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PRECOVERS AND GOLDIE’S TORSION THEORY
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Abstract. Recently, Rim and Teply [8], using the notion of τ -exact modules, found a nec-
essary condition for the existence of τ -torsionfree covers with respect to a given hereditary
torsion theory τ for the category R-mod of all unitary left R-modules over an associative
ring R with identity. Some relations between τ -torsionfree and τ -exact covers have been
investigated in [5]. The purpose of this note is to show that if σ = (Tσ, Fσ) is Goldie’s
torsion theory and Fσ is a precover class, then Fτ is a precover class whenever τ > σ.
Further, it is shown that Fσ is a cover class if and only if σ is of finite type and, in the case
of non-singular rings, this is equivalent to the fact that Fτ is a cover class for all hereditary
torsion theories τ > σ.

Keywords: hereditary torsion theory, Goldie’s torsion theory, non-singular ring, precover
class, cover class

MSC 2000 : 16S90, 18E40, 16D80

In what follows, R stands for an associative ring with identity and R-mod denotes

the category of all unitary left R-modules. The basic properties of rings and modules

can be found in [1]. A class G of modules is called abstract, if it is closed under iso-

morphic copies, co-abstract, if its members are pairwise non-isomorphic and complete

with respect to a given property, if every module with this property is isomorphic to

a member of the class G .

Recall that a hereditary torsion theory τ = (Tτ ,Fτ ) for the category R-mod

consists of two abstract classes Tτ and Fτ , the τ -torsion class and the τ -torsionfree

class, respectively, such that Hom(T, F ) = 0 whenever T ∈ Tτ and F ∈ Fτ , the class

Tτ is closed under submodules, factor-modules, extensions and arbitrary direct sums,

the class Fτ is closed under submodules, extensions and arbitrary direct products
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and for each module M there exists an exact sequence 0 → T → M → F → 0 such

that T ∈ Tτ and F ∈ Fτ . For two hereditary torsion theories τ and τ
′ the symbol

τ 6 τ ′ means that Tτ ⊆ Tτ ′ and consequently Fτ ′ ⊆ Fτ . Associated with each

hereditary torsion theory τ is the Gabriel filter Lτ of left ideals of R consisting of

all left ideals I 6 R with R/I ∈ Tτ . Recall that τ is said to be of finite type, if

Lτ contains a cofinal subset L ′

τ of finitely generated left ideals. A submodule N of

the module M is called τ -closed (or τ -pure), if the factor-module M/N belongs to

Fτ . A module M is said to be τ -noetherian, if the set of all τ -closed submodules

of M satisfies the maximum condition. A module Q is said to be τ -injective, if

it is injective with respect to all short exact sequences 0 → A → B → C → 0,

where C ∈ Tτ . Further, a hereditary torsion theory τ is called exact, if E(Q)/Q

is τ -torsionfree τ -injective, E(Q) being the injective hull of Q, whenever Q is a τ -

torsionfree τ -injective module. If, in addition, τ is of finite type, then it is called

perfect. For more details on torsion theories we refer to [7] or [6].

For a moduleM , the singular submodule Z(M) consists of all elements a ∈ M , the

annihilator left ideal (0 : a) = {r ∈ R ; ra = 0} of which is essential in R. Goldie’s

torsion theory for the category R-mod is the hereditary torsion theory σ = (Tσ ,Fσ),

where Tσ = {M ∈ R-mod ; Z(M/Z(M)) = M/Z(M)} and Fσ = {M ∈ R-mod ;

Z(M) = 0}. If the ring R is σ-torsionfree, Z(R) = 0, then R is called non-singular.

Note that in this case the Gabriel filter Lσ consists of essential left ideals only.

If G is an abstract class of modules, then a homomorphism ϕ : G→M is called a

G -precover of the moduleM , if G ∈ G and every homomorphism f : F →M , F ∈ G ,

factors through ϕ, i.e. there exists a homomorphism g : F → G such that ϕg = f .

Moreover, a G -precover ϕ of M is said to be a G -cover, if each endomorphism f

of G with ϕf = ϕ is an automorphism of the module G. An abstract class G of

modules is called a precover (cover) class, if every module has a G -precover (G -

cover). It is well-known that an Fτ -precover ϕ : G→ M is an Fτ -cover if and only

if Kerϕ contains no non-zero submodule τ -closed in G. For more details concerning

the theory of precovers and covers we refer to [10].

It is well-known (see e.g. [7; Proposition 42.9]) that a hereditary torsion theory τ

is of finite type if and only if any directed union of τ -torsionfree τ -injective modules

is τ -injective and that this condition is sufficient for the existence of τ -torsionfree

covers (see [9] for the τ -torsionfree rings and [2] for the general case). On the other

hand, in [8] a necessary condition has been presented saying that the directed union

of τ -exact submodules of a given module is τ -injective. By a τ -exact module we

mean any τ -torsionfree module, every τ -torsionfree homomorphic image of which is

τ -injective. The purpose of this note is to prove that for Goldie’s torsion theory σ

the finite type condition is necessary and sufficient for the existence of σ-torsionfree

covers. Moreover, if Fσ is a precover class, then Fτ is a precover class whenever
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τ > σ and the same holds for cover classes provided that the ring R is non-singular.

More precisely, we are going to prove the following two theorems.

Theorem 1. Let σ = (Tσ ,Fσ) be Goldie’s torsion theory for the category

R-mod. If Fσ is a precover class, then Fτ is a precover class for any hereditary

torsion theory τ > σ.

Theorem 2. Let σ = (Tσ ,Fσ) be Goldie’s torsion theory for the category

R-mod. The following conditions are equivalent:

(i) Fσ is a cover class;

(ii) σ is of finite type;

(iii) σ is perfect.

If, moreover, the ring R is non-singular (Z(R) = 0), then these conditions are

equivalent to the following three conditions:

(iv) every non-zero left ideal of R contains a finitely generated essential left ideal;

(v) RR is σ-noetherian;

(vi) for every hereditary torsion theory τ > σ the class Fτ is a cover class.

We start with some preliminary lemmas, the symbol σ will always denote Goldie’s

torsion theory.

Lemma 1. Let τ > σ be a hereditary torsion theory for the category R-mod.

Then

(i) a module Q ∈ Fτ is τ -injective if and only if it is injective;

(ii) a submodule K 6 Q with Q ∈ Fτ injective is τ -closed if and only if it is

injective. In this case the factor-module Q/K is also injective.

���������
. (i) If Q ∈ Fτ is τ -injective and E(Q) is the injective hull of Q, then

E(Q)/Q ∈ Fτ ⊆ Fσ by [7; Corollary 44.3]. In view of the obvious fact E(Q)/Q ∈ Tσ

we have Q = E(Q). The converse is obvious.

(ii) If K is τ -closed in Q, then Q/K ∈ Fτ ⊆ Fσ . Hence K has no proper essential

extension in Q and consequently it is injective. The rest is clear. �

Lemma 2. Let τ > σ be a hereditary torsion theory for the category R-mod. If

every module has an Fτ -cover, then every directed union of τ -torsionfree injective

modules is τ -torsionfree injective.

���������
. Let K =

⋃

α∈Λ

Kα be a directed union of τ -torsionfree injective modules,

let M = E(K) be the injective hull of K and let ϕ : G → M/K be an Fτ -cover

of the module M/K. Denoting by πα : M/Kα → M/K the corresponding natural

projections, there are homomorphisms fα : M/Kα → G such that ϕfα = πα for
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every α ∈ Λ. Obviously, Ker fα ⊆ K/Kα and we are going to show that the equality

holds for each α ∈ Λ. If not, then Kβ/Kα

�
Ker fα for some α, β ∈ Λ and so

0 6= fα(Kβ/Kα) ∼= Kβ/Lβ ∈ Fτ ⊆ Fσ yields according to Lemma 1 that 0 6=

fα(Kβ/Kα) ⊆ Kerϕ is injective. This contradicts the fact that ϕ is an Fτ -cover

of the module M/K and consequently Im fα ∼= M/K ∈ Fτ for each α ∈ Λ. Thus

M/K ∈ Fσ ∩ Tσ = 0, M = K and we are through. �

Lemma 3. Let τ = (Tτ ,Fτ ) be an arbitrary hereditary torsion theory for the

category R-mod. The following conditions are equivalent:

(i) every module has a τ -torsionfree precover;

(ii) every injective module has a τ -torsionfree precover;

(iii) every injective module has an injective τ -torsionfree precover.

���������
. For an arbitrary injective moduleM we obviously have the commutative

diagram

G //
ϕ

��

ι

M

E(G) //
ψ

M

where ι is the inclusion map of G into its injective hull E(G) and ϕ is anFτ -precover

of the module M . Then ψ is obviously an Fτ -precover of M and consequently (ii)

implies (iii).

Assuming (iii) let us consider the pullback diagram

F //
ϕ

��

i

M

��

j

G //
ψ

E(M)

where M ∈ R-mod is arbitrary and ψ is an Fτ -precover of E(M) with G injective.

Clearly, i is injective, hence F ∈ Fτ and the pullback property yields that ϕ is an

Fτ -precover of the module M . The rest is clear. �

Lemma 4. Let τ = (Tτ ,Fτ ) be a hereditary torsion theory for the category

R-mod. A homomorphism ϕ : G → M with G ∈ Fτ and M injective is an Fτ -

precover of the module M if and only if to each homomorphism f : Q → M with

Q ∈ Fτ injective, there exists a homomorphism g : Q→ G such that ϕg = f .
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���������
. Only the sufficiency requires verification. So, let us consider the com-

mutative diagram

E(F )

��

g

E(F )

��

h

Foo i

��

f

G //
ϕ

M M

with the given ϕ, M injective and f : F → M , F ∈ Fτ , arbitrary. Then there is

h : E(F ) → M with hi = f , M being injective, and g : E(F ) → G with ϕg = h by

the definition of a precover. Thus ϕ(gi) = hi = f and the proof is complete. �

������������������ �!�"���$# %'&
. Let λ be an arbitrary infinite cardinal and let

Mλ be any complete co-abstract set of modules of cardinalities at most λ. For any

M ∈ Mλ we fix an Fσ-precover ϕM : GM → M and denote by κ the first cardinal

with κ > |GM | for each M ∈ Mλ.

Further, let Q ∈ Fτ be an arbitrary injective module with |Q| > κ and let K 6 Q

be its submodule such that |Q/K| 6 λ. Then, obviously, Q ∈ Fσ and consequently,

by the above part, the factor-module Q/K has an Fσ-precover ϕ : G → Q/K with

|G| < κ. Thus, there is a homomorphism f : Q → G such that ϕf = π, π being the

canonical projection Q→ Q/K. Now Ker f = L is contained in K and it is a direct

summand of Q by Lemma 1 (ii) owing to the fact that Q/L ∼= Im f ∈ Fσ . Moreover,

|Q/L| = | Im f | 6 |G| < κ.

Now let M ∈ R-mod be an arbitrary injective module, λ = max(|M |,ℵ0), and let

κ be the cardinal corresponding to λ by the beginning of this proof. Further, let Nκ

be any complete co-abstract set of τ -torsionfree injective modules of cardinalities less

than κ. We put G =
⊕

Q∈Nκ

Q(Hom (Q,M)) and ϕ : G→M will denote the correspond-

ing natural evaluation map. To verify that ϕ is a τ -torsionfree precover of the module

M we shall use Lemma 4. So, let Q ∈ Fτ be an arbitrary injective module and let

f : Q →M be an arbitrary homomorphism. For |Q| < κ there exists an isomorphic

copy of Q lying in Nκ and the existence of the homomorphism g : Q → G with

ϕg = f can be easily verified. In the opposite case, for |Q| > κ, denoting K = Ker f

we have |Q/K| = | Im f | 6 |M | 6 λ. Thus, by the above part, there is a direct

summand L of Q contained in K and such that |Q/L| < κ. Moreover, f naturally

induces the homomorphism f : Q/L→M such that fπ = f , π : Q→ Q/L being the

canonical projection. Thus there is g : Q/L→ G with ϕg = f by the previous case,

so ϕ(gπ) = fπ = f and to complete the proof it suffices now to apply Lemma 3. �

���������(�����)�*�+�!�����!#-,.&
. (i) implies (ii). It suffices to use Lemma 2 and [7;

Proposition 42.9].

(ii) implies (i). This has been proved in [9] in the case of a faithful torsion theory

and in [2] in the general case.
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(ii) is equivalent to (iii). This is obvious, σ being exact by Lemma 1 (see also [7;

Corollary 44.3]).

Assume now that the ring R is non-singular.

(ii) implies (iv). Since R is non-singular, the Gabriel filter Lσ consists of essential

left ideals only, and consequently every essential left ideal contains an essential finitely

generated left ideal by the hypothesis. So, let 0 6= I 6 R be an arbitrary non-essential

left ideal of R and let J 6 R be any left ideal maximal with respect to I ∩ J = 0.

Then I ⊕ J is essential in R and consequently there is a finitely generated left ideal

K =
n∑

i=1

Rai ⊆ I ⊕ J essential in R. Now ai = bi + ci, bi ∈ I , ci ∈ J , i = 1, . . . , n,

and it remains to verify that the left ideal
n∑

i=1

Rbi is essential in I . However, for

an arbitrary element 0 6= u ∈ I we have 0 6= ru =
n∑

i=1

riai =
n∑

i=1

ribi +
n∑

i=1

rici for

suitable elements r, r1, . . . , rn ∈ R, and consequently, 0 6= ru =
n∑

i=1

ribi, as we wished

to show.

(iv) is equivalent to (v). See [7; Proposition 20.1].

(iv) implies (vi). Let I ∈ Lτ be arbitrary and let K 6 I be a finitely generated

left ideal essential in I . Then I/K ∈ Tσ ⊆ Tτ , hence K ∈ Lτ and the torsion theory

τ is of finite type. Now it suffices to use [2].

(vi) implies (i). This is trivial. �
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