ON THE INCOMPLETE GAMMA FUNCTION AND THE NEUTRIX CONVOLUTION

Brian Fisher, Leicester, Biljana Jolevska-Tuneska, Skopje,
Arpad Takačí, Novi Sad

(Received September 24, 2002)

Abstract. The incomplete Gamma function $\gamma(\alpha, x)$ and its associated functions $\gamma\left(\alpha, x_{+}\right)$ and $\gamma\left(\alpha, x_{-}\right)$are defined as locally summable functions on the real line and some convolutions and neutrix convolutions of these functions and the functions x^{r} and x_{-}^{r} are then found.

Keywords: Gamma function, incomplete Gamma function, convolution, neutrix convolution

MSC 2000: 33B10, 46F10

The incomplete Gamma function $\gamma(\alpha, x)$ is defined for $\alpha>0$ and $x \geqslant 0$ by

$$
\begin{equation*}
\gamma(\alpha, x)=\int_{0}^{x} u^{\alpha-1} \mathrm{e}^{-u} \mathrm{~d} u \tag{1}
\end{equation*}
$$

see [5], the integral diverging for $\alpha \leqslant 0$.
Alternatively, we can define the incomplete Gamma function by

$$
\begin{equation*}
\gamma(\alpha, x)=\int_{0}^{x}|u|^{\alpha-1} \mathrm{e}^{-u} \mathrm{~d} u \tag{2}
\end{equation*}
$$

and equation (2) defines $\gamma(\alpha, x)$ for all x, the integral again diverging for $\alpha \leqslant 0$.
We note that if $x>0$ and $\alpha>0$, then by integration by parts we see that

$$
\begin{equation*}
\gamma(\alpha+1, x)=\alpha \gamma(\alpha, x)-x^{\alpha} \mathrm{e}^{-x} \tag{3}
\end{equation*}
$$

and so we can use equation (3) to extend the definition of $\gamma(\alpha, x)$ to negative, noninteger values of α. In particular, it follows that if $-1<\alpha<0$ and $x>0$, then

$$
\begin{aligned}
\gamma(\alpha, x) & =\alpha^{-1} \gamma(\alpha+1, x)+\alpha^{-1} x^{\alpha} \mathrm{e}^{-x} \\
& =-\alpha^{-1} \int_{0}^{x} u^{\alpha} \mathrm{d}\left(\mathrm{e}^{-u}-1\right)+\alpha^{-1} x^{\alpha} \mathrm{e}^{-x}
\end{aligned}
$$

and by integration by parts we see that

$$
\gamma(\alpha, x)=\int_{0}^{x} u^{\alpha-1}\left(\mathrm{e}^{-u}-1\right) \mathrm{d} u+\alpha^{-1} x^{\alpha} .
$$

More generally, it is easily proved by induction that if $-r<\alpha<-r+1$ and $x>0$, then

$$
\begin{equation*}
\gamma(\alpha, x)=\int_{0}^{x} u^{\alpha-1}\left[\mathrm{e}^{-u}-\sum_{i=0}^{r-1} \frac{(-u)^{i}}{i!}\right] \mathrm{d} u+\sum_{i=0}^{r-1} \frac{(-1)^{i} x^{\alpha+i}}{(\alpha+i) i!} \tag{4}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \gamma(\alpha, x)=\Gamma(\alpha) \tag{5}
\end{equation*}
$$

for $\alpha \neq 0,-1,-2, \ldots$, where Γ denotes the Gamma function.
We now define locally summable function $\gamma\left(\alpha, x_{+}\right)$by

$$
\gamma\left(\alpha, x_{+}\right)=\left\{\begin{array}{cc}
\int_{0}^{x} u^{\alpha-1} \mathrm{e}^{-u} \mathrm{~d} u, & x \geqslant 0 \\
0, & x<0
\end{array}\right.
$$

if $\alpha>0$ and we define the distribution $\gamma\left(\alpha, x_{+}\right)$inductively by the equation

$$
\begin{equation*}
\gamma\left(\alpha, x_{+}\right)=\alpha^{-1} \gamma\left(\alpha+1, x_{+}\right)+\alpha^{-1} x_{+}^{\alpha} \mathrm{e}^{-x} \tag{6}
\end{equation*}
$$

for $\alpha<0$ and $\alpha \neq-1,-2, \ldots$.
If now $x<0$ and $\alpha>1$, then by integration by parts we see that

$$
\begin{equation*}
\gamma(\alpha+1, x)=-\alpha \gamma(\alpha, x)-|x|^{\alpha} \mathrm{e}^{-x} \tag{7}
\end{equation*}
$$

and so we can use equation (7) to extend the definition of $\gamma(\alpha, x)$ to negative, noninteger values of α.

We now define locally summable function $\gamma\left(\alpha, x_{-}\right)$by

$$
\gamma\left(\alpha, x_{-}\right)=\left\{\begin{array}{cc}
\int_{0}^{x}|u|^{\alpha-1} \mathrm{e}^{-u} \mathrm{~d} u, & x \leqslant 0 \\
0, & x>0
\end{array}\right.
$$

if $\alpha>0$ and we define the distribution $\gamma\left(\alpha, x_{-}\right)$inductively by the equation

$$
\begin{equation*}
\gamma\left(\alpha, x_{-}\right)=-\alpha^{-1} \gamma\left(\alpha+1, x_{-}\right)-\alpha^{-1} x_{-}^{\alpha} \mathrm{e}^{-x} \tag{8}
\end{equation*}
$$

for $\alpha<0$ and $\alpha \neq-1,-2, \ldots$. It follows that

$$
\lim _{x \rightarrow-\infty} \gamma\left(\alpha, x_{-}\right)=\infty
$$

The classical definition of the convolution of two functions f and g is as follows:
Definition 1. Let f and g be functions. Then the convolution $f * g$ is defined by

$$
(f * g)(x)=\int_{-\infty}^{\infty} f(t) g(x-t) \mathrm{d} t
$$

for all points x for which the integral exists.
It follows easily from the definition that if $f * g$ exists then $g * f$ exists and

$$
\begin{equation*}
f * g=g * f \tag{9}
\end{equation*}
$$

and if $(f * g)^{\prime}$ and $f * g^{\prime}\left(\right.$ or $\left.f^{\prime} * g\right)$ exists, then

$$
\begin{equation*}
(f * g)^{\prime}=f * g^{\prime} \quad\left(\text { or } f^{\prime} * g\right) . \tag{10}
\end{equation*}
$$

Definition 1 can be extended to define the convolution $f * g$ of two distributions f and g in \mathcal{D}^{\prime} by the following definition, see Gel'fand and Shilov [4].

Definition 2. Let f and g be distributions in \mathcal{D}^{\prime}. Then the convolution $f * g$ is defined by the equation

$$
\langle(f * g)(x), \varphi\rangle=\langle f(y),\langle g(x), \varphi(x+y)\rangle\rangle
$$

for arbitrary φ in \mathcal{D}, provided f and g satisfy at least one of the conditions
(a) either f or g has bounded support,
(b) the supports of f and g are bounded on the same side.

It follows that if the convolution $f * g$ exists by this definition then equations (9) and (10) are satisfied.

The following convolutions were proved in [3]:

$$
\begin{align*}
& \left(x_{+}^{\alpha} \mathrm{e}^{-x}\right) * x_{+}^{r}=\sum_{i=0}^{r}\binom{r}{i}(-1)^{i} \gamma\left(\alpha+i+1, x_{+}\right) x^{r-i} \tag{11}\\
& \gamma\left(\alpha, x_{+}\right) * x_{+}^{r}=\frac{1}{r+1} \sum_{i=0}^{r+1}\binom{r+1}{i}(-1)^{i} \gamma\left(\alpha+i, x_{+}\right) x^{r-i+1} \tag{12}\\
& \left(x_{+}^{\alpha} \mathrm{e}^{-x}\right) * x^{r}=\sum_{i=0}^{r}\binom{r}{i}(-1)^{i} \Gamma(\alpha+i+1) x^{r-i} \tag{13}
\end{align*}
$$

for $r=0,1,2, \ldots$ and $\alpha \neq 0,-1,-2, \ldots$.
We now prove some further results involving the convolution.

Theorem 1.

$$
\begin{equation*}
\left(x_{-}^{\alpha} \mathrm{e}^{-x}\right) * x_{-}^{r}=(-1)^{r-1} \sum_{i=0}^{r}\binom{r}{i} \gamma\left(\alpha+i+1, x_{-}\right) x^{r-i} \tag{14}
\end{equation*}
$$

for $r=0,1,2, \ldots$ and $\alpha \neq 0,-1,-2, \ldots$.
Proof. We first of all prove equation (14) when $\alpha>0$. It is obvious that $\left(x_{-}^{\alpha} \mathrm{e}^{-x}\right) * x_{-}^{r}=0$ if $x>0$. When $x<0$ we have

$$
\begin{aligned}
\left(x_{-}^{\alpha} \mathrm{e}^{-x}\right) * x_{-}^{r} & =\int_{x}^{0}|x-u|^{r}|u|^{\alpha} \mathrm{e}^{-u} \mathrm{~d} u \\
& =(-1)^{r} \sum_{i=0}^{r}\binom{r}{i} x^{r-i} \int_{x}^{0}|u|^{\alpha+i} \mathrm{e}^{-u} \mathrm{~d} u
\end{aligned}
$$

and equation (14) follows for the case $\alpha>0$.
Now suppose that equation (14) holds when $-s<\alpha<-s+1$. This is true when $s=0$. Then taking into account $-s<\alpha<-s+1$ and differentiating $\left(x_{-}^{\alpha} \mathrm{e}^{-x}\right) * x_{-}^{r}$, we get

$$
\left(-\alpha x_{-}^{\alpha-1} \mathrm{e}^{-x}-x_{-}^{\alpha} \mathrm{e}^{-x}\right) * x_{-}^{r}=-r\left(x_{-}^{\alpha} \mathrm{e}^{-x}\right) * x_{-}^{r-1} .
$$

It follows from our assumption and equation (8) that

$$
\begin{aligned}
\alpha\left(x_{-}^{\alpha-1} \mathrm{e}^{-x}\right) * x_{-}^{r}= & -\left(x_{-}^{\alpha} \mathrm{e}^{-x}\right) * x_{-}^{r}+r\left(x_{-}^{\alpha} \mathrm{e}^{-x}\right) * x_{-}^{r-1} \\
= & (-1)^{r} \sum_{i=0}^{r}\binom{r}{i} \gamma\left(\alpha+i+1, x_{-}\right) x^{r-i} \\
& +(-1)^{r} r \sum_{i=0}^{r-1}\binom{r-1}{i} \gamma\left(\alpha+i+1, x_{-}\right) x^{r-i-1}
\end{aligned}
$$

$$
\begin{aligned}
= & (-1)^{r-1} \sum_{i=0}^{r}\binom{r}{i}\left[(\alpha+i) \gamma\left(\alpha+i, x_{-}\right) x^{r-i}+x_{-}^{\alpha+i} \mathrm{e}^{-x}\right] \\
& +(-1)^{r} r \sum_{i=1}^{r}\binom{r-1}{i-1} \gamma\left(\alpha+i, x_{-}\right) x^{r-i} \\
= & (-1)^{r-1} \alpha \sum_{i=0}^{r}\binom{r}{i} \gamma\left(\alpha+i, x_{-}\right) x^{r-i} \\
& +(-1)^{r-1} \sum_{i=1}^{r}\left[i\binom{r}{i}-r\binom{r-1}{i-1}\right] \gamma\left(\alpha+i, x_{-}\right) x^{r-i} \\
& +(-1)^{r-1} \sum_{i=0}^{r}\binom{r}{i} x_{-}^{r+\alpha} \mathrm{e}^{-x} \\
= & (-1)^{r-1} \alpha \sum_{i=0}^{r}\binom{r}{i} \gamma\left(\alpha+i, x_{-}\right) x^{r-i}
\end{aligned}
$$

and so equation (14) holds when $-s-1<\alpha<-s$. It therefore follows by induction that equation (14) holds for all $\alpha \neq 0,-1,-2, \ldots$, which completes the proof of the theorem.

