HC-CONVERGENCE THEORY OF *L*-NETS AND *L*-IDEALS AND SOME OF ITS APPLICATIONS

A. A. NOUH, Makkah

(Received August 5, 2002)

Abstract. In this paper we introduce and study the concepts of HC-closed set and HC-limit (HC-cluster) points of L-nets and L-ideals using the notion of almost N-compact remoted neighbourhoods in L-topological spaces. Then we introduce and study the concept of HL-continuous mappings. Several characterizations based on HC-closed sets and the HC-convergence theory of L-nets and L-ideals are presented for HL-continuous mappings.

Keywords: *L*-topology, remoted neighbourhood, almost *N*-compactness, HC-closed set, HL-continuity, *L*-net, *L*-ideal, HC-convergence theory

MSC 2000: 54A20, 54A40, 54C08, 54H123

1. INTRODUCTION

Wang in [12], [13] established the Moore-Smith convergence theory in both Ltopological spaces (in the sense of [7]) and L-topological molecular lattices [13] by using remoted neighbourhoods. Yang in [15] established the convergence theory of L-ideals in L-topological molecular lattices by using remoted neighbourhoods. In [1], [3], [5], some extended convergence theories are developed. In [2], [3], the concept of the N-convergence theory in L-topological spaces by means of the near N-compactness and remoted neighbourhoods is introduced. In this paper, we further develop the convergence theory in L-topological spaces by (i) introducing the concepts of the HC-convergence of L-nets and L-ideals, (ii) presenting the notions of the HC-closure and HC-interior operators in L-topological spaces, and (iii) giving a new definition of H-continuity in L-topological spaces for the so called HL-continuous mapping. Then we show several applications of HL-continuity by means of HCconvergence theory. In Section 3 we define an HC-closed (HC-open) set and discuss its basic properties. In Section 4 we introduce and study HC-convergence theory of L-nets and L-ideals, and discuss their various properties and mutual relationships. In

Section 5 we give and study the concept of an HL-continuous mapping. Several characterizations of HL-continuous mappings by HC-convergence theory of L-nets and L-ideals are given. In Section 6 we study the relationships between HL-continuous mappings and other L-valued Zadeh mappings such as L-continuous, CL-continuous and almost CL-continuous mappings.

2. Preliminaries and definitions

Throughout the paper L denotes a completely distributive complete lattice with different least and greatest elements 0 and 1 and with an order reversing involution $a \to a'$. By M(L) we denote the set of all nonzero irreducible elements of L. Let Xbe a nonempty crisp set. L^X denotes the set of all L-fuzzy sets on X and $M(L^X) =$ $\{x_{\alpha} \in L^X : x \in X, \alpha \in M(L)\}$ is the set of all nonzero irreducible elements (the so-called L-fuzzy points or molecules) of L^X ; 0_X and 1_X denote respectively the least and the greatest elements of L^X .

Let (L^X, τ) be an *L*-topological space [7], briefly *L*-ts. For each $\mu \in L^X$, $cl(\mu)$, $int(\mu)$ and μ' will denote the closure, the interior and the pseudo-complement of μ , respectively.

An L-fuzzy set $\mu \in L^X$ is called regular closed (regular open) set iff $cl(int(\mu)) = \mu$ (int($cl(\mu)$) = μ). The class of all regular closed and regular open sets in (L^X, τ) will be denoted by $RC(L^X, \tau)$ and $RO(L^X, \tau)$, respecively. An L-ts (L^X, τ) is called fully stratified [8] if for each $\alpha \in L$, the L-fuzzy set which assumes the value α at each point $x \in X$ belongs to τ . A mapping $F \colon L^X \to L^Y$ is said to be an L-valued Zadeh mapping induced by a mapping $f \colon X \to Y$, iff $F(\mu)(y) = \bigvee \{\mu(x) \colon f(x) = y\}$ for every $\mu \in L^X$ and every $y \in Y$ [13]. For $\Psi \subseteq L^X$ we define $\Psi' = \{\mu' \colon \mu \in \Psi\}$. An Lvalued Zadeh mapping $F \colon (L^X, \tau) \to (L^Y, \Delta)$ is called L-continuous iff $F^{-1}(\eta) \in \tau'$ for each $\eta \in \Delta'$. In an obvious way L-topological spaces and L-continuous maps form a category denoted by L-TOP. For other undefined notions and symbols in this paper we refer to [7].

Definition 2.1 [12], [13]. Let (L^X, τ) be an *L*-ts and let $x_\alpha \in M(L^X)$. Then $\lambda \in \tau'$ is called a remoted neighbourhood (*R*-nbd, for short) of x_α if $x_\alpha \notin \lambda$. The set of all *R*-nbds of x_α is denoted by R_{x_α} .

Definition 2.2 [16]. Let (L^X, τ) be an *L*-ts and let $\mu \in L^X$. Now $\Psi \subset \tau'$ is called

- (i) an α -remoted neighbourhood family of μ , briefly α -RF of μ , if for each molecule $x_{\alpha} \in \mu$, there is $\eta \in \Psi$ such that $\eta \in R_{x_{\alpha}}$;
- (ii) an $\overline{\alpha}$ -remoted neighbourhood family of μ , briefly $\overline{\alpha}$ -RF of μ , if there exists $\gamma \in \beta^*(\alpha)$ such that Ψ is an γ -RF of μ where $\beta^*(\alpha) = \beta(\alpha) \cap M(L)$, and $\beta(\alpha)$ denotes the union of all minimal sets relative to α .

Definition 2.3 [6]. Let (L^X, τ) be an *L*-ts and let $\mu \in L^X$. Now $\Psi \subset \tau'$ is called

- (i) an almost α-remoted neighbourhood family of μ, briefly almost α-RF of μ, if for each molecule x_α ∈ μ, there is η ∈ Ψ such that int(η) ∈ R_{x_α};
- (ii) an almost $\overline{\alpha}$ -remoted neighbourhood family of μ , briefly almost $\overline{\alpha}$ -RF of μ , if there exists $\gamma \in \beta^*(\alpha)$ such that Ψ is an almost γ -RF of μ .

We denote the set of all nonempty finite subfamilies of Ψ by $2^{(\Psi)}$.

Definition 2.4 [6]. Let (L^X, τ) be an *L*-ts. $\mu \in L^X$ is almost *N*-compact in (L^X, τ) , if for any $\alpha \in M(L)$ and every α -RF Ψ of μ there exists $\Psi_{\circ} \in 2^{(\Psi)}$ such that Ψ_{\circ} is an almost $\overline{\alpha}$ -RF of μ . An *L*-ts (L^X, τ) is called an almost *N*-compact space if 1_X is an almost *N*-compact set in (L^X, τ) .

We need the following result.

Theorem 2.5 [6]. Let (L^X, τ) be an L-ts and let $\mu \in L^X$. Then:

- (i) If μ is an almost N-compact set, then for each $\rho \in \tau'$ (or $\rho \in \text{RC}(L^X, \tau)$), $\mu \land \rho$ is almost N-compact.
- (ii) Every closed L-fuzzy set of an almost N-compact set is almost N-compact.
- (iii) Every almost N-compact set in a fully stratified LT₂-space [8] is a closed L-fuzzy set.

3. HC-closed *L*-fuzzy sets

In this section, we first introduce and study the concepts of the HC-closure (NCclosure) and the HC-interior (NC-interior) operators in *L*-topological spaces. Secondly, we discuss the relationships between the HC-closure (HC-interior), NC-closure (NC-interior), *N*-closure (*N*-interior) [3] and closure (interior) [13] operators. Finally, we give the definition of the HC $\cdot L$ -topological space and NC $\cdot L$ -topological space.

Definition 3.1. Let (L^X, τ) be an *L*-ts and let $\mu \in L^X$. A molecule $x_\alpha \in M(L^X)$ is called an HC-adherent (NC-adherent) point of μ , written as $x_\alpha \in \text{HC} \cdot \text{cl}(\mu)$ $(x_\alpha \in \text{NC} \cdot \text{cl}(\mu))$ iff $\mu \notin \lambda$ for each $\lambda \in \text{HC} R_{x_\alpha}$ ($\lambda \in \text{NC} R_{x_\alpha}$), where $\text{HC} R_{x_\alpha}$ (NC R_{x_α}) is the family of all almost *N*-compact (*N*-compact) remoted neighbourhoods of x_α . Further $\text{HC} \cdot \text{cl}(\mu)$ (NC $\cdot \text{cl}(\mu)$) is called the HC-closure (NCclosure) of μ . If $\text{HC} \cdot \text{cl}(\mu) \leqslant \mu$ (NC $\cdot \text{cl}(\mu) \leqslant \mu$), then μ is called an HC-closed (NC-closed) *L*-fuzzy set. The complement of an HC-closed (NC-closed) *L*-fuzzy set is called an HC-open (NC-open) *L*-fuzzy set. Let $\text{HC} \cdot \text{int}(\mu) = \bigvee \{ \varrho \in L^X : \varrho \text{ is an HC-open } L\text{-fuzzy set contained in } \mu \}$. We say that $\text{HC} \cdot \text{int}(\mu)$ is the HC-interior of μ . Similarly, we can define $\text{NC} \cdot \text{int}(\mu)$.

R e m a r k 3.2. It is clear that NC $R_{x_{\alpha}} \subseteq$ HC $R_{x_{\alpha}}$, because every N-compact set [15] is almost N-compact [6]. So the properties and characterizations of an NC-closed set and its related notions are similar to those of an HC-closed set and hence omitted.

Proposition 3.3. Let (L^X, τ) be an L-ts and let $\mu \in L^X$. Then the following hold:

(i) $\mu \leq \operatorname{cl}(\mu) \leq \operatorname{HC} \cdot \operatorname{cl}(\mu) \leq N \cdot \operatorname{cl}(\mu) \leq \operatorname{NC} \cdot \operatorname{cl}(\mu) (\operatorname{NC} \cdot \operatorname{int}(\mu) \leq N \cdot \operatorname{int}(\mu) \leq \operatorname{HC} \cdot \operatorname{int}(\mu) \leq \operatorname{int}(\mu) \leq \mu)$ for every $\mu \in L^X$.

(ii) If $\mu \leq \rho$ then $\operatorname{HC} \cdot \operatorname{cl}(\mu) \leq \operatorname{HC} \cdot \operatorname{cl}(\rho)$ ($\operatorname{HC} \cdot \operatorname{int}(\mu) \leq \operatorname{HC} \cdot \operatorname{int}(\rho)$).

(iii) μ is HC-open iff $\mu = \text{HC} \cdot \text{int}(\mu)$.

