PRECOVERS AND GOLDIE'S TORSION THEORY

LADISLAV BICAN, Praha

(Received December 19, 2002)

Abstract. Recently, Rim and Teply [8], using the notion of τ -exact modules, found a necessary condition for the existence of τ -torsionfree covers with respect to a given hereditary torsion theory τ for the category *R*-mod of all unitary left *R*-modules over an associative ring *R* with identity. Some relations between τ -torsionfree and τ -exact covers have been investigated in [5]. The purpose of this note is to show that if $\sigma = (\mathscr{T}_{\sigma}, \mathscr{F}_{\sigma})$ is Goldie's torsion theory and \mathscr{F}_{σ} is a precover class, then \mathscr{F}_{τ} is a precover class whenever $\tau \geq \sigma$.

Keywords: hereditary torