η. Since yγ ∈

HC · lim(L), so for each % ∈ HC Ryγ
we have % ∈ L. Since yγ /∈ η, we have η ∈ HC Ryγ

and so η ∈ L. Hence xα ∈ HC · lim(L). Thus HC · cl(HC · lim(L)) 6 HC · lim(L). On

the other hand, since HC · lim(L) 6 HC · cl(HC · lim(L)), so HC · cl(HC · lim(L)) =

HC · lim(L). This means that HC · lim(L) is an HC-closed set. Similarly, one can

easily verify that HC · adh(L) is an HC-closed set. �

357



Theorem 4.16. Let (LX , τ) be an L-ts, µ ∈ LX and xα ∈ M(LX). Then

xα ∈ HC · cl(µ) iff there exists an L-ideal L in LX such that L
HC
−→xα and µ 6∈ L.���������

. Let xα ∈ HC · cl(µ). Then for each η ∈ HC Rxα
we have µ 66 η. Let

L = {% ∈ LX : % 6 η for some η ∈ HC Rxα
}. It is easy to show that L is an L-ideal.

It is clear that µ /∈ L. Now we show that L
HC
−→xα. Let λ ∈ HC Rxα

. We have λ ∈ L,

by the definition of L. So HC Rxα
⊆ L. Thus L

HC
−→xα. Conversely; let L be an

L-ideal, µ /∈ L and L
HC
−→xα. Then η ∈ L for each η ∈ HC Rxα

. Since η ∈ L and

µ /∈ L, we conclude µ � η. Hence xα ∈ HC · cl(µ). �

Theorem 4.17. Let F : (LX , τ) → (LY , ∆) be an L-valued Zadeh mapping and

let L1,L2 be L-ideals in LX , LY , respectively. Then F ∗(L1) = {η ∈ LY : (∃µ ∈ L1)

(∀xα ∈ M(LX) (xα /∈ µ) (F (xα) /∈ η)} is an L-ideal in LY . Also, if F is onto, then

F−1(L2) = {F−1(η) : η ∈ L2} is an L-ideal in LX .���������
. Straightforward. �

Definition 4.18 [14], [15]. Let L be an L-ideal in an L-ts (LX , τ) and letD(L) =

{(xα, µ) : xα ∈ M(LX), µ ∈ L and xα /∈ µ}. In D(L) we define the ordering relation

as follows: (xα, µ1) 6 (yγ , µ2) iff µ1 6 µ2. Then (D(L), 6) is a directed set. Now

we define a mapping S(L) : D(L) → M(LX) as follows: S(L)(xα, µ) = xα. So

S(L) = {S(L)(xα, µ) = xα; (xα, µ) ∈ D(L)} is the L-net generated by L.

On the other hand, let S be an L-net in (LX , τ), then L(S) = {µ ∈ LX : (∃n ∈ D)

(∀m ∈ D, m > n) (S(m) /∈ µ)} is the L-ideal generated by S.

Theorem 4.19. Let L be an L-ideal in an L-ts (LX , τ). Then the following

equalities hold:

(i) HC · lim(L) = HC · lim(S(L)).

(ii) HC · adh(L) = HC · adh(S(L)).���������
. (i) Let xα ∈ HC · lim(L), then η ∈ L for each η ∈ HC Rxα

(or HC Rxα
⊆

L). Since η ∈ L and xα /∈ η, so (xα, η) ∈ D(L) where D(L) = {(xα, η) : xα ∈

M(LX), η ∈ L and xα /∈ η}. Since L
HC
−→xα, hence for each η ∈ HC Rxα

there exists

µ ∈ L such that η 6 µ. Since η 6 µ is equivalent to (xα, η) 6 (yγ , µ), we have

S(L)((yγ , µ)) = yγ /∈ η. So for each η ∈ HC Rxα
there exists (xα, η) ∈ D(L) such

that S(L)((yγ , µ)) /∈ η for each (yγ , µ) ∈ D(L) and (yγ , µ) > (xα, η). So S(L)
HC
−→xα.

Hence xα ∈ HC · lim(S(L)). Thus HC · lim(L) 6 HC · lim(S(L)). Conversely, let

xα ∈ HC · lim(S(L)), then for each η ∈ HC Rxα
there exists (zε, λ) ∈ D(L) such

that S(L)((yγ , µ)) /∈ η for each (yγ , µ) ∈ D(L) and (yγ , µ) > (zε, λ). Since (yγ , µ) >

(zε, λ), we have yγ /∈ λ (because µ > λ) and from S(L)((yγ , µ)) = yγ /∈ η we obtain

η 6 λ. Since λ ∈ L, we have η ∈ L. Hence xα ∈ HC · lim(L). So HC · lim(S(L)) 6

HC · lim(L). Hence the equality hold. Thus HC · lim(L) = HC · lim(S(L)).
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(ii) Let xα ∈ HC · adh(L), then η ∨ µ 6= 1X for each η ∈ HC Rxα
and each µ ∈ L.

Since η ∈ HC Rxα
, we have η∨µ 6= 1X for each (yγ , µ) ∈ D(L). Therefore there exists

a molecule zε ∈ M(LX) such that zε /∈ η, zε /∈ µ. So (zε, µ) ∈ D(L) and (zε, µ) >

(yγ , µ), so S(L)(zε, µ) = zε /∈ η. So for each η ∈ HC Rxα
and each (yγ , µ) ∈ D(L)

there exists (zε, µ) ∈ D(L) such that (zε, µ) > (yγ , µ) and S(L)(zε, µ) = zε /∈ η.

So xα ∈ HC · adh(S(L)). Hence HC · adh(L) 6 HC · adh(S(L)). Conversely, let

xα ∈ HC · adh(S(L)). Let η ∈ HC Rxα
and µ ∈ L. Since µ ∈ L, so µ 6= 1X

and there exists yγ ∈ M(LX) such that yγ /∈ µ. So (yγ , µ) ∈ D(L). Now since

xα ∈ HC · adh(S(L)), there exists (zε, λ) ∈ D(L) such that (zε, λ) > (yγ , µ) and

S(L)((zε, λ)) = zε /∈ η. Since zε 6∈ λ, zε /∈ η, so zε /∈ η ∨ λ and λ > µ, so zε /∈ η ∨ µ.

Hence η ∨ µ 6= 1X . So we have η ∨ µ 6= 1X for each η ∈ HC Rxα
and each µ ∈ L.

Hence xα ∈ HC · adh(L). So HC · adh(S(L)) 6 HC · adh(L). Hence the equality is

satisfied. Thus HC · adh(L) = HC · adh(S(L)). �

Theorem 4.20. Suppose that S is an L-net in an L-ts (LX , τ), then:

(i) HC · lim(S) = HC · lim(L(S)).

(ii) HC · adh(S) 6 HC · adh(L(S)).

���������
.

(i) Let xα ∈ HC · lim(S). Then for each η ∈ HC Rxα
there exists m ∈ D such

that S(n) /∈ η for each n ∈ D, n > m. Since S(n) /∈ η, so by the definition

of L(S) we have η ∈ L(S) for each η ∈ HC Rxα
. So HC Rxα

⊆ L(S). Hence

xα ∈ HC · lim(L(S)). So HC · lim(S) 6 HC · lim(L(S)). Conversely, let xα ∈

HC · lim(L(S)). Then for each η ∈ HC Rxα
there exists λ ∈ L(S) such that

η 6 λ. Since λ ∈ L(S), so by the definition of L(S) for each λ ∈ L(S) there

exists m ∈ D such that S(n) /∈ λ for each n ∈ D, n > m. Since η 6 λ, so

S(n) /∈ η. Hence xα ∈ HC · lim(S). So HC · lim(L(S)) 6 HC · lim(S).

(ii) Let xα ∈ HC · adh(S). Then for each η ∈ HC Rxα
and each m ∈ D there exists

n1 ∈ D such that n1 > m and S(n2) /∈ η. By the definition of L(S), for each

λ ∈ L(S) and each m ∈ D there exists n2 ∈ D such that n2 > m and S(n2) /∈ λ.

Since D is a directed set, there exists n3 ∈ D such that n3 > n1, n3 > n2 and

n3 > m. Thus (∀η ∈ HC Rxα
) (∀λ ∈ L(S)) (S(n3) /∈ η ∨ λ). Hence η ∨ λ 6= 1X

and so xα ∈ HC · adh(L(S)). Hence HC · adh(S) 6 HC · adh(L(S)). �

5. HL-continuous mapping

The concept of H-continuous mappings in general topology was introduced by

Long and Hamlett in [10]. Recently, Dang and Behera extended the concept to I-

topology [4] using the almost compactness introduced by Mukherjee and Sinha [11].

But the almost compactness has some shortcomings, for example, it is not a “good
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extension”. In this section, we introduce a new definition of H-continuous mappings

to be called HL-continuous on the basis of the notions of almost N -compactness due

to [6] and R-nbds due to [12].

Definition 5.1. An L-valued Zadeh mapping F : (LX , τ) → (LY , ∆) is said to

be:

(i) H-continuous if F−1(η) ∈ τ ′ for each almost N -compact closed set η in LY .

(ii) H-continuous at a molecule xα ∈ M(LX) if F−1(λ) ∈ Rxα
for each λ ∈

HC RF (xα).

Theorem 5.2. Let F : (LX , τ) → (LY , ∆) be an L-valued Zadeh mapping. Then

the following assertions are equivalent:

(i) F is HL-continuous.

(ii) F is HL-continuous at xα, for each molecule xα ∈ M(LX).

(iii) If η ∈ ∆ and η′ is almost N -compact, then F−1(η) ∈ τ .

These statements are implied by

(iv) If η ∈ LY is almost N -compact, then F−1(η) ∈ τ ′.

Moreover, if (LY , ∆) is a fully stratified LT2-space, all the statements are equiva-

lent.

���������
. (i) =⇒ (ii): Suppose that F : (LX , τ) → (LY , ∆) is HL-continuous,

xα ∈ M(LX) and λ ∈ HC RF (xα), then F−1(λ) ∈ τ ′. Since F (xα) /∈ λ is equivalent

to xα /∈ F−1(λ), so F−1(λ) ∈ Rxα
. Hence F is HL-continuous at xα.

(ii) =⇒ (i): Let F : (LX , τ) → (LY , ∆) be HL-continuous at xα for each xα ∈

M(LX). If F is not HL-continuous, then there is an almost N -compact closed set

η ∈ LY with cl(F−1(η)) 66 F−1(η). Then there exists xα ∈ M(LX) such that

xα ∈ cl(F−1(η)) and xα /∈ F−1(η). Since xα /∈ F−1(η) implies that F (xα) /∈ η,

so η ∈ HC RF (xα). But F−1(η) /∈ Rxα
, a contradiction. Therefore, F must be

HL-continuous.

(i) =⇒ (iii): Let F : (LX , τ) → (LY , ∆) be HL-continuous and η ∈ ∆ with η′ is

almost N -compact. Then by the HL-continuity of F we have F−1(η′) ∈ τ ′, which is

equivalent to (F−1(η))′ ∈ τ ′. So F−1(η) ∈ τ .

(iii) =⇒ (i): Let η ∈ LY be an almost N -compact closed set, so η′ ∈ τ and by (iii)

we have F−1(η′) ∈ τ . Then F−1(η) ∈ τ ′. Hence F is HL-continuous.

(iv) =⇒ (i): Let η ∈ LY be an almost N -compact closed set. By (iv), F−1(η) ∈ τ ′.

Hence F is HL-continuous.

Now suppose that (LY , ∆) is a fully stratified LT2-space.

(i) =⇒ (iv): Let η ∈ LY be an almost N -compact set. Since (LY , ∆) is a fully

stratified LT2-space, so η ∈ ∆′. Thus by (i), F−1(η) ∈ τ ′. �
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Theorem 5.3. Let F : (LX , τ) → (LY , ∆) be a surjective L-valued Zadeh map-

ping. Then the following conditions are equivalent:

(i) F is HL-continuous.

(ii) For each µ ∈ LX , F (cl(µ)) 6 HC · cl(F (µ)).

(iii) For each η ∈ LY , cl(F−1(η)) 6 F−1(HC · cl(η)).

(iv) For each η ∈ LY , F−1(HC · int(η)) 6 int(F−1(η)).

(v) F−1(%) is open in LX for each HC-open set % in LY .

(vi) F−1(λ) is closed in LX for each HC-closed set λ in LY .

���������
. (i) =⇒ (ii): Let µ ∈ LX and xα ∈ cl(µ), then F (xα) ∈ F (cl(µ)). Further

let λ ∈ HC RF (xα), so F−1(λ) ∈ Rxα
by (i). Since xα ∈ cl(µ) and F−1(λ) ∈ Rxα

,

so µ 66 F−1(λ). Since F is onto, so F (µ) > FF−1(λ) = λ. Thus F (µ) 66 λ and

λ ∈ HC RF (xα). So F (xα) ∈ HC · cl(F (µ)). Thus F (cl(µ)) 6 HC · cl(F (µ)).

(ii) =⇒ (iii): Let η ∈ LY . Then F−1(η) ∈ LX . By (ii) we have F (cl(F−1(η))) 6

HC · cl(FF−1(η)) 6 HC · cl(η). Then F (cl(F−1(η))) 6 HC · cl(η) and so F−1F (cl

(F−1(η))) 6 F−1(HC · cl(η)), which implies that cl(F−1(η)) 6 F−1F (cl(F−1(η))) 6

F−1(HC · cl(η)). Thus cl(F−1(η)) 6 F−1(HC · cl(η)).

(iii) =⇒ (iv): Let η ∈ LY , then cl(F−1(η′)) 6 F−1(HC · cl(η′)) by (iii).

Since cl(F−1(η′)) = (int(F−1(η)))′ and F−1(HC · cl(η′)) = (F−1(HC · int(η)))′,

so (int(F−1(η)))′ 6 (F−1(HC · int(η)))′ and taking the complement, int(F−1(η)) >

F−1(HC · int(η)).

(iv) =⇒ (v): Let % ∈ LY be an HC-open set. By (iv), F−1(HC · int(%)) 6

int(F−1(%)), so F−1(%) 6 int(F−1(%)). Thus F−1(%) ∈ τ .

(v) =⇒ (vi): Let λ ∈ LY be an HC-closed set. By (v), F−1(λ′) ∈ τ . Then

(F−1(λ))′ = F−1(λ′) ∈ τ . So F−1(λ) ∈ τ ′.

(vi) =⇒ (i): Let η be an almost N -compact closed set in LY . So by Theorem 3.4

(ii) we obtain that η is an HC-closed set in LY . By (vi), F−1(η) ∈ τ ′. Hence F is

HL-continuous. �

Theorem 5.4. Suppose the mapping F : (LX , τ) → (LY , ∆) from an L-ts (LX , τ)

into an LT2-space (LY , ∆) is L-valued Zadeh HL-continuous. Then the L-valued

Zadeh mapping F |F (X) : (LX , τ) → (LF (X), ∆F (X)) is also HL-continuous.

���������
. It is similar to that of Theorem 3.8 in [4]. �

Theorem 5.5. If F : (LX , τ) → (LY , ∆) is an L-valued Zadeh HL-continuous

mapping and A ⊆ X , then the L-valued Zadeh mapping F |A : (LA, τA) → (LY , ∆)

is HL-continuous.

���������
. Let η ∈ LY be an almost N -compact and closed. Since F is HL-

continuous, so F−1(η) ∈ τ ′ and (F |A)−1(η) = F−1(η) ∧ 1A ∈ τ ′

A. Hence F |A :

(LA, τA) → (LY , ∆) is HL-continuous. �
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It is easy to show that the composition of two HL-continuous mappings need not

be HL-continuous. However, we have the following result.

Theorem 5.6. If F : (LX , τ1) → (LY , τ2) is L-valued Zadeh continuous and

G : (LY , τ2) → (LZ , τ3) is L-valued Zadeh HL-continuous, then the L-valued Zadeh

mapping G ◦ F : (LX , τ1) → (LZ , τ3) is HL-continuous.

���������
. Straighforward. �

Theorem 5.7. If (LX , τ) and (LY , ∆) are L-ts’s and 1X = 1A∨1B , where 1A and

1B are closed sets in LX and F : (LX , τ) → (LY , ∆) is an L-valued Zadeh mapping

such that F |A and F |B are HL-continuous, then F is HL-continuous.

���������
. Let 1A, 1B ∈ τ ′. Let µ ∈ LY be an almost N -compact and closed.

Then (F |A)−1(µ) ∨ (F |B)−1(µ) = (F−1(µ) ∧ 1A) ∨ (F−1(µ) ∧ 1B) = F−1(µ) ∧ (1A ∨

1B) = F−1(µ) ∧ 1X = F−1(µ). Hence F−1(µ) = (F |A)−1(µ) ∨ (F |B)−1(µ) ∈ τ ′. So

F : (LX , τ) → (LY , ∆) is HL-continuous. �

Theorem 5.8. If F : (LX , τ) → (LY , ∆) is an injective L-valued Zadeh HL-

continuous mapping and (LY , ∆) is an N -compact LT1-space [8], then (LX , τ) is an

LT1-space.���������
. Let xα, yβ ∈ M(LX) be such that x 6= y. Since F is injective, so

F (xα) and F (yβ) are in M(LY ) with F (x) 6= F (y). Since (LY , ∆) is an LT1-space,

so F (xα) and F (yβ) are closed sets in (LY , ∆). Also, since (LY , ∆) is N -compact, so

F (xα) and F (yβ) are N -compact and closed sets, hence F (xα) and F (yβ) are almost

N -compact and closed sets. Now, since F is HL-continuous, so F−1F (xα) = xα and

F−1F (yβ) = yβ are closed in (LX , τ). Hence (LX , τ) is an LT1-space. �

Theorem 5.9. Let F : (LX , τ) → (LY , ∆) be an L-valued Zadeh mapping. Then

the following conditions are equivalent:

(i) F is HL-continuous.

(ii) For each xα ∈ M(LX) and each L-net S in LX , F (S)
HC
−→F (xα) if S → xα and

F is onto.

(iii) F (lim(S)) 6 HC · lim(F (S)), for each L-net S in LX .

���������
. (i) =⇒ (ii): Let xα ∈ M(LX) and let S = {xn

αn
; n ∈ D} be an L-net

in LX which converges to xα. Let η ∈ HC RF (xα), then by (i), F
−1(η) ∈ Rxα

. Since

S → xα, there exists n ∈ D such that for each m ∈ D and m > n, S(m) /∈ F−1(η).

Then F (S(m)) /∈ FF−1(η) = η, thus F (S(m)) /∈ η. Hence F (S)
HC
−→F (xα).

(ii) =⇒ (iii): Let xα ∈ HC · lim(S), then F (xα) ∈ F (HC · lim(S)) and by (ii) also

F (xα) ∈ HC · lim(F (S)). Thus F (HC · lim(S)) 6 HC · lim(F (S)).
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(iii) =⇒ (i): Let η ∈ LY be HC-closed and let xα ∈ M(LX) with xα ∈ cl(F−1(η)).

Then by Theorem 2.8 in [14], there exists an L-net S in F−1(η) which converges to

xα. Since xα ∈ lim(S), hence F (xα) ∈ F (lim(S)). By (iii), F (xα) ∈ F (lim(S)) 6

HC · lim(F (S)) and so F (S)
HC
−→F (xα). Since S is an L-net in F−1(η), we have

S(n) ∈ F−1(η) for each n ∈ D. Thus F (S(n)) ∈ FF−1(η) 6 η. So F (S(n)) ∈ η

for each n ∈ D. Hence F (S) is an L-net in η. Since F (S)
HC
−→F (xα) and F (S) is

an L-net in η, so by Theorem 4.4, F (xα) ∈ HC · cl(η). But since η is HC-closed, so

η = HC · cl(η). Thus F (xα) ∈ η. Hence xα ∈ F−1(η). So cl(F−1(η)) 6 F−1(η).

Hence F−1(η) ∈ τ ′. Consequently, F is HL-continuous. �

Theorem 5.10. Let F : (LX , τ) → (LY , ∆) be an L-valued Zadeh mapping.

Then the following conditions are equivalent:

(i) F is HL-continuous.

(ii) For each xα ∈ M(LX) and each L-ideal L which converges to xα in LX , F ∗(L)

HC-converges to F (xα).

(iii) F (lim(L)) 6 HC · lim(F ∗(L)) for each L-ideal L in LX .

���������
. Follows directly from Theorems 4.20 and 5.9. �

6. Comparison of L-valued Zadeh mappings

Definition 6.1. An L-valued Zadeh mapping F : (LX , τ) → (LY , ∆) is said to

be:

(i) almost L-continuous iff F−1(η) ∈ τ ′ for each regular closed set η ∈ LY ,

(ii) CL-continuous iff F−1(η) ∈ τ ′ for each N -compact and closed set η ∈ LY .

Theorem 6.2. Every HL-continuous mapping is CL-continuous. The converse is

true if the codomain of the mapping is an LR2-space.

���������
. Let F : (LX , τ) → (LY , ∆) be L-valued Zadeh HC-continuous and let

η in LY be an N -compact and closed set. Since every N -compact set is almost

N -compact, hence η is almost N -compact and closed. By HL-continuity of F we

have F−1(η) ∈ τ ′. So F is CL-continuous. Conversely; let F : (LX , τ) → (LY , ∆) be

L-valued Zadeh CL-continuous and let (LY , ∆) be an LR2-space. Let η ∈ LY be an

almost N -compact closed set, then by Theorem 3.10 in [6] η is N -compact closed. By

CL-continuity of F we have F−1(η) ∈ τ ′. So F is an HL-continuous mapping. �
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Theorem 6.3. Every L-continuous mapping is HL-continuous.

���������
. Let F : (LX , τ) → (LY , ∆) be an L-valued Zadeh L-continuous map-

ping and η ∈ LY an almost N -compact closed set. Then η ∈ ∆′, so by L-continuity

of F we have F−1(η) ∈ τ ′. Thus F is HL-continuous. �

The following example shows that not every HL-continuous mapping is L-

continuous.

� �������! "

6.4. If L = [0, 1], then the mapping defined in Example 3.6 in [4] is

HL-continuous but not L-continuous.

Theorem 6.5. If F : (LX , τ) → (LY , ∆) is an L-valued Zadeh almost L-

continuous, bijective mapping and (LY , ∆) is a fully stratified LT2-space, then

F−1 : (LY , ∆) → (LX , τ) is HL-continuous.

���������
. Let µ ∈ LX be an almost N -compact and closed set. Since F is almost

L-continuous so by Theorem 4.2 in [6], F (µ) is almost N -compact in (LY , ∆). Also,

since (LY , ∆) is a fully stratified LT2-space, so F (µ) ∈ ∆′. Thus F (µ) is almost

N -compact closed and (F−1)−1(µ) = F (µ) ∈ ∆′. Hence F−1 : (LY , ∆) → (LX , τ) is

HL-continuous. �

The following theorem shows that under some reasonable conditions HL-continuity

and L-continuity are equivalent.

Theorem 6.6. Let F : (LX , τ) → (LY , ∆) be L-valued Zadeh HL-continuous and

let (LY , ∆) be a fully stratified LT2-space. If F (1X) is an L-fuzzy set of an almost

N -compact set of LY , then F is L-continuous.

���������
. Let λ ∈ ∆′ and let η ∈ LY be an almost N -compact set containing

F (1X). Since η ∈ LY is almostN -compact and (LY , ∆) is a fully stratified LT2-space,

so η ∈ ∆′. Thus η ∧ λ ∈ ∆′. Hence by Theorem 2.5 (ii), η ∧ λ is almost N -compact.

Thus η∧λ ∈ LY is an almostN -compact and closed set. Since F is HL-continuous, we

have F−1(η∧λ) ∈ τ ′. But F−1(η∧λ) = F−1(η)∧F−1(λ) = 1X ∧F−1(λ) = F−1(λ),

so F−1(λ) ∈ τ ′. Hence F is L-continuous. �

Corollary 6.7. Let (LX , τ) be an almost N -compact space and (LY , ∆) a fully

stratified LT2-space. If F : (LX , τ) → (LY , ∆) is a bijective L-valued Zadeh L-

continuous mapping, then F is an L-homeomorphism [7].

���������
. By Theorem 6.5, F−1 is HL-continuous and by Theorem 6.6, F−1 is

L-continuous. �
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Theorem 6.8. For an L-valued Zadeh mapping F : (LX , τ) → (LY , ∆) the fol-

lowing assertions hold:

(i) F : (LX , τ) → (LY , ∆) is HL-continuous iff F ∗ : (LX , τ) → (LY , ∆HC) is L-

continuous.

(ii) F : (LX , τ) → (LY , ∆) is CL-continuous iff F ∗ : (LX , τ) → (LY , ∆NC) is L-

continuous.

(iii) The identity mappings IY : (LY , ∆) → (LY , ∆HC) and IY
∗ : (LY , ∆HC) →

(LY , ∆NC) are L-continuous.

(iv) I−1
Y : (LY , ∆HC) → (LY , ∆) is HL-continuous and IY

∗−1
: (LY , ∆NC) →

(LY , ∆HC) is CL-continuous.���������
. Straightforward. �

Theorem 6.9. Let F : (LX , τ) → (LY , ∆) be an L-valued Zadeh HL-continuous

mapping. If F ∗ : (LX , τ) → (LY , ∆HC) is an L-closed (L-open) mapping, then so

is F.���������
. Let µ be a closed set in (LX , τ). By hypothesis, F ∗(µ) is a closed set

in (LY , ∆HC). By Theorem 6.8 (iii), the identity map IY : (LY , ∆) → (LY , ∆HC)

is L-continuous, so I−1
Y (F ∗(µ)) is a closed set in (LY , ∆). But I−1

Y ◦ F ∗ = F , so

I−1
Y (F ∗(µ)) = F (µ) is a closed set in (LY , ∆). Thus F is an L-closed mapping. The

proof for the case in the parentheses is similar. �

Corollary 6.10. If F : (LX , τ) → (LY , ∆) is a bijective L-valued Zadeh HL-

continuous mapping and F ∗ : (LX , τ) → (LY , ∆HC) is an L-valued Zadeh L-closed

(or L-open) mapping, then F−1 is L-continuous.���������
. Let F ∗ be a L-closed (L-open) mapping and µ a closed (open) set in

(LX , τ). Then by Theorem 6.9, F is a L-closed (open) mapping, so F (µ) is a closed

(open) set in (LY , ∆). But F (µ) = (F−1)−1(µ). Thus F−1 is L-continuous. �

Theorem 6.11. Let (LX , τ) be an L-ts. If (LX , τHC) is an LT2-space, then

(LX , τ) is an almost N -compact space.���������
. Let Φ = {ηj : j ∈ J} ⊂ τ ′ be an α-RF of 1X . Since (LX , τHC) is an

LT2-space and τHC
′ ⊂ τ ′, there exist almost N -compact closed sets µ and λ with

µ ∨ λ = 1X . Since µ and λ are almost N -compact sets, there exist Φk = {ηjk
: k =

1, 2, . . . , n} ∈ 2(Φ) and Φh = {ηjh
: h = 1, 2, . . . , m} ∈ 2(Φ) with Φk and Φh are

almost α-RF of µ and λ, respectively. Thus for each xγ1 ∈ µ there exists ηjk
∈ Φk

with ηjk
∈ Rxγ1

and also for each xγ2 ∈ λ there exists ηjh
∈ Φh with ηjh

∈ Rxγ2
,

where γ1, γ2 ∈ β∗(α). Now, since Φk ∨ Φh ∈ 2(Φ), so for each x(γ1∨γ2) ∈ µ ∨ λ = 1X

there exists ηjl
∈ (Φk ∨ Φh) with ηjl

∈ R(xγ1∨γ2)
. Hence (LX , τ) is an almost N -

compact space. �
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Theorem 6.12. Let F : (LX , τ) → (LY , ∆) be an L-valued Zadeh HL-continuous

mapping. If (LY , ∆HC) is a fully stratified LT2-space, then F is L-continuous.

���������
. Follows from Theorems 6.6 and 6.11. �
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