(iv) $\operatorname{HC} \cdot \operatorname{cl}(\operatorname{HC} \cdot \operatorname{cl}(\mu)) = \operatorname{HC} \cdot \operatorname{cl}(\mu) \ (\operatorname{HC} \cdot \operatorname{int}(\operatorname{HC} \cdot \operatorname{int}(\mu)) = \operatorname{HC} \cdot \operatorname{int}(\mu)).$

- (v) $(\operatorname{HC} \cdot \operatorname{cl}(\mu))' = \operatorname{HC} \cdot \operatorname{int}(\mu')$ and $(\operatorname{HC} \cdot \operatorname{int}(\mu))' = \operatorname{HC} \cdot \operatorname{cl}(\mu')$.
- (vi) $\operatorname{HC} \cdot \operatorname{cl}(\mu) = \bigwedge \{ \eta \in L^X : \eta \text{ is an HC-closed set containing } \mu \}.$

 $P\,r\,o\,o\,f.~(i),\,(ii)$ and (v) follow directly from the definitions.

(iii) Let $\mu \in L^X$ be HC-open, then $\operatorname{HC} \cdot \operatorname{int}(\mu) = \bigvee \{ \varrho \in L^X : \varrho \text{ is HC-open set}$ contained in $\mu \} = \mu$. Conversely; let $\mu = \operatorname{HC} \cdot \operatorname{int}(\mu)$. Since $\operatorname{HC} \cdot \operatorname{int}(\mu)$ is the join of all HC-open sets contained in μ , so $\operatorname{HC} \cdot \operatorname{int}(\mu)$ is HC-open and hence μ is HC-open.

(iv) Let $x_{\alpha} \in M(L^X)$ with $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{cl}(\operatorname{HC} \cdot \operatorname{cl}(\mu))$. Then $\operatorname{HC} \cdot \operatorname{cl}(\mu) \nleq \eta$ for each $\eta \in \operatorname{HC} R_{x_{\alpha}}$. Hence there exists $y_{\nu} \in M(L^X)$ such that $y_{\nu} \in \operatorname{HC} \cdot \operatorname{cl}(\mu)$ and $y_{\nu} \notin \eta$. So $\mu \nleq \eta$, that is $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{cl}(\mu)$. Thus $\operatorname{HC} \cdot \operatorname{cl}(\operatorname{HC} \cdot \operatorname{cl}(\mu)) \leqslant \operatorname{HC} \cdot \operatorname{cl}(\mu)$. On the other hand, $\operatorname{HC} \cdot \operatorname{cl}(\mu) \leqslant \operatorname{HC} \cdot \operatorname{cl}(\operatorname{HC} \cdot \operatorname{cl}(\mu))$ follows from (i) and (ii). Thus $\operatorname{HC} \cdot \operatorname{cl}(\mu) = \operatorname{HC} \cdot \operatorname{cl}(\operatorname{HC} \cdot \operatorname{cl}(\mu))$. The proof of the other case is similar.

(vi) By (i) and (iv), we have that $\operatorname{HC} \cdot \operatorname{cl}(\mu)$ is an HC-closed set containing μ and so $\operatorname{HC} \cdot \operatorname{cl}(\mu) \ge \bigwedge \{\eta \in L^X : \eta \text{ is an HC-closed set containing } \mu\}$. Conversely, let $x_\alpha \in M(L^X)$ be such that $x_\alpha \in \operatorname{HC} \cdot \operatorname{cl}(\mu)$. Then $\mu \not\le \varrho$ for each $\varrho \in \operatorname{HC} R_{x_\alpha}$. Hence, if $\eta \in L^X$ is an HC-closed set containing μ , then $\eta \not\le \varrho$ and then $x_\alpha \in \operatorname{HC} \cdot \operatorname{cl}(\eta) =$ η . This implies that $\operatorname{HC} \cdot \operatorname{cl}(\mu) \le \bigwedge \{\eta \in L^X : \eta \text{ is an HC-closed set containing } \mu\}$. Thus, we have $\operatorname{HC} \cdot \operatorname{cl}(\mu) = \bigwedge \{\eta \in L^X : \eta \text{ is an HC-closed set containing } \mu\}$. \Box

Theorem 3.4. Let (L^X, τ) be an L-ts. The following statements hold:

- (i) 1_X and 0_X are both HC-closed (HC-open).
- (ii) Every almost N-compact closed set is HC-closed.
- (iii) The union (intersection) of finite HC-closed (HC-open) sets is HC-closed (HC-open).
- (iv) The intersection (union) of arbitrary HC-closed (HC-open) sets is HC-closed (HC-open).
- (v) $\mu \in L^X$ is HC-closed iff there exists $\eta \in \text{HC } R_{x_\alpha}$ such that $\mu \leq \eta$ for each $x_\alpha \in M(L^X)$ with $x_\alpha \notin \mu$.

Proof. (i) Obvious.

(ii) Let $\mu \in L^X$ be an almost N-compact closed set in (L^X, τ) . Let $x_\alpha \in M(L^X)$ with $x_\alpha \notin \mu$. Since μ is almost N-compact closed, so $\mu \in \operatorname{HC} R_{x_\alpha}$. Also, since $\mu \leqslant \mu$, so by Definition 3.1 we have $x_\alpha \notin \operatorname{HC} \cdot \operatorname{cl}(\mu)$. Thus $\operatorname{HC} \cdot \operatorname{cl}(\mu) \leqslant \mu$ and hence μ is an HC-closed set.

(iii) Let $\mu, \eta \in L^X$ be two HC-closed sets in (L^X, τ) . Let $x_\alpha \in M(L^X)$ and $x_\alpha \in$ HC $\cdot \operatorname{cl}(\mu \lor \eta)$. Then for each $\varrho \in$ HC R_{x_α} we have $\mu \lor \eta \nleq \varrho$ and so $\mu \nleq \varrho$ or $\eta \nleq \varrho$. Hence $x_\alpha \in$ HC $\cdot \operatorname{cl}(\mu)$ or $x_\alpha \in$ HC $\cdot \operatorname{cl}(\eta)$ and so $x_\alpha \in$ HC $\cdot \operatorname{cl}(\mu) \lor$ HC $\cdot \operatorname{cl}(\eta) = \mu \lor \eta$. Thus $\mu \lor \eta$ is HC-closed. The proof of the other case is similar.

(iv) Let $\{\mu_j \in L^X : j \in J\}$ be a family of HC-closed sets. Let $x_\alpha \in M(L^X)$ be such that $x_\alpha \in \operatorname{HC} \cdot \operatorname{cl}\left(\bigwedge_{j \in J} \mu_j\right)$. Then for each $\eta \in \operatorname{HC} R_{x_\alpha}$ we have $\bigwedge_{j \in J} \mu_j \nleq \eta$, equivalently, $\mu_j \nleq \eta$ for every $j \in J$. Hence $x_\alpha \in \operatorname{HC} \cdot \operatorname{cl}(\mu_j) \leqslant \mu_j$ for every $j \in J$. Then $x_\alpha \in \bigwedge_{j \in J} \mu_j$. Thus $\bigwedge_{J \in J} \mu_j$ is an HC-closed set in (L^X, τ) . The proof of the other case is similar.

(v) Suppose that $\mu \in L^X$ is HC-closed, $x_{\alpha} \in M(L^X)$ and $x_{\alpha} \notin \mu$. By Definition 3.1 there exists $\eta \in \text{HC} R_{x_{\alpha}}$ such that $\mu \leq \eta$. Conversely, suppose that $\mu \in L^X$ is not HC-closed, then there exists $x_{\alpha} \in M(L^X)$ such that $x_{\alpha} \in \text{HC} \cdot \text{cl}(\mu)$ and $x_{\alpha} \notin \mu$. Hence, $\mu \nleq \eta$ for each $\eta \in \text{HC} R_{x_{\alpha}}$, a contradiction with the hypothesis and so μ is HC-closed.

Theorem 3.5. Let (L^X, τ) be an L-ts. Then the families $\tau_{\text{HC}} = \{\mu \in L^X : \text{HC} \cdot \text{cl}(\mu') = \mu'\}$ and $\tau_{\text{NC}} = \{\mu \in L^X : \text{NC} \cdot \text{cl}(\mu') = \mu'\}$ are L-topologies on L^X . We call (L^X, τ_{HC}) and (L^X, τ_{NC}) the HC ·L-topological space and NC ·L-topological space induced by (L^X, τ) .

Proof. It is an immediate consequence of Definition 3.1 and Proposition 3.3 and Theorem 3.4. $\hfill \Box$

Theorem 3.6. Let (L^X, τ) be an L-ts. Then:

- (i) $\tau_{\rm NC} \subseteq \tau_N[3] \subseteq \tau_{\rm HC} \subseteq \tau$.
- (ii) If (L^X, τ) is N-compact (nearly N-compact, almost N-compact), then $\tau = \tau_{\rm NC}$ $(\tau = \tau_N, \tau = \tau_{\rm HC}).$
- (iii) If (L^X, τ) is an LR_2 -space [13], then $\tau_{\rm NC} = \tau_N = \tau_{\rm HC}$.
- (iv) If (L^X, τ) is an induced L-ts [9], then $\tau_N = \tau_{\rm NC}$.
- (v) L-ts $(L^X, \tau_{\rm NC})$ is an N-compact space.
- (vi) L-ts $(L^X, \tau_{\rm HC})$ is an almost N-compact space.

Proof. Follows immediately from Definition 3.5. $\hfill \Box$

4. HC-CONVERGENCE THEORY OF L-NETS AND L-IDEALS

In this section we establish the HC-convergence theories of both the L-nets and the L-ideals. We discuss the relationship between the HC-convergence of L-ideals and that of L-nets.

Definition 4.1 [13], [14]. Let (L^X, τ) be an *L*-ts. An *L*-net in (L^X, τ) is a mapping $S: D \to M(L^X)$ denoted by $S = \{S(n); n \in D\}$, where *D* is a directed set. *S* is said to be in $\mu \in L^X$ if for every $n \in D, S(n) \in \mu$.

Definition 4.2. Let S be an L-net in an L-ts (L^X, τ) and let $x_{\alpha} \in M(L^X)$.

- (i) x_{α} is said to be an HC-limit point of S, or net S HC-converges to x_{α} , in symbol $S \xrightarrow{\text{HC}} x_{\alpha}$ if $(\forall \lambda \in \text{HC } R_{x_{\alpha}}) \ (\exists n \in D) \ (\forall m \in D, m \ge n) \ (S(m) \notin \lambda).$
- (ii) x_{α} is said to be an HC-cluster point of S, or net S HC-acumulates to x_{α} , in symbol $S \overset{\text{HC}}{\propto} x_{\alpha}$ if $(\forall \lambda \in \text{HC } R_{x_{\alpha}}) \ (\forall n \in D) \ (\exists m \in D, m \ge n) \ (S(m) \notin \lambda).$

The union of all HC-limit points and HC-cluster points of S will be denoted by $HC \cdot \lim(S)$ and $HC \cdot \operatorname{adh}(S)$, respectively.

Theorem 4.3. Suppose that S is an L-net in (L^X, τ) , $\mu \in L^X$ and $x_{\alpha} \in M(L^X)$. Then the following results are true:

- (i) $x_{\alpha} \in \mathrm{HC} \cdot \lim(S) \text{ iff } S \xrightarrow{\mathrm{HC}} x_{\alpha} (x_{\alpha} \in \mathrm{HC} \cdot \mathrm{adh}(S) \text{ iff } S \xrightarrow{\mathrm{HC}} x_{\alpha}).$
- (ii) $\lim(S) [14] \leq \operatorname{HC} \cdot \lim(S) (\operatorname{adh}(S) [14] \leq \operatorname{HC} \cdot \operatorname{adh}(S)).$
- (iii) $\operatorname{HC} \cdot \lim(S) \leq \operatorname{HC} \cdot \operatorname{adh}(S)$.
- (iv) $\operatorname{HC} \cdot \lim(S)$ and $\operatorname{HC} \cdot \operatorname{adh}(S)$ are HC -closed sets in L^X .

Proof. (i) Let $S \xrightarrow{\mathrm{HC}} x_{\alpha}$, so by definition $x_{\alpha} \in \mathrm{HC} \cdot \mathrm{lim}(S)$. Conversely, let $x_{\alpha} \in \mathrm{HC} \cdot \mathrm{lim}(S)$ and $\lambda \in \mathrm{HC} R_{x_{\alpha}}$. Since $x_{\alpha} \notin \lambda$, so $\mathrm{HC} \cdot \mathrm{lim}(S) \notin \lambda$. Therefore there exists $y_{\beta} \in M(L^X)$ such that $y_{\beta} \in \mathrm{HC} \cdot \mathrm{lim}(S)$ but $y_{\beta} \notin \lambda$ and so $\lambda \in \mathrm{HC} R_{y_{\beta}}$. Hence $(\exists n \in D) \ (\forall m \in D, m \ge n) \ (S(m) \notin \lambda)$. Thus $S \xrightarrow{\mathrm{HC}} x_{\alpha}$. The proof of the other case is similar.

(ii) Let $x_{\alpha} \in \lim(S)$ and $\eta \in \operatorname{HC} R_{x_{\alpha}}$. Since $\operatorname{HC} R_{x_{\alpha}} \subseteq R_{x_{\alpha}}$, we have $\eta \in R_{x_{\alpha}}$. And since $x_{\alpha} \in \lim(S)$, we have $(\exists n \in D) \ (\forall m \in D, m \ge n) \ (S(m) \notin \eta)$. Hence $x_{\alpha} \in \operatorname{HC} \cdot \lim(S)$. So $\lim(S) \leq \operatorname{HC} \cdot \lim(S)$. The proof of the other case is similar. (iii) Obvious.

(iv) Let $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{cl}(\operatorname{HC} \cdot \lim(S))$ and $\lambda \in \operatorname{HC} R_{x_{\alpha}}$. Then $\operatorname{HC} \cdot \lim(S) \notin \lambda$. So there exists $y_{\beta} \in M(L^X)$ such that $y_{\beta} \in \operatorname{HC} \cdot \lim(S)$ and $y_{\beta} \notin \lambda$. Then $(\forall \varrho \in$ $\operatorname{HC} R_{y_{\beta}}) (\exists n \in D) (\forall m \in D, m \ge n) (S(m) \notin \varrho)$ and so $S(m) \notin \lambda$. Hence $x_{\alpha} \in$ $\operatorname{HC} \cdot \lim(S)$. Thus $\operatorname{HC} \cdot \operatorname{cl}(\operatorname{HC} \cdot \lim(S)) \leqslant \operatorname{HC} \cdot \lim(S)$ and so $\operatorname{HC} \cdot \lim(S)$ is an $\operatorname{HC} \cdot \operatorname{closed}$ set. Similarly, one can easily verify that $\operatorname{HC} \cdot \operatorname{adh}(S)$ is an $\operatorname{HC} \cdot \operatorname{closed}$ set. \Box

Theorem 4.4. Let (L^X, τ) be an L-ts, $\mu \in L^X$ and $x_{\alpha} \in M(L^X)$. Then $x_{\alpha} \in$ HC \cdot cl (μ) iff there is an L-net in μ which HC-converges to x_{α} .

Proof. Let $x_{\alpha} \in \operatorname{HC} \operatorname{cl}(\mu)$. Then $(\forall \lambda \in \operatorname{HC} R_{x_{\alpha}}) \ (\mu \notin \lambda)$ and so there exists $\alpha(\mu, \lambda) \in L \setminus \{0\}$ such that $x_{\alpha(\mu,\lambda)} \in \mu$ and $x_{\alpha(\mu,\lambda)} \notin \lambda$. Since the pair $(\operatorname{HC} R_{x_{\alpha}}, \geqslant)$ is a directed set so we can define an *L*-net $S \colon \operatorname{HC} R_{x_{\alpha}} \to M(L^X)$ given by $S(\lambda) = x_{\alpha(\mu,\lambda)}, \forall \lambda \in \operatorname{HC} R_{x_{\alpha}}$. Then S is an *L*-net in μ . Now let $\varrho \in \operatorname{HC} R_{x_{\alpha}}$ be such that $\varrho \geqslant \lambda$, so there exists $S(\varrho) = x_{\alpha(\mu,\varrho)} \notin \varrho$. Then $x_{\alpha(\mu,\varrho)} \notin \lambda$. So $S \xrightarrow{\operatorname{HC}} x_{\alpha}$. Conversely; let S be an *L*-net in μ with $S \xrightarrow{\operatorname{HC}} x_{\alpha}$. Then $(\forall \lambda \in \operatorname{HC} R_{x_{\alpha}}) \ (\exists n \in D) \ (\forall m \in D, m \geqslant n) \ (S(m) \notin \lambda)$. Since S is an *L*-net in μ , we have $\mu \geqslant S(m) > \lambda$. Hence $(\forall \lambda \in \operatorname{HC} R_{x_{\alpha}}) \ (\mu \notin \lambda)$. So $x_{\alpha} \in \operatorname{HC} \operatorname{cl}(\mu)$.

Theorem 4.5. Let both $S = \{S(n); n \in D\}$ and $T = \{T(n); n \in D\}$ be *L*-nets in *L*-ts (L^X, τ) with the same domain and for each $n \in D$, let $T(n) \ge S(n)$ hold. Then the following statements hold:

- (i) $\operatorname{HC} \cdot \lim(S) \leq \operatorname{HC} \cdot \lim(T)$.
- (ii) $\operatorname{HC} \cdot \operatorname{adh}(S) \leq \operatorname{HC} \cdot \operatorname{adh}(T)$.

Proof. (i). Let $x_{\alpha} \in M(L^X)$ with $x_{\alpha} \in \operatorname{HC} \cdot \lim(S)$, then $(\forall \eta \in \operatorname{HC} R_{x_{\alpha}})$ $(\exists n \in D) \ (\forall m \in D, m \ge n) \ (S(m) \notin \eta)$. Since $T(n) \ge S(n)$, $\forall n \in D$, so $T(m) \notin \eta$. Hence $(\forall \eta \in \operatorname{HC} R_{x_{\alpha}}) \ (\exists n \in D) \ (\forall m \in D, m \ge n) \ (T(m) \notin \eta)$. So $x_{\alpha} \in \operatorname{HC} \cdot \lim(T)$. Hence $\operatorname{HC} \cdot \lim(S) \leq \operatorname{HC} \cdot \lim(T)$.

(ii) The proof is similar to that of (i) and is omitted.

Theorem 4.6. Let S be an L-net in an L-ts (L^X, τ) and let $x_{\alpha} \in M(L^X)$, then: (i) $S_{\propto}^{\text{HC}} x_{\alpha}$ iff there exists an L-subnet T [14] of S such that $T \xrightarrow{\text{HC}} x_{\alpha}$.

(ii) If $S \xrightarrow{\text{HC}} x_{\alpha}$, then $T \xrightarrow{\text{HC}} x_{\alpha}$ for each *L*-subnet *T* of *S*.

Proof. (i) Sufficiency follows from the definition of an *L*-subnet and so we only prove necessity. Let $g: (\operatorname{HC} R_{x_{\alpha}}, D) \to D$, so $g(\eta, n) \in D$. Let $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{adh}(S)$, then $(\forall \eta \in \operatorname{HC} R_{x_{\alpha}}) (\forall n \in D) (\exists g(\eta, n) \in D) (g(\eta, n) \ge n) (S(g(\eta, n)) \notin \eta)$. Let $E = \{(g(\eta, n), \eta): \eta \in \operatorname{HC} R_{x_{\alpha}}, n \in D\}$ and define the relation \leqslant on E as following: $(g(\eta_1, n_1), \eta_1) \leqslant (g(\eta_2, n_2), \eta_2)$ iff $n_1 \leqslant n_2$ and $\eta_1 \leqslant \eta_2$. It is easy to show that E is a directed set. So we can define an *L*-net $T: E \to M(L^X)$ as follows: $T(g(\eta, n), \eta) = S(g(\eta, n))$ and T is an *L*-subnet of S. Now we prove that $T \xrightarrow{\operatorname{HC}} x_{\alpha}$. Let $\eta \in \operatorname{HC} R_{x_{\alpha}}, n \in D$, so $(g(\eta, n), \eta) \in E$. Then $(\forall (g(\lambda, m), \lambda) \in E)$ $(g(\lambda, m), \lambda) \ge (g(\eta, n), \eta))$, hence $T(g(\lambda, m), \lambda) = S(g(\lambda, m)) \notin \lambda$. Since $\lambda \ge \eta$, so $T(g(\lambda, m), \lambda)) \notin \eta$. Hence $T \xrightarrow{\operatorname{HC}} x_{\alpha}$.

(ii) follows from the definition of an L-subnet.

Definition 4.7 [15]. A nonempty family $\mathcal{L} \subset L^X$ is called an *L*-ideal if the following conditions are fulfilled, for each $\mu_1, \mu_2 \in L^X$:

- (i) If $\mu_1 \leq \mu_2$ and $\mu_2 \in \mathcal{L}$ then $\mu_1 \in \mathcal{L}$.
- (ii) If $\mu_1, \mu_2 \in \mathcal{L}$, then $\mu_1 \lor \mu_2 \in \mathcal{L}$.
- (iii) $1_X \notin \mathcal{L}$.

Definition 4.8. Let (L^X, τ) be an *L*-ts and let $x_{\alpha} \in M(L^X)$. An *L*-ideal \mathcal{L} is said

- (i) to HC-converge to x_{α} , in symbol $\mathcal{L} \xrightarrow{\text{HC}} x_{\alpha}$ (or x_{α} is an HC-limit point of \mathcal{L}) if HC $R_{x_{\alpha}} \subseteq \mathcal{L}$.
- (ii) to HC-accumulates to x_{α} , in symbol $\mathcal{L}_{\propto}^{\mathrm{HC}} x_{\alpha}$ (or x_{α} is an HC-cluster point of \mathcal{L}) if for each $\mu \in \mathcal{L}$ and $\eta \in \mathrm{HC} R_{x_{\alpha}}, \ \mu \lor \eta \neq 1_X$.

The union of all HC-limit points and HC-cluster points of \mathcal{L} are denoted by $\operatorname{HC} \cdot \lim(L)$ and $\operatorname{HC} \cdot \operatorname{adh}(\mathcal{L})$, respectively.

Theorem 4.9. Let \mathcal{L} be an *L*-ideal in *L*-ts (L^X, τ) and let $x_{\alpha} \in M(L^X)$. Then the following statements hold:

- (i) $\operatorname{HC} \cdot \operatorname{lim}(\mathcal{L}) \leq \operatorname{HC} \cdot \operatorname{adh}(\mathcal{L}).$
- (ii) $\mathcal{L} \xrightarrow{\mathrm{HC}} x_{\alpha}$ iff $x_{\alpha} \in \mathrm{HC} \cdot \mathrm{lim}(\mathcal{L})$ $(\mathcal{L} \propto^{\mathrm{HC}} x_{\alpha} \text{ iff } x_{\alpha} \in \mathrm{HC} \cdot \mathrm{adh}(\mathcal{L})).$
- (iii) $\lim(\mathcal{L})$ [15] \leq HC · $\lim(\mathcal{L})$ (adh(\mathcal{L}) [15] \leq HC · adh(\mathcal{L})).

Proof.

- (i) Let $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{lim}(\mathcal{L})$. Then for each $\eta \in \operatorname{HC} R_{x_{\alpha}}$ we have $\eta \in \mathcal{L}$. Hence for each $\mu \in \mathcal{L}$, we have $\eta \lor \mu \in \mathcal{L}$ and so $\eta \lor \mu \neq 1_X$. Hence $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{adh}(\mathcal{L})$.
- (ii) Let $\mathcal{L} \xrightarrow{\mathrm{HC}} x_{\alpha}$, then by Definition 4.8(i), $x_{\alpha} \in \mathrm{HC} \cdot \mathrm{lim}(\mathcal{L})$. Conversely, let $x_{\alpha} \in \mathrm{HC} \cdot \mathrm{lim}(\mathcal{L})$ and let $\eta \in \mathrm{HC} R_{x_{\alpha}}$. Since $x_{\alpha} \notin \eta = \mathrm{HC} \cdot \mathrm{cl}(\eta)$, so we have $\mathrm{HC} \cdot \mathrm{lim}(\mathcal{L}) \not\leq \eta$. Therefore there exists $y_{\gamma} \in M(L^X)$ satisfying $y_{\gamma} \in \mathrm{HC} \cdot \mathrm{lim}(\mathcal{L})$ but $y_{\gamma} \notin \eta$, hence $\eta \in \mathrm{HC} R_{y_{\gamma}}$. So we have $\mathrm{HC} R_{x_{\alpha}} \subseteq \mathrm{HC} R_{y_{\gamma}} \subseteq \mathcal{L}$, hence $\mathrm{HC} R_{x_{\alpha}} \subseteq \mathcal{L}$. So $\mathcal{L} \xrightarrow{\mathrm{HC}} x_{\alpha}$. Similarly, one can easily verify that $x_{\alpha} \in \mathrm{HC} \cdot \mathrm{adh}(\mathcal{L})$.
- (iii) Obvious.

Definition 4.10 [15]. A nonempty family $\mathcal{B} \subset L^X$ is called an *L*-ideal base if it satisfies the following conditions, for each $\mu_1, \mu_2 \in L^X$:

- (i) If $\mu_1, \mu_2 \in \mathcal{B}$, then there exists $\mu_3 \in \mathcal{B}$ such that $\mu_3 \ge \mu_1 \lor \mu_2 \in \mathcal{B}$.
- (ii) $1_X \notin \mathcal{B}$.

Then $\mathcal{L} = \{ \varrho \in L^X : \varrho \leq \mu \text{ for some } \mu \in \mathcal{B} \}$ is an *L*-ideal and it is said to be the *L*-ideal generated by \mathcal{B} .

Theorem 4.11. Let \mathcal{L} be an *L*-ideal in an *L*-ts (L^X, τ) and let $x_{\alpha} \in M(L^X)$. If $x_{\alpha} \in \text{HC} \cdot \text{adh}(\mathcal{L})$ then there is in L^X an *L*-ideal $\mathcal{J} \supseteq \mathcal{L}$ with $x_{\alpha} \in \text{HC} \cdot \lim(\mathcal{J})$.

Proof. Let $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{adh}(\mathcal{L})$, then for each $\eta \in \operatorname{HC} R_{x_{\alpha}}$ and each $\mu \in \mathcal{L}$, $\eta \lor \mu \neq 1_X$, hence there exists $x_{\alpha} \in M(L^X)$, $x_{\alpha} \notin \eta \lor \mu$. Choose $\mathcal{B} = \{\eta \lor \mu \colon \mu \in \mathcal{L}, \eta \in \operatorname{HC} R_{x_{\alpha}}\}$. Then \mathcal{B} is an *L*-ideal base in L^X . Then $\mathcal{J} = \{\varrho \in L^X \colon \varrho \leq \lambda \text{ for some } \lambda = \eta \lor \mu\}$ is an *L*-ideal in L^X and we call \mathcal{J} the *L*-ideal generated by \mathcal{B} . It is easy to show that $\mathcal{J} \supset \mathcal{L}$. Now let $\eta \in \operatorname{HC} R_{x_{\alpha}}$. Since $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{adh}(\mathcal{L})$, so $\eta \lor \mu \neq 1_X$ for each $\mu \in \mathcal{L}$, hence $\eta \lor \mu \in \mathcal{B}$. Moreover, since $\eta \lor \mu \geqslant \eta \lor \mu$, so $\eta \lor \mu \in \mathcal{J}$ and since $\eta \leqslant \eta \lor \mu$, so $\eta \in \mathcal{J}$. Hence $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{lim}(\mathcal{J})$.

Definition 4.12 [15]. An *L*-ideal \mathcal{L} in L^X is called maximal if for every *L*-ideal \mathcal{L}^* , $\mathcal{L} \subseteq \mathcal{L}^*$ implies $\mathcal{L} = \mathcal{L}^*$.

Theorem 4.13. If \mathcal{L} is a maximal *L*-ideal in an *L*-ts (L^X, τ) , then $\operatorname{HC} \cdot \operatorname{adh}(\mathcal{L}) = \operatorname{HC} \cdot \lim(\mathcal{L}).$

Proof. It follows from Theorems 4.9 (i) and 4.11.

Theorem 4.14. Let both \mathcal{L}_1 and \mathcal{L}_2 be *L*-ideals in *L*-ts (L^X, τ) with $\mathcal{L}_1 \subset \mathcal{L}_2$. Then the following statements hold:

- (i) $\operatorname{HC} \cdot \operatorname{lim}(\mathcal{L}_1) \leq \operatorname{HC} \cdot \operatorname{lim}(\mathcal{L}_2).$
- (ii) $\operatorname{HC} \cdot \operatorname{adh}(\mathcal{L}_1) \geq \operatorname{HC} \cdot \operatorname{adh}(\mathcal{L}_2).$

Proof.

- (i) Let $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{lim}(\mathcal{L}_1)$, then $\eta \in \mathcal{L}_1$ for each $\eta \in \operatorname{HC} R_{x_{\alpha}}$. Since $\mathcal{L}_1 \subset \mathcal{L}_2$, so $\eta \in \mathcal{L}_2$. Hence $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{lim}(\mathcal{L}_2)$. Thus $\operatorname{HC} \cdot \operatorname{lim}(\mathcal{L}_1) \leq \operatorname{HC} \cdot \operatorname{lim}(\mathcal{L}_2)$.
- (ii) Let $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{adh}(\mathcal{L}_2)$, then $\eta \lor \mu \neq 1_X$ for each $\eta \in \operatorname{HC} R_{x_{\alpha}}$ and each $\mu \in \mathcal{L}_2$. Since $\mathcal{L}_1 \subset \mathcal{L}_2$, so for each $\mu \in \mathcal{L}_1$ we have $\eta \lor \mu \neq 1_X$. Hence $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{adh}(\mathcal{L}_1)$. Thus $\operatorname{HC} \cdot \operatorname{adh}(\mathcal{L}_1) \geq \operatorname{HC} \cdot \operatorname{adh}(\mathcal{L}_2)$.

Theorem 4.15. Let \mathcal{L} be an *L*-ideal in an *L*-ts (L^X, τ) . Then both $\mathrm{HC} \cdot \mathrm{lim}(\mathcal{L})$ and $\mathrm{HC} \cdot \mathrm{adh}(\mathcal{L})$ are HC -closed set in L^X .

Proof. Let $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{cl}(\operatorname{HC} \cdot \lim(\mathcal{L}))$ and $\eta \in \operatorname{HC} R_{x_{\alpha}}$. Then $\operatorname{HC} \cdot \lim(\mathcal{L}) \leq \eta$, so there exists $y_{\gamma} \in M(L^X)$ such that $y_{\gamma} \in \operatorname{HC} \cdot \lim(\mathcal{L})$ and $y_{\gamma} \notin \eta$. Since $y_{\gamma} \in$ $\operatorname{HC} \cdot \lim(\mathcal{L})$, so for each $\varrho \in \operatorname{HC} R_{y_{\gamma}}$ we have $\varrho \in \mathcal{L}$. Since $y_{\gamma} \notin \eta$, we have $\eta \in \operatorname{HC} R_{y_{\gamma}}$ and so $\eta \in \mathcal{L}$. Hence $x_{\alpha} \in \operatorname{HC} \cdot \lim(\mathcal{L})$. Thus $\operatorname{HC} \cdot \operatorname{cl}(\operatorname{HC} \cdot \lim(\mathcal{L})) \leq \operatorname{HC} \cdot \operatorname{lim}(\mathcal{L})$. On the other hand, since $\operatorname{HC} \cdot \lim(\mathcal{L}) \leq \operatorname{HC} \cdot \operatorname{cl}(\operatorname{HC} \cdot \operatorname{lim}(\mathcal{L}))$, so $\operatorname{HC} \cdot \operatorname{cl}(\operatorname{HC} \cdot \operatorname{lim}(\mathcal{L})) =$ $\operatorname{HC} \cdot \operatorname{lim}(\mathcal{L})$. This means that $\operatorname{HC} \cdot \operatorname{lim}(\mathcal{L})$ is an HC -closed set. Similarly, one can easily verify that $\operatorname{HC} \cdot \operatorname{adh}(\mathcal{L})$ is an HC -closed set. \Box

Theorem 4.16. Let (L^X, τ) be an L-ts, $\mu \in L^X$ and $x_\alpha \in M(L^X)$. Then $x_\alpha \in \operatorname{HC} \cdot \operatorname{cl}(\mu)$ iff there exists an L-ideal \mathcal{L} in L^X such that $\mathcal{L} \xrightarrow{\operatorname{HC}} x_\alpha$ and $\mu \notin \mathcal{L}$.

Proof. Let $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{cl}(\mu)$. Then for each $\eta \in \operatorname{HC} R_{x_{\alpha}}$ we have $\mu \not\leq \eta$. Let $\mathcal{L} = \{ \varrho \in L^X : \varrho \leq \eta \text{ for some } \eta \in \operatorname{HC} R_{x_{\alpha}} \}$. It is easy to show that \mathcal{L} is an L-ideal. It is clear that $\mu \notin \mathcal{L}$. Now we show that $\mathcal{L} \xrightarrow{\operatorname{HC}} x_{\alpha}$. Let $\lambda \in \operatorname{HC} R_{x_{\alpha}}$. We have $\lambda \in \mathcal{L}$, by the definition of \mathcal{L} . So $\operatorname{HC} R_{x_{\alpha}} \subseteq \mathcal{L}$. Thus $\mathcal{L} \xrightarrow{\operatorname{HC}} x_{\alpha}$. Conversely; let \mathcal{L} be an L-ideal, $\mu \notin \mathcal{L}$ and $\mathcal{L} \xrightarrow{\operatorname{HC}} x_{\alpha}$. Then $\eta \in \mathcal{L}$ for each $\eta \in \operatorname{HC} R_{x_{\alpha}}$. Since $\eta \in \mathcal{L}$ and $\mu \notin \mathcal{L}$, we conclude $\mu \nleq \eta$. Hence $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{cl}(\mu)$.

Theorem 4.17. Let $F: (L^X, \tau) \to (L^Y, \Delta)$ be an L-valued Zadeh mapping and let $\mathcal{L}_1, \mathcal{L}_2$ be L-ideals in L^X, L^Y , respectively. Then $F^*(\mathcal{L}_1) = \{\eta \in L^Y: (\exists \mu \in \mathcal{L}_1) \\ (\forall x_\alpha \in M(L^X) \ (x_\alpha \notin \mu) \ (F(x_\alpha) \notin \eta)\}$ is an L-ideal in L^Y . Also, if F is onto, then $F^{-1}(\mathcal{L}_2) = \{F^{-1}(\eta): \eta \in \mathcal{L}_2\}$ is an L-ideal in L^X .

 $P\ r\ o\ o\ f.\quad Straightforward.$

Definition 4.18 [14], [15]. Let \mathcal{L} be an L-ideal in an L-ts (L^X, τ) and let $D(\mathcal{L}) = \{(x_{\alpha}, \mu) : x_{\alpha} \in M(L^X), \mu \in \mathcal{L} \text{ and } x_{\alpha} \notin \mu\}$. In $D(\mathcal{L})$ we define the ordering relation as follows: $(x_{\alpha}, \mu_1) \leq (y_{\gamma}, \mu_2)$ iff $\mu_1 \leq \mu_2$. Then $(D(\mathcal{L}), \leq)$ is a directed set. Now we define a mapping $S(\mathcal{L}): D(\mathcal{L}) \to M(L^X)$ as follows: $S(\mathcal{L})(x_{\alpha}, \mu) = x_{\alpha}$. So $S(\mathcal{L}) = \{S(\mathcal{L})(x_{\alpha}, \mu) = x_{\alpha}; (x_{\alpha}, \mu) \in D(\mathcal{L})\}$ is the L-net generated by \mathcal{L} .

On the other hand, let S be an L-net in (L^X, τ) , then $\mathcal{L}(S) = \{\mu \in L^X : (\exists n \in D) \\ (\forall m \in D, m \ge n) \ (S(m) \notin \mu)\}$ is the L-ideal generated by S.

Theorem 4.19. Let \mathcal{L} be an *L*-ideal in an *L*-ts (L^X, τ) . Then the following equalities hold:

(i) $\operatorname{HC} \cdot \lim(\mathcal{L}) = \operatorname{HC} \cdot \lim(S(\mathcal{L})).$

(ii) $\operatorname{HC} \cdot \operatorname{adh}(\mathcal{L}) = \operatorname{HC} \cdot \operatorname{adh}(S(\mathcal{L})).$

Proof. (i) Let $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{lim}(\mathcal{L})$, then $\eta \in \mathcal{L}$ for each $\eta \in \operatorname{HC} R_{x_{\alpha}}$ (or $\operatorname{HC} R_{x_{\alpha}} \subseteq \mathcal{L}$). Since $\eta \in \mathcal{L}$ and $x_{\alpha} \notin \eta$, so $(x_{\alpha}, \eta) \in D(\mathcal{L})$ where $D(\mathcal{L}) = \{(x_{\alpha}, \eta) \colon x_{\alpha} \in M(L^X), \eta \in \mathcal{L} \text{ and } x_{\alpha} \notin \eta\}$. Since $\mathcal{L} \xrightarrow{\operatorname{HC}} x_{\alpha}$, hence for each $\eta \in \operatorname{HC} R_{x_{\alpha}}$ there exists $\mu \in \mathcal{L}$ such that $\eta \leq \mu$. Since $\eta \leq \mu$ is equivalent to $(x_{\alpha}, \eta) \leq (y_{\gamma}, \mu)$, we have $S(\mathcal{L})((y_{\gamma}, \mu)) = y_{\gamma} \notin \eta$. So for each $\eta \in \operatorname{HC} R_{x_{\alpha}}$ there exists $(x_{\alpha}, \eta) \in D(\mathcal{L})$ such that $S(\mathcal{L})((y_{\gamma}, \mu)) \notin \eta$ for each $(y_{\gamma}, \mu) \in D(\mathcal{L})$ and $(y_{\gamma}, \mu) \geqslant (x_{\alpha}, \eta)$. So $S(\mathcal{L}) \xrightarrow{\operatorname{HC}} x_{\alpha}$. Hence $x_{\alpha} \in \operatorname{HC} \cdot \lim(S(\mathcal{L}))$. Thus $\operatorname{HC} \cdot \lim(\mathcal{L}) \leq \operatorname{HC} \cdot \lim(S(\mathcal{L}))$. Conversely, let $x_{\alpha} \in \operatorname{HC} \cdot \lim(S(\mathcal{L}))$, then for each $\eta \in \operatorname{HC} R_{x_{\alpha}}$ there exists $(z_{\varepsilon}, \lambda) \in D(\mathcal{L})$ such that $S(\mathcal{L})((y_{\gamma}, \mu)) \notin \eta$ for each $(y_{\gamma}, \mu) \in D(\mathcal{L})$ and $(y_{\gamma}, \mu) \geqslant (z_{\varepsilon}, \lambda)$. Since $(y_{\gamma}, \mu) \geqslant (z_{\varepsilon}, \lambda)$, we have $y_{\gamma} \notin \lambda$ (because $\mu \geqslant \lambda$) and from $S(\mathcal{L})((y_{\gamma}, \mu)) = y_{\gamma} \notin \eta$ we obtain $\eta \leq \lambda$. Since $\lambda \in \mathcal{L}$, we have $\eta \in \mathcal{L}$. Hence $x_{\alpha} \in \operatorname{HC} \cdot \lim(S(\mathcal{L}))$.

(ii) Let $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{adh}(\mathcal{L})$, then $\eta \lor \mu \neq 1_X$ for each $\eta \in \operatorname{HC} R_{x_{\alpha}}$ and each $\mu \in \mathcal{L}$. Since $\eta \in \operatorname{HC} R_{x_{\alpha}}$, we have $\eta \lor \mu \neq 1_X$ for each $(y_{\gamma}, \mu) \in D(\mathcal{L})$. Therefore there exists a molecule $z_{\varepsilon} \in M(L^X)$ such that $z_{\varepsilon} \notin \eta, z_{\varepsilon} \notin \mu$. So $(z_{\varepsilon}, \mu) \in D(\mathcal{L})$ and $(z_{\varepsilon}, \mu) \geq (y_{\gamma}, \mu)$, so $S(\mathcal{L})(z_{\varepsilon}, \mu) = z_{\varepsilon} \notin \eta$. So for each $\eta \in \operatorname{HC} R_{x_{\alpha}}$ and each $(y_{\gamma}, \mu) \in D(\mathcal{L})$ there exists $(z_{\varepsilon}, \mu) \in D(\mathcal{L})$ such that $(z_{\varepsilon}, \mu) \geq (y_{\gamma}, \mu)$ and $S(\mathcal{L})(z_{\varepsilon}, \mu) = z_{\varepsilon} \notin \eta$. So $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{adh}(S(\mathcal{L}))$. Hence $\operatorname{HC} \cdot \operatorname{adh}(\mathcal{L}) \leq \operatorname{HC} \cdot \operatorname{adh}(S(\mathcal{L}))$. Conversely, let $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{adh}(S(\mathcal{L}))$. Let $\eta \in \operatorname{HC} R_{x_{\alpha}}$ and $\mu \in \mathcal{L}$. Since $\mu \in \mathcal{L}$, so $\mu \neq 1_X$ and there exists $y_{\gamma} \in M(L^X)$ such that $y_{\gamma} \notin \mu$. So $(y_{\gamma}, \mu) \in D(\mathcal{L})$. Now since $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{adh}(S(\mathcal{L}))$, there exists $(z_{\varepsilon}, \lambda) \in D(\mathcal{L})$ such that $(z_{\varepsilon}, \lambda) \geq (y_{\gamma}, \mu)$ and $S(\mathcal{L})((z_{\varepsilon}, \lambda)) = z_{\varepsilon} \notin \eta$. Since $z_{\varepsilon} \notin \lambda, z_{\varepsilon} \notin \eta$, so $z_{\varepsilon} \notin \eta \lor \lambda$ and $\lambda \geq \mu$, so $z_{\varepsilon} \notin \eta \lor \mu$. Hence $\eta \lor \mu \neq 1_X$. So we have $\eta \lor \mu \neq 1_X$ for each $\eta \in \operatorname{HC} R_{x_{\alpha}}$ and each $\mu \in \mathcal{L}$. Hence $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{adh}(\mathcal{L})$. So $\operatorname{HC} \cdot \operatorname{adh}(S(\mathcal{L})) \leq \operatorname{HC} \cdot \operatorname{adh}(\mathcal{L})$. Hence the equality is satisfied. Thus $\operatorname{HC} \cdot \operatorname{adh}(\mathcal{L}) = \operatorname{HC} \cdot \operatorname{adh}(S(\mathcal{L}))$.

Theorem 4.20. Suppose that S is an L-net in an L-ts (L^X, τ) , then:

- (i) $\operatorname{HC} \cdot \lim(S) = \operatorname{HC} \cdot \lim(\mathcal{L}(S)).$
- (ii) $\operatorname{HC} \cdot \operatorname{adh}(S) \leq \operatorname{HC} \cdot \operatorname{adh}(\mathcal{L}(S)).$

Proof.

- (i) Let x_α ∈ HC · lim(S). Then for each η ∈ HC R_{x_α} there exists m ∈ D such that S(n) ∉ η for each n ∈ D, n ≥ m. Since S(n) ∉ η, so by the definition of L(S) we have η ∈ L(S) for each η ∈ HC R_{x_α}. So HC R_{x_α} ⊆ L(S). Hence x_α ∈ HC · lim(L(S)). So HC · lim(S) ≤ HC · lim(L(S)). Conversely, let x_α ∈ HC · lim(L(S)). Then for each η ∈ HC R_{x_α} there exists λ ∈ L(S) such that η ≤ λ. Since λ ∈ L(S), so by the definition of L(S) for each λ ∈ L(S) there exists m ∈ D such that S(n) ∉ λ for each n ∈ D, n ≥ m. Since η ≤ λ, so S(n) ∉ η. Hence x_α ∈ HC · lim(S). So HC · lim(L(S)) ≤ HC · lim(S).
- (ii) Let $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{adh}(S)$. Then for each $\eta \in \operatorname{HC} R_{x_{\alpha}}$ and each $m \in D$ there exists $n_1 \in D$ such that $n_1 \ge m$ and $S(n_2) \notin \eta$. By the definition of $\mathcal{L}(S)$, for each $\lambda \in \mathcal{L}(S)$ and each $m \in D$ there exists $n_2 \in D$ such that $n_2 \ge m$ and $S(n_2) \notin \lambda$. Since D is a directed set, there exists $n_3 \in D$ such that $n_3 \ge n_1$, $n_3 \ge n_2$ and $n_3 \ge m$. Thus $(\forall \eta \in \operatorname{HC} R_{x_{\alpha}}) \ (\forall \lambda \in \mathcal{L}(S)) \ (S(n_3) \notin \eta \lor \lambda)$. Hence $\eta \lor \lambda \neq 1_X$ and so $x_{\alpha} \in \operatorname{HC} \cdot \operatorname{adh}(\mathcal{L}(S))$.

5. HL-CONTINUOUS MAPPING

The concept of H-continuous mappings in general topology was introduced by Long and Hamlett in [10]. Recently, Dang and Behera extended the concept to Itopology [4] using the almost compactness introduced by Mukherjee and Sinha [11]. But the almost compactness has some shortcomings, for example, it is not a "good

extension". In this section, we introduce a new definition of H-continuous mappings to be called HL-continuous on the basis of the notions of almost N-compactness due to [6] and R-nbds due to [12].

Definition 5.1. An *L*-valued Zadeh mapping $F: (L^X, \tau) \to (L^Y, \Delta)$ is said to be:

- (i) *H*-continuous if $F^{-1}(\eta) \in \tau'$ for each almost *N*-compact closed set η in L^Y .
- (ii) *H*-continuous at a molecule $x_{\alpha} \in M(L^X)$ if $F^{-1}(\lambda) \in R_{x_{\alpha}}$ for each $\lambda \in \operatorname{HC} R_{F(x_{\alpha})}$.

Theorem 5.2. Let $F: (L^X, \tau) \to (L^Y, \Delta)$ be an L-valued Zadeh mapping. Then the following assertions are equivalent:

- (i) F is HL-continuous.
- (ii) F is HL-continuous at x_{α} , for each molecule $x_{\alpha} \in M(L^X)$.
- (iii) If $\eta \in \Delta$ and η' is almost N-compact, then $F^{-1}(\eta) \in \tau$.
 - These statements are implied by

(iv) If $\eta \in L^Y$ is almost N-compact, then $F^{-1}(\eta) \in \tau'$.

Moreover, if (L^Y, Δ) is a fully stratified LT₂-space, all the statements are equivalent.

Proof. (i) \Longrightarrow (ii): Suppose that $F: (L^X, \tau) \to (L^Y, \Delta)$ is HL-continuous, $x_{\alpha} \in M(L^X)$ and $\lambda \in \operatorname{HC} R_{F(x_{\alpha})}$, then $F^{-1}(\lambda) \in \tau'$. Since $F(x_{\alpha}) \notin \lambda$ is equivalent to $x_{\alpha} \notin F^{-1}(\lambda)$, so $F^{-1}(\lambda) \in R_{x_{\alpha}}$. Hence F is HL-continuous at x_{α} .

(ii) \Longrightarrow (i): Let $F: (L^X, \tau) \to (L^Y, \Delta)$ be HL-continuous at x_α for each $x_\alpha \in M(L^X)$. If F is not HL-continuous, then there is an almost N-compact closed set $\eta \in L^Y$ with $\operatorname{cl}(F^{-1}(\eta)) \not\leq F^{-1}(\eta)$. Then there exists $x_\alpha \in M(L^X)$ such that $x_\alpha \in \operatorname{cl}(F^{-1}(\eta))$ and $x_\alpha \notin F^{-1}(\eta)$. Since $x_\alpha \notin F^{-1}(\eta)$ implies that $F(x_\alpha) \notin \eta$, so $\eta \in \operatorname{HC} R_{F(x_\alpha)}$. But $F^{-1}(\eta) \notin R_{x_\alpha}$, a contradiction. Therefore, F must be HL-continuous.

(i) \implies (iii): Let $F: (L^X, \tau) \to (L^Y, \Delta)$ be HL-continuous and $\eta \in \Delta$ with η' is almost N-compact. Then by the HL-continuity of F we have $F^{-1}(\eta') \in \tau'$, which is equivalent to $(F^{-1}(\eta))' \in \tau'$. So $F^{-1}(\eta) \in \tau$.

(iii) \Longrightarrow (i): Let $\eta \in L^Y$ be an almost N-compact closed set, so $\eta' \in \tau$ and by (iii) we have $F^{-1}(\eta') \in \tau$. Then $F^{-1}(\eta) \in \tau'$. Hence F is HL-continuous.

(iv) \implies (i): Let $\eta \in L^Y$ be an almost N-compact closed set. By (iv), $F^{-1}(\eta) \in \tau'$. Hence F is HL-continuous.

Now suppose that (L^Y, Δ) is a fully stratified LT₂-space.

(i) \implies (iv): Let $\eta \in L^Y$ be an almost N-compact set. Since (L^Y, Δ) is a fully stratified LT₂-space, so $\eta \in \Delta'$. Thus by (i), $F^{-1}(\eta) \in \tau'$.

Theorem 5.3. Let $F: (L^X, \tau) \to (L^Y, \Delta)$ be a surjective L-valued Zadeh mapping. Then the following conditions are equivalent:

- (i) F is HL-continuous.
- (ii) For each $\mu \in L^X$, $F(cl(\mu)) \leq HC \cdot cl(F(\mu))$.
- (iii) For each $\eta \in L^Y$, $cl(F^{-1}(\eta)) \leq F^{-1}(HC \cdot cl(\eta))$.
- (iv) For each $\eta \in L^Y$, $F^{-1}(\mathrm{HC} \cdot \mathrm{int}(\eta)) \leq \mathrm{int}(F^{-1}(\eta))$.
- (v) $F^{-1}(\varrho)$ is open in L^X for each HC-open set ϱ in L^Y .
- (vi) $F^{-1}(\lambda)$ is closed in L^X for each HC-closed set λ in L^Y .

Proof. (i) \Longrightarrow (ii): Let $\mu \in L^X$ and $x_{\alpha} \in \operatorname{cl}(\mu)$, then $F(x_{\alpha}) \in F(\operatorname{cl}(\mu))$. Further let $\lambda \in \operatorname{HC} R_{F(x_{\alpha})}$, so $F^{-1}(\lambda) \in R_{x_{\alpha}}$ by (i). Since $x_{\alpha} \in \operatorname{cl}(\mu)$ and $F^{-1}(\lambda) \in R_{x_{\alpha}}$, so $\mu \notin F^{-1}(\lambda)$. Since F is onto, so $F(\mu) > FF^{-1}(\lambda) = \lambda$. Thus $F(\mu) \notin \lambda$ and $\lambda \in \operatorname{HC} R_{F(x_{\alpha})}$. So $F(x_{\alpha}) \in \operatorname{HC} \cdot \operatorname{cl}(F(\mu))$. Thus $F(\operatorname{cl}(\mu)) \leqslant \operatorname{HC} \cdot \operatorname{cl}(F(\mu))$.

(ii) \Longrightarrow (iii): Let $\eta \in L^Y$. Then $F^{-1}(\eta) \in L^X$. By (ii) we have $F(\operatorname{cl}(F^{-1}(\eta))) \leq$ HC $\cdot \operatorname{cl}(FF^{-1}(\eta)) \leq$ HC $\cdot \operatorname{cl}(\eta)$. Then $F(\operatorname{cl}(F^{-1}(\eta))) \leq$ HC $\cdot \operatorname{cl}(\eta)$ and so $F^{-1}F(\operatorname{cl}(F^{-1}(\eta))) \leq$ $(F^{-1}(\eta))) \leq F^{-1}(\operatorname{HC} \cdot \operatorname{cl}(\eta))$, which implies that $\operatorname{cl}(F^{-1}(\eta)) \leq F^{-1}F(\operatorname{cl}(F^{-1}(\eta))) \leq$ $F^{-1}(\operatorname{HC} \cdot \operatorname{cl}(\eta))$. Thus $\operatorname{cl}(F^{-1}(\eta)) \leq F^{-1}(\operatorname{HC} \cdot \operatorname{cl}(\eta))$.

(iii) \implies (iv): Let $\eta \in L^Y$, then $\operatorname{cl}(F^{-1}(\eta')) \leqslant F^{-1}(\operatorname{HC} \cdot \operatorname{cl}(\eta'))$ by (iii). Since $\operatorname{cl}(F^{-1}(\eta')) = (\operatorname{int}(F^{-1}(\eta)))'$ and $F^{-1}(\operatorname{HC} \cdot \operatorname{cl}(\eta')) = (F^{-1}(\operatorname{HC} \cdot \operatorname{int}(\eta)))'$, so $(\operatorname{int}(F^{-1}(\eta)))' \leqslant (F^{-1}(\operatorname{HC} \cdot \operatorname{int}(\eta)))'$ and taking the complement, $\operatorname{int}(F^{-1}(\eta)) \geqslant F^{-1}(\operatorname{HC} \cdot \operatorname{int}(\eta))$.