Theorem 2.

$$
\begin{equation*}
\gamma\left(\alpha, x_{-}\right) * x_{-}^{r}=\frac{(-1)^{r+1}}{r+1} \sum_{i=0}^{r+1}\binom{r+1}{i} \gamma\left(\alpha+i, x_{-}\right) x^{r-i+1} \tag{15}
\end{equation*}
$$

for $r=0,1,2, \ldots$ and $\alpha \neq 0,-1,-2, \ldots$
Proof. We first of all prove equation (15) when $\alpha>0$. It is obvious that $\gamma\left(\alpha, x_{-}\right) * x_{-}^{r}=0$ if $x>0$. When $x<0$ we have

$$
\begin{aligned}
\gamma\left(\alpha, x_{-}\right) * x_{-}^{r} & =\int_{x}^{0}|x-t|^{r} \int_{0}^{t}|u|^{\alpha-1} \mathrm{e}^{-u} \mathrm{~d} u \mathrm{~d} t \\
& =(-1)^{r} \int_{x}^{0}|u|^{\alpha-1} \mathrm{e}^{-u} \int_{u}^{x}(x-t)^{r} \mathrm{~d} t \mathrm{~d} u \\
& =\frac{(-1)^{r}}{r+1} \sum_{i=0}^{r+1}\binom{r+1}{i} x^{r-i+1} \int_{x}^{0}|u|^{\alpha+i-1} \mathrm{e}^{-u} \mathrm{~d} u
\end{aligned}
$$

and equation (15) follows for the case $\alpha>0$.
Now suppose that equation (15) holds when $-s<\alpha<-s+1$. This is true when $s=0$. Then noting that $-s-1<\alpha<-s$ and using equations (8) and (14), we get

$$
\alpha \gamma\left(\alpha, x_{-}\right) * x_{-}^{r}=-\gamma\left(\alpha+1, x_{-}\right) * x_{-}^{r}\left(x_{-}^{\alpha} \mathrm{e}^{-x}\right) * x_{-}^{r}
$$

$$
\begin{aligned}
= & \frac{(-1)^{r+1}}{r+1} \sum_{i=0}^{r+1}\binom{r+1}{i} \gamma\left(\alpha+i+1, x_{-}\right) x^{r-i+1} \\
& +(-1)^{r} \sum_{i=0}^{r}\binom{r}{i} \gamma\left(\alpha+i+1, x_{-}\right) x^{r-i} \\
= & \frac{(-1)^{r+1}}{r+1} \sum_{i=0}^{r+1}\binom{r+1}{i}\left[(\alpha+i) \gamma\left(\alpha+i, x_{-}\right)+x_{-}^{\alpha+i} \mathrm{e}^{-x}\right] x^{r-i+1} \\
& +(-1)^{r} \sum_{i=1}^{r+1}\binom{r}{i-1} \gamma\left(\alpha+i, x_{-}\right) x^{r-i+1} \\
= & \frac{(-1)^{r+1} \alpha}{r+1} \sum_{i=0}^{r+1}\binom{r+1}{i} \gamma\left(\alpha+i, x_{-}\right) x^{r-i+1} \\
& +(-1)^{r+1} \sum_{i=1}^{r+1}\left[\begin{array}{c}
i \\
r+1
\end{array}\binom{r+1}{i}-\binom{r}{i-1}\right] \gamma\left(\alpha+i, x_{-}\right) x^{r-i+1} \\
& +\frac{(-1)^{r}}{r+1} \sum_{i=0}^{r+1}\binom{r+1}{i}(-1)^{i} x_{-}^{r+\alpha+1} \mathrm{e}^{-x} \\
= & \frac{(-1)^{r+1} \alpha}{r+1} \sum_{i=0}^{r+1}\binom{r+1}{i} \gamma\left(\alpha+i, x_{-}\right) x^{r-i+1}
\end{aligned}
$$

and so equation (15) holds when $-s-1<\alpha<-s$. It therefore follows by induction that equation (15) holds for all $\alpha \neq 0,-1,-2, \ldots$, which completes the proof of the theorem.

In order to extend Definition 2 to distributions which do not satisfy conditions (a) or (b), we let τ be a function in \mathcal{D} satisfying the conditions
(i) $\tau(x)=\tau(-x)$,
(ii) $0 \leqslant \tau(x) \leqslant 1$,
(iii) $\tau(x)=1$ for $|x| \leqslant \frac{1}{2}$,
(iv) $\tau(x)=0$ for $|x| \geqslant 1$.

The function τ_{n} is then defined by

$$
\tau_{n}(x)=\left\{\begin{array}{cl}
1, & |x| \leqslant n \\
\tau\left(n^{n} x-n^{n+1}\right), & x>n \\
\tau\left(n^{n} x+n^{n+1}\right), & x<-n
\end{array}\right.
$$

for $n=1,2, \ldots$.
The next definition was given in [2].

Definition 3. Let f and g be distributions in \mathcal{D}^{\prime} and let $f_{n}=f \tau_{n}$ for $n=$ $1,2, \ldots$ Then the neutrix convolution $f \circledast g$ is defined as the neutrix limit of the sequence $\left\{f_{n} * g\right\}$, provided the limit h exists in the sense that

$$
\underset{n \rightarrow \infty}{\mathrm{~N}-\lim _{n}}\left\langle f_{n} * g, \varphi\right\rangle=\langle h, \varphi\rangle
$$

for all φ in \mathcal{D}, where N is the neutrix, see van der Corput [1], having domain $N^{\prime}=\{1,2, \ldots, n, \ldots\}$ and range $N^{\prime \prime}$, the real numbers, with negligible functions being finite linear sums of the functions

$$
n^{\alpha} \ln ^{r-1} n, \quad \ln ^{r} n \quad(\alpha>0, \quad r=1,2, \ldots)
$$

and all functions which converge to zero in the normal sense as n tends to infinity. In particular, if

$$
\lim _{n \rightarrow \infty}\left\langle f_{n} * g, \varphi\right\rangle=\langle h, \varphi\rangle
$$

for all φ in \mathcal{D}, we say that the convolution $f * g$ exists and equals h.
Note that in this definition the convolution $f_{n} * g$ is defined in Gel'fand and Shilov's sense, the distribution f_{n} having compact support. Note also that because of the lack of symmetry in the definition of $f \circledast g$, the neutrix convolution is in general non-commutative.

The following theorem was proved in [2], showing that the neutrix convolution is a generalization of the convolution.

Theorem 3. Let f and g be distributions in \mathcal{D}^{\prime} satisfying either condition (a) or condition (b) of Gel'fand and Shilov's definition. Then the neutrix convolution $f \circledast g$ exists and

$$
f \circledast g=f * g
$$

The next theorem was also proved in [2].
Theorem 4. Let f and g be distributions in \mathcal{D}^{\prime} and suppose that the neutrix convolution $f \circledast g$ exists. Then the neutrix convolution $f \circledast g$ exists and

$$
(f \circledast g)^{\prime}=f \circledast g^{\prime}
$$

Note however that $(f \circledast g)^{\prime}$ is not necessarily equal to $f^{\prime} \circledast g$ but we do have the following theorem, which was proved in [3].

Theorem 5. Let f and g be distributions in \mathcal{D}^{\prime} and suppose that the neutrix convolution $f \circledast g$ exists. If $\underset{n \rightarrow \infty}{\operatorname{N}-\lim _{\infty}}\left\langle\left(f \tau_{n}^{\prime}\right) * g, \varphi\right\rangle$ exists and equals $\langle h, \varphi\rangle$ for all φ in \mathcal{D}, then the neutrix convolution $f^{\prime} \circledast g$ exists and

$$
(f \circledast g)^{\prime}=f^{\prime} \circledast g+h .
$$

For our next results, we need to extend our set of negligible functions to include finite linear sums of

$$
n^{\alpha} \mathrm{e}^{n}, \quad \gamma\left(\alpha,-n_{-}\right): \quad \alpha \neq 0,-1,-2, \ldots
$$

The following neutrix convolution was proved in [3]:

$$
\begin{equation*}
\gamma\left(\alpha, x_{+}\right) \circledast x^{r}=\frac{1}{r+1} \sum_{i=1}^{r+1}\binom{r+1}{i}(-1)^{i} \Gamma(\alpha+i) x^{r-i+1} \tag{16}
\end{equation*}
$$

for $r=0,1,2, \ldots$ and $\alpha \neq 0,-1,-2, \ldots$.
We now prove

Theorem 6. The neutrix convolution $\left(x_{-}^{\alpha} \mathrm{e}^{-x}\right) \circledast x^{r}$ exists and

$$
\begin{equation*}
\left(x_{-}^{\alpha} \mathrm{e}^{-x}\right) \circledast x^{r}=0 \tag{17}
\end{equation*}
$$

for $r=0,1,2, \ldots$ and $\alpha \neq 0,-1,-2, \ldots$.
Proof. We first of all prove equation (17) when $\alpha>0$ and put $\left(x_{-}^{\alpha} \mathrm{e}^{-x}\right)_{n}=$ $x_{-}^{\alpha} \mathrm{e}^{-x} \tau_{n}(x)$. Since $\left(x_{-}^{\alpha} \mathrm{e}^{-x}\right)_{n}$ has compact support, it follows that the convolution $\left(x_{-}^{\alpha} \mathrm{e}^{-x}\right)_{n} * x^{r}$ exists and

$$
\begin{align*}
\left(x_{-}^{\alpha} \mathrm{e}^{-x}\right)_{n} * x^{r} & =\int_{-n}^{0}(x-u)^{r}|u|^{\alpha} \mathrm{e}^{-u} \mathrm{~d} u+\int_{-n-n^{-n}}^{-n}(x-u)^{r}|u|^{\alpha} \mathrm{e}^{-u} \tau_{n}(u) \mathrm{d} u \\
& =I_{1}+I_{2} \tag{18}
\end{align*}
$$

Now

$$
I_{1}=\sum_{i=0}^{r}\binom{r}{i} x^{r-i} \int_{-n}^{0}|u|^{\alpha+i} \mathrm{e}^{-u} \mathrm{~d} u=-\sum_{i=0}^{r}\binom{r}{i} x^{r-i} \gamma\left(\alpha+i+1,-n_{-}\right)
$$

and it follows that

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\mathrm{~N}-\lim _{1}} I_{1}=0 . \tag{19}
\end{equation*}
$$

Further, it is easily seen that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I_{2}=0 \tag{20}
\end{equation*}
$$

and equation (17) follows from equations (18), (19) and (20) for the case $\alpha>0$.
Now suppose that equation (17) holds when $-s<\alpha<-s+1$. This is true when $s=0$. Then by virtue of $-s<\alpha<-s+1$, we have

$$
\left[x_{-}^{\alpha} \mathrm{e}^{-x} \tau_{n}^{\prime}(x)\right] * x^{r}=\int_{-n-n^{-n}}^{-n}|t|^{\alpha} \mathrm{e}^{-t} \tau_{n}^{\prime}(t)(x-t)^{r} \mathrm{~d} t
$$

and

$$
\begin{aligned}
& \left\langle\left[x_{-}^{\alpha} \mathrm{e}^{-x} \tau_{n}^{\prime}(x)\right] * x^{r}, \varphi(x)\right\rangle=\int_{a}^{b} \int_{-n-n^{-n}}^{-n}|t|^{\alpha} \mathrm{e}^{-t} \tau_{n}^{\prime}(t)(x-t)^{r} \varphi(x) \mathrm{d} t \mathrm{~d} x \\
& \quad=\int_{a}^{b} \int_{-n-n^{-n}}^{-n}[\alpha(x-t)+t(x-t)+r t]|t|^{\alpha-1} \mathrm{e}^{-t}(x-t)^{r-1} \tau_{n}(t) \varphi(x) \mathrm{d} t \mathrm{~d} x \\
& \quad \quad-n^{\alpha} \mathrm{e}^{n} \int_{a}^{b}(x+n)^{r} \varphi(x) \mathrm{d} x,
\end{aligned}
$$

where $[a, b]$ contains the support of φ. It follows easily that

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\mathrm{~N}-\lim _{\infty}}\left\langle\left[x_{-}^{\alpha} \mathrm{e}^{-x} \tau_{n}^{\prime}(x)\right] * x^{r}, \varphi(x)\right\rangle=0 . \tag{21}
\end{equation*}
$$

It now follows from Theorems 4 and 5 and equation (21) that

$$
\left(-\alpha x_{-}^{\alpha-1} \mathrm{e}^{-x}-x_{-}^{\alpha} \mathrm{e}^{-x}\right) \circledast x^{r}+0=r\left(x_{+}^{\alpha} \mathrm{e}^{-x}\right) \circledast x^{r-1}
$$

Using our assumption, it follows that

$$
\alpha\left(x_{-}^{\alpha-1} \mathrm{e}^{-x}\right) \circledast x^{r}=0
$$

and so equation (17) holds when $-s-1<\alpha<-s$. It therefore follows by induction that equation (17) holds for all $\alpha \neq 0,-1,-2, \ldots$, which completes the proof of the theorem.

Corollary 6.1. The neutrix convolution $\left(x_{-}^{\alpha} \mathrm{e}^{-x}\right) \circledast x_{+}^{r}$ exists and

$$
\begin{equation*}
\left(x_{-}^{\alpha} \mathrm{e}^{-x}\right) \circledast x_{+}^{r}=\sum_{i=0}^{r}\binom{r}{i} \gamma\left(\alpha+i+1, x_{-}\right) x^{r-i} \tag{22}
\end{equation*}
$$

for $r=0,1,2, \ldots$ and $\alpha \neq 0,-1,-2, \ldots$.
Proof. Equation (22) follows from equations (14) and (17) by noting that

$$
\left(x_{-}^{\alpha} \mathrm{e}^{-x}\right) \circledast x^{r}=\left(x_{-}^{\alpha} \mathrm{e}^{-x}\right) \circledast x_{+}^{r}+(-1)^{r}\left(x_{-}^{\alpha} \mathrm{e}^{-x}\right) \circledast x_{-}^{r} .
$$

Corollary 6.2. The neutrix convolution $\left(|x|^{\alpha} \mathrm{e}^{-x}\right) \circledast x_{+}^{r}$ exists and

$$
\begin{equation*}
\left(|x|^{\alpha} \mathrm{e}^{-x}\right) \circledast x_{+}^{r}=\sum_{i=0}^{r}\binom{r}{i}\left[(-1)^{i} \gamma\left(\alpha+i+1, x_{+}\right)+\gamma\left(\alpha+i+1, x_{-}\right)\right] x^{r-i} \tag{23}
\end{equation*}
$$

for $r=0,1,2, \ldots$ and $\alpha \neq 0,-1,-2, \ldots$
Proof. Equation (23) follows immediately from equations (1) and (22).
Theorem 7. The neutrix convolution $\gamma\left(\alpha, x_{-}\right) \circledast x^{r}$ exists and

$$
\begin{equation*}
\gamma\left(\alpha, x_{-}\right) \circledast x^{r}=0 \tag{24}
\end{equation*}
$$

for $r=0,1,2, \ldots$ and $\alpha \neq 0,-1,-2, \ldots$.
Proof. We first of all prove equation (24) when $\alpha>0$ and put $\gamma_{n}\left(\alpha, x_{-}\right)=$ $\gamma\left(\alpha, x_{-}\right) \tau_{n}(x)$. The convolution $\gamma_{n}\left(\alpha, x_{-}\right) * x^{r}$ then exists by Definition 1 and

$$
\begin{align*}
\gamma_{n}\left(\alpha, x_{-}\right) * x^{r}= & \int_{-n}^{0}(x-t)^{r} \int_{0}^{t}|u|^{\alpha-1} \mathrm{e}^{-u} \mathrm{~d} u \mathrm{~d} t \\
& +\int_{-n-n^{-n}}^{-n}(x-t)^{r} \int_{0}^{t}|u|^{\alpha-1} \mathrm{e}^{-u} \mathrm{~d} u \mathrm{~d} t=J_{1}+J_{2} \tag{25}
\end{align*}
$$

Now

$$
\begin{aligned}
J_{1}= & \int_{-n}^{0}(x-t)^{r} \int_{0}^{t}|u|^{\alpha-1} \mathrm{e}^{-u} \mathrm{~d} u \mathrm{~d} t \\
= & \int_{-n}^{0}|u|^{\alpha-1} \mathrm{e}^{-u} \int_{u}^{-n}(x-t)^{r} \mathrm{~d} t \mathrm{~d} u \\
= & \frac{1}{r+1} \sum_{i=1}^{r+1}\binom{r+1}{i} x^{r-i+1} \int_{-n}^{0}|u|^{\alpha+i-1} \mathrm{e}^{-u} \mathrm{~d} u \\
& -\frac{1}{r+1} \sum_{i=1}^{r+1}\binom{r+1}{i} n^{i} x^{r-i+1} \int_{-n}^{0}|u|^{\alpha-1} \mathrm{e}^{-u} \mathrm{~d} u \\
= & -\frac{1}{r+1} \sum_{i=1}^{r+1}\binom{r+1}{i} \gamma\left(\alpha+i,-n_{-}\right) x^{r-i+1} \\
& +\frac{1}{r+1} \sum_{i=1}^{r+1}\binom{r+1}{i} n^{i} \gamma\left(\alpha,-n_{-}\right) x^{r-i+1} .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\mathrm{~N}-\lim _{\infty}} J_{1}=0 . \tag{26}
\end{equation*}
$$

Further, it is easily seen that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} J_{2}=0 \tag{27}
\end{equation*}
$$

and equation (24) follows from equations (25), (26) and (27) for the case $\alpha>0$.
Now suppose that equation (24) holds when $-s<\alpha<-s+1$. This is true when $s=0$. Then by virtue of $-s-1<\alpha<-s$ and using theorem 6 we get

$$
\begin{equation*}
\alpha \gamma\left(\alpha, x_{-}\right) \circledast x^{r}=\gamma\left(\alpha+1, x_{-}\right) \circledast x^{r}+\left(x_{-}^{\alpha} \mathrm{e}^{-x}\right) \circledast x^{r}=0 \tag{28}
\end{equation*}
$$

and so (24) holds when $-s-1<\alpha<-s$. It therefore follows by induction that (24) holds for all $\alpha \neq 0,-1,-2, \ldots$ which completes the proof of the theorem.

Corollary 7.1. The neutrix convolution $\gamma\left(\alpha, x_{-}\right) \circledast x_{+}^{r}$ exists and

$$
\begin{equation*}
\gamma\left(\alpha, x_{-}\right) \circledast x_{+}^{r}=-\frac{1}{r+1} \sum_{i=0}^{r+1}\binom{r+1}{i} \gamma\left(\alpha+i, x_{-}\right) x^{r-i+1} \tag{29}
\end{equation*}
$$

for $r=0,1,2, \ldots$ and $\alpha \neq 0,-1,-2, \ldots$.
Proof. Equation (29) follows from equations (15) and (24) by noting that

$$
\gamma\left(\alpha, x_{-}\right) \circledast x^{r}=\gamma\left(\alpha, x_{-}\right) \circledast x_{+}^{r}+(-1)^{r} \gamma\left(\alpha, x_{-}\right) \circledast x_{-}^{r} .
$$

References

[1] van der Corput, J. G.: Introduction to the neutrix calculus. J. Analyse Math. 7 (1959-60), 291-398.
[2] Fisher, B.: Neutrices and the convolution of distributions. Univ. u Novom Sadu Zb. Prirod.-Mat. Fak. Ser. Mat. 17 (1987), 119-135.
[3] Fisher, B., Yakubovich, S., Telci, M.: On the incomplete Gamma function, submitted for publication.
[4] Gel'fand, I. M., Shilov, G. E.: Generalized Functions, vol. I. Academic Press, 1964.
[5] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Higher Transcendental Functions, vol. I. McGraw-Hill, New York, 1953.

Authors' addresses: B. Fisher, Department of Mathematics and Computer Science, Leicester University, Leicester, LE1 7RH, England, e-mail: fbr@le.ac.uk; B. Jolevska-Tuneska, Faculty of Electrical Engineering, Karpos II bb, Skopje, Republic of Macedonia, e-mail: biljanaj@etf.ukim.edu.mk; A. Takači, Department of Mathematics, University of Novi Sad, Novi Sad, Yugoslavia, e-mail: takaci@im.ns.ac.yu.