(iv) \implies (v): Let $\varrho \in L^Y$ be an HC-open set. By (iv), $F^{-1}(\operatorname{HC} \cdot \operatorname{int}(\varrho)) \leq \operatorname{int}(F^{-1}(\varrho))$, so $F^{-1}(\varrho) \leq \operatorname{int}(F^{-1}(\varrho))$. Thus $F^{-1}(\varrho) \in \tau$.

(v) \implies (vi): Let $\lambda \in L^Y$ be an HC-closed set. By (v), $F^{-1}(\lambda') \in \tau$. Then $(F^{-1}(\lambda))' = F^{-1}(\lambda') \in \tau$. So $F^{-1}(\lambda) \in \tau'$.

(vi) \implies (i): Let η be an almost N-compact closed set in L^Y . So by Theorem 3.4 (ii) we obtain that η is an HC-closed set in L^Y . By (vi), $F^{-1}(\eta) \in \tau'$. Hence F is HL-continuous.

Theorem 5.4. Suppose the mapping $F: (L^X, \tau) \to (L^Y, \Delta)$ from an *L*-ts (L^X, τ) into an LT₂-space (L^Y, Δ) is *L*-valued Zadeh HL-continuous. Then the *L*-valued Zadeh mapping $F|^{F(X)}: (L^X, \tau) \to (L^{F(X)}, \Delta_{F(X)})$ is also HL-continuous.

Proof. It is similar to that of Theorem 3.8 in [4].

Theorem 5.5. If $F: (L^X, \tau) \to (L^Y, \Delta)$ is an L-valued Zadeh HL-continuous mapping and $A \subseteq X$, then the L-valued Zadeh mapping $F|_A: (L^A, \tau_A) \to (L^Y, \Delta)$ is HL-continuous.

Proof. Let $\eta \in L^Y$ be an almost N-compact and closed. Since F is HLcontinuous, so $F^{-1}(\eta) \in \tau'$ and $(F|_A)^{-1}(\eta) = F^{-1}(\eta) \wedge 1_A \in \tau'_A$. Hence $F|_A: (L^A, \tau_A) \to (L^Y, \Delta)$ is HL-continuous.

It is easy to show that the composition of two HL-continuous mappings need not be HL-continuous. However, we have the following result.

Theorem 5.6. If $F: (L^X, \tau_1) \to (L^Y, \tau_2)$ is L-valued Zadeh continuous and $G: (L^Y, \tau_2) \to (L^Z, \tau_3)$ is L-valued Zadeh HL-continuous, then the L-valued Zadeh mapping $G \circ F: (L^X, \tau_1) \to (L^Z, \tau_3)$ is HL-continuous.

Proof. Straighforward.

Theorem 5.7. If (L^X, τ) and (L^Y, Δ) are *L*-ts's and $1_X = 1_A \vee 1_B$, where 1_A and 1_B are closed sets in L^X and $F: (L^X, \tau) \to (L^Y, \Delta)$ is an *L*-valued Zadeh mapping such that $F|_A$ and $F|_B$ are HL-continuous, then F is HL-continuous.

Proof. Let $1_A, 1_B \in \tau'$. Let $\mu \in L^Y$ be an almost N-compact and closed. Then $(F|_A)^{-1}(\mu) \lor (F|_B)^{-1}(\mu) = (F^{-1}(\mu) \land 1_A) \lor (F^{-1}(\mu) \land 1_B) = F^{-1}(\mu) \land (1_A \lor 1_B) = F^{-1}(\mu) \land 1_X = F^{-1}(\mu)$. Hence $F^{-1}(\mu) = (F|_A)^{-1}(\mu) \lor (F|_B)^{-1}(\mu) \in \tau'$. So $F: (L^X, \tau) \to (L^Y, \Delta)$ is HL-continuous.

Theorem 5.8. If $F: (L^X, \tau) \to (L^Y, \Delta)$ is an injective L-valued Zadeh HLcontinuous mapping and (L^Y, Δ) is an N-compact LT₁-space [8], then (L^X, τ) is an LT₁-space.

Proof. Let $x_{\alpha}, y_{\beta} \in M(L^X)$ be such that $x \neq y$. Since F is injective, so $F(x_{\alpha})$ and $F(y_{\beta})$ are in $M(L^Y)$ with $F(x) \neq F(y)$. Since (L^Y, Δ) is an LT₁-space, so $F(x_{\alpha})$ and $F(y_{\beta})$ are closed sets in (L^Y, Δ) . Also, since (L^Y, Δ) is N-compact, so $F(x_{\alpha})$ and $F(y_{\beta})$ are N-compact and closed sets, hence $F(x_{\alpha})$ and $F(y_{\beta})$ are almost N-compact and closed sets. Now, since F is HL-continuous, so $F^{-1}F(x_{\alpha}) = x_{\alpha}$ and $F^{-1}F(y_{\beta}) = y_{\beta}$ are closed in (L^X, τ) . Hence (L^X, τ) is an LT₁-space.

Theorem 5.9. Let $F: (L^X, \tau) \to (L^Y, \Delta)$ be an L-valued Zadeh mapping. Then the following conditions are equivalent:

- (i) F is HL-continuous.
- (ii) For each $x_{\alpha} \in M(L^X)$ and each L-net S in L^X , $F(S) \xrightarrow{\text{HC}} F(x_{\alpha})$ if $S \to x_{\alpha}$ and F is onto.
- (iii) $F(\lim(S)) \leq \operatorname{HC} \cdot \lim(F(S))$, for each L-net S in L^X .

Proof. (i) \implies (ii): Let $x_{\alpha} \in M(L^X)$ and let $S = \{x_{\alpha_n}^n; n \in D\}$ be an *L*-net in L^X which converges to x_{α} . Let $\eta \in \operatorname{HC} R_{F(x_{\alpha})}$, then by (i), $F^{-1}(\eta) \in R_{x_{\alpha}}$. Since $S \to x_{\alpha}$, there exists $n \in D$ such that for each $m \in D$ and $m \ge n$, $S(m) \notin F^{-1}(\eta)$. Then $F(S(m)) \notin FF^{-1}(\eta) = \eta$, thus $F(S(m)) \notin \eta$. Hence $F(S) \stackrel{\operatorname{HC}}{\longrightarrow} F(x_{\alpha})$.

(ii) \implies (iii): Let $x_{\alpha} \in \operatorname{HC} \cdot \lim(S)$, then $F(x_{\alpha}) \in F(\operatorname{HC} \cdot \lim(S))$ and by (ii) also $F(x_{\alpha}) \in \operatorname{HC} \cdot \lim(F(S))$. Thus $F(\operatorname{HC} \cdot \lim(S)) \leq \operatorname{HC} \cdot \lim(F(S))$.

(iii) \Longrightarrow (i): Let $\eta \in L^Y$ be HC-closed and let $x_\alpha \in M(L^X)$ with $x_\alpha \in cl(F^{-1}(\eta))$. Then by Theorem 2.8 in [14], there exists an *L*-net *S* in $F^{-1}(\eta)$ which converges to x_α . Since $x_\alpha \in lim(S)$, hence $F(x_\alpha) \in F(lim(S))$. By (iii), $F(x_\alpha) \in F(lim(S)) \leq HC \cdot lim(F(S))$ and so $F(S) \xrightarrow{HC} F(x_\alpha)$. Since *S* is an *L*-net in $F^{-1}(\eta)$, we have $S(n) \in F^{-1}(\eta)$ for each $n \in D$. Thus $F(S(n)) \in FF^{-1}(\eta) \leq \eta$. So $F(S(n)) \in \eta$ for each $n \in D$. Hence F(S) is an *L*-net in η . Since $F(S) \xrightarrow{HC} F(x_\alpha)$ and F(S) is an *L*-net in η , so by Theorem 4.4, $F(x_\alpha) \in HC \cdot cl(\eta)$. But since η is HC-closed, so $\eta = HC \cdot cl(\eta)$. Thus $F(x_\alpha) \in \eta$. Hence $x_\alpha \in F^{-1}(\eta)$. So $cl(F^{-1}(\eta)) \leq F^{-1}(\eta)$. Hence $F^{-1}(\eta) \in \tau'$. Consequently, *F* is HL-continuous.

Theorem 5.10. Let $F: (L^X, \tau) \to (L^Y, \Delta)$ be an L-valued Zadeh mapping. Then the following conditions are equivalent:

- (i) F is HL-continuous.
- (ii) For each $x_{\alpha} \in M(L^X)$ and each *L*-ideal \mathcal{L} which converges to x_{α} in L^X , $F^*(\mathcal{L})$ HC-converges to $F(x_{\alpha})$.
- (iii) $F(\lim(\mathcal{L})) \leq \operatorname{HC} \cdot \lim(F^*(\mathcal{L}))$ for each *L*-ideal \mathcal{L} in L^X .

Proof. Follows directly from Theorems 4.20 and 5.9.

6. Comparison of L-valued Zadeh mappings

Definition 6.1. An *L*-valued Zadeh mapping $F: (L^X, \tau) \to (L^Y, \Delta)$ is said to be:

(i) almost L-continuous iff $F^{-1}(\eta) \in \tau'$ for each regular closed set $\eta \in L^Y$,

(ii) CL-continuous iff $F^{-1}(\eta) \in \tau'$ for each N-compact and closed set $\eta \in L^Y$.

Theorem 6.2. Every HL-continuous mapping is CL-continuous. The converse is true if the codomain of the mapping is an LR_2 -space.

Proof. Let $F: (L^X, \tau) \to (L^Y, \Delta)$ be *L*-valued Zadeh HC-continuous and let η in L^Y be an *N*-compact and closed set. Since every *N*-compact set is almost *N*-compact, hence η is almost *N*-compact and closed. By HL-continuity of *F* we have $F^{-1}(\eta) \in \tau'$. So *F* is CL-continuous. Conversely; let $F: (L^X, \tau) \to (L^Y, \Delta)$ be *L*-valued Zadeh CL-continuous and let (L^Y, Δ) be an *LR*₂-space. Let $\eta \in L^Y$ be an almost *N*-compact closed set, then by Theorem 3.10 in [6] η is *N*-compact closed. By CL-continuous mapping. \Box

363

Theorem 6.3. Every *L*-continuous mapping is HL-continuous.

Proof. Let $F: (L^X, \tau) \to (L^Y, \Delta)$ be an *L*-valued Zadeh *L*-continuous mapping and $\eta \in L^Y$ an almost *N*-compact closed set. Then $\eta \in \Delta'$, so by *L*-continuity of *F* we have $F^{-1}(\eta) \in \tau'$. Thus *F* is HL-continuous.

The following example shows that not every HL-continuous mapping is L-continuous.

Example 6.4. If L = [0, 1], then the mapping defined in Example 3.6 in [4] is HL-continuous but not L-continuous.

Theorem 6.5. If $F: (L^X, \tau) \to (L^Y, \Delta)$ is an L-valued Zadeh almost Lcontinuous, bijective mapping and (L^Y, Δ) is a fully stratified LT₂-space, then $F^{-1}: (L^Y, \Delta) \to (L^X, \tau)$ is HL-continuous.

Proof. Let $\mu \in L^X$ be an almost N-compact and closed set. Since F is almost L-continuous so by Theorem 4.2 in [6], $F(\mu)$ is almost N-compact in (L^Y, Δ) . Also, since (L^Y, Δ) is a fully stratified LT₂-space, so $F(\mu) \in \Delta'$. Thus $F(\mu)$ is almost N-compact closed and $(F^{-1})^{-1}(\mu) = F(\mu) \in \Delta'$. Hence $F^{-1}: (L^Y, \Delta) \to (L^X, \tau)$ is HL-continuous.

The following theorem shows that under some reasonable conditions HL-continuity and *L*-continuity are equivalent.

Theorem 6.6. Let $F: (L^X, \tau) \to (L^Y, \Delta)$ be L-valued Zadeh HL-continuous and let (L^Y, Δ) be a fully stratified LT₂-space. If $F(1_X)$ is an L-fuzzy set of an almost N-compact set of L^Y , then F is L-continuous.

Proof. Let $\lambda \in \Delta'$ and let $\eta \in L^Y$ be an almost N-compact set containing $F(1_X)$. Since $\eta \in L^Y$ is almost N-compact and (L^Y, Δ) is a fully stratified LT₂-space, so $\eta \in \Delta'$. Thus $\eta \wedge \lambda \in \Delta'$. Hence by Theorem 2.5 (ii), $\eta \wedge \lambda$ is almost N-compact. Thus $\eta \wedge \lambda \in L^Y$ is an almost N-compact and closed set. Since F is HL-continuous, we have $F^{-1}(\eta \wedge \lambda) \in \tau'$. But $F^{-1}(\eta \wedge \lambda) = F^{-1}(\eta) \wedge F^{-1}(\lambda) = 1_X \wedge F^{-1}(\lambda) = F^{-1}(\lambda)$, so $F^{-1}(\lambda) \in \tau'$. Hence F is L-continuous.

Corollary 6.7. Let (L^X, τ) be an almost N-compact space and (L^Y, Δ) a fully stratified LT₂-space. If $F: (L^X, \tau) \to (L^Y, \Delta)$ is a bijective L-valued Zadeh L-continuous mapping, then F is an L-homeomorphism [7].

Proof. By Theorem 6.5, F^{-1} is HL-continuous and by Theorem 6.6, F^{-1} is L-continuous.

Theorem 6.8. For an L-valued Zadeh mapping $F: (L^X, \tau) \to (L^Y, \Delta)$ the following assertions hold:

- (i) $F: (L^X, \tau) \to (L^Y, \Delta)$ is HL-continuous iff $F^*: (L^X, \tau) \to (L^Y, \Delta_{\text{HC}})$ is L-continuous.
- (ii) $F: (L^X, \tau) \to (L^Y, \Delta)$ is CL-continuous iff $F^*: (L^X, \tau) \to (L^Y, \Delta_{\rm NC})$ is L-continuous.
- (iii) The identity mappings $I_Y: (L^Y, \Delta) \to (L^Y, \Delta_{\mathrm{HC}})$ and $I_Y^*: (L^Y, \Delta_{\mathrm{HC}}) \to (L^Y, \Delta_{\mathrm{NC}})$ are *L*-continuous.
- (iv) I_Y^{-1} : $(L^Y, \Delta_{\mathrm{HC}}) \to (L^Y, \Delta)$ is HL-continuous and ${I_Y}^{*-1}$: $(L^Y, \Delta_{\mathrm{NC}}) \to (L^Y, \Delta_{\mathrm{HC}})$ is CL-continuous.

Proof. Straightforward.

Theorem 6.9. Let $F: (L^X, \tau) \to (L^Y, \Delta)$ be an L-valued Zadeh HL-continuous mapping. If $F^*: (L^X, \tau) \to (L^Y, \Delta_{HC})$ is an L-closed (L-open) mapping, then so is F.

Proof. Let μ be a closed set in (L^X, τ) . By hypothesis, $F^*(\mu)$ is a closed set in $(L^Y, \Delta_{\mathrm{HC}})$. By Theorem 6.8 (iii), the identity map $I_Y \colon (L^Y, \Delta) \to (L^Y, \Delta_{\mathrm{HC}})$ is *L*-continuous, so $I_Y^{-1}(F^*(\mu))$ is a closed set in (L^Y, Δ) . But $I_Y^{-1} \circ F^* = F$, so $I_Y^{-1}(F^*(\mu)) = F(\mu)$ is a closed set in (L^Y, Δ) . Thus *F* is an *L*-closed mapping. The proof for the case in the parentheses is similar.

Corollary 6.10. If $F: (L^X, \tau) \to (L^Y, \Delta)$ is a bijective L-valued Zadeh HLcontinuous mapping and $F^*: (L^X, \tau) \to (L^Y, \Delta_{\mathrm{HC}})$ is an L-valued Zadeh L-closed (or L-open) mapping, then F^{-1} is L-continuous.

Proof. Let F^* be a *L*-closed (*L*-open) mapping and μ a closed (open) set in (L^X, τ) . Then by Theorem 6.9, *F* is a *L*-closed (open) mapping, so $F(\mu)$ is a closed (open) set in (L^Y, Δ) . But $F(\mu) = (F^{-1})^{-1}(\mu)$. Thus F^{-1} is *L*-continuous.

Theorem 6.11. Let (L^X, τ) be an L-ts. If (L^X, τ_{HC}) is an LT₂-space, then (L^X, τ) is an almost N-compact space.

Proof. Let $\Phi = \{\eta_j: j \in J\} \subset \tau'$ be an α -RF of 1_X . Since $(L^X, \tau_{\mathrm{HC}})$ is an LT₂-space and $\tau_{\mathrm{HC}}' \subset \tau'$, there exist almost *N*-compact closed sets μ and λ with $\mu \lor \lambda = 1_X$. Since μ and λ are almost *N*-compact sets, there exist $\Phi_k = \{\eta_{j_k}: k = 1, 2, \ldots, n\} \in 2^{(\Phi)}$ and $\Phi_h = \{\eta_{j_h}: h = 1, 2, \ldots, m\} \in 2^{(\Phi)}$ with Φ_k and Φ_h are almost $\overline{\alpha}$ -RF of μ and λ , respectively. Thus for each $x_{\gamma_1} \in \mu$ there exists $\eta_{j_k} \in \Phi_k$ with $\eta_{j_k} \in R_{x_{\gamma_1}}$ and also for each $x_{\gamma_2} \in \lambda$ there exists $\eta_{j_h} \in \Phi_h$ with $\eta_{j_h} \in R_{x_{\gamma_2}}$, where $\gamma_1, \gamma_2 \in \beta^*(\alpha)$. Now, since $\Phi_k \lor \Phi_h \in 2^{(\Phi)}$, so for each $x_{(\gamma_1 \lor \gamma_2)} \in \mu \lor \lambda = 1_X$ there exists $\eta_{j_l} \in (\Phi_k \lor \Phi_h)$ with $\eta_{j_l} \in R_{(x_{\gamma_1 \lor \gamma_2)}}$. Hence (L^X, τ) is an almost *N*-compact space.

Theorem 6.12. Let $F: (L^X, \tau) \to (L^Y, \Delta)$ be an L-valued Zadeh HL-continuous mapping. If (L^Y, Δ_{HC}) is a fully stratified LT₂-space, then F is L-continuous.

Proof. Follows from Theorems 6.6 and 6.11.

References

- [1] S. L. Chen: Theory of L-fuzzy H-sets. Fuzzy Sets and Systems 51 (1992), 89-94.
- [2] S. L. Chen, X. G. Wang: L-fuzzy N-continuous mappings. J. Fuzzy Math. 4 (1996), 621–629.
- [3] S. L. Chen, S. T. Chen: A new extension of fuzzy convergence. Fuzzy Sets and Systems 109 (2000), 199–204.
- [4] S. Dang, A. Behera: Fuzzy H-continuous functions. J. Fuzzy Math. 3 (1995), 135–145.
- [5] J. M. Fang: Further characterizations of L-fuzzy H-set. Fuzzy Sets and Systems 91 (1997), 355–359.
- [6] M. Han, M. Guangwu: Almost N-compact sets in L-fuzzy topological spaces. Fuzzy Sets and Systems 91 (1997), 115–122.
- [7] U. Höhle, S. E. Rodabaugh: Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory. The Handbooks of Fuzzy Series 3, Kluwer Academic Publishers, Dordrecht, 1999.
- [8] Y. M. Liu, M. K. Luo: Fuzzy Stone-Čech-type compactifications. Fuzzy Sets and Systems 33 (1989), 355–372.
- [9] Y. M. Liu, M. K. Luo: Separations in lattice-valued induced spaces. Fuzzy Sets and Systems 36 (1990), 55–66.
- [10] P. E. Long, T. R. Hamlett: H-continuous functions. Bolletino U. M. I. 11 (1975), 552-558.
- [11] M. N. Mukherjee, S. P. Sinha: Almost compact fuzzy sets in fuzzy topological spaces. Fuzzy Sets and Systems 48 (1990), 389–396.
- [12] G. J. Wang: A new fuzzy compactness defined by fuzzy nets. J. Math. Anal. Appl. 94 (1983), 59–67.
- [13] G. J. Wang: Generalized topological molecular lattices. Scientia Sinica (Ser. A) 27 (1984), 785–793.
- [14] G. J. Wang: Theory of L-Fuzzy Topological Spaces. Shaanxi Normal University Press, Xi'an, 1988.
- [15] Z. Q. Yang: Ideal in topological molecular lattices. Acta Mathematica Sinica 29 (1986), 276–279.
- [16] D. S. Zhao: The N-compactness in L-fuzzy topological spaces. J. Math. Anal. Appl. 128 (1987), 64–79.

Author's address: A. A. Nouh, Mathematics Department, Faculty of Science, Mansoura University, Egypt, e-mail: aanouh@hotmail.com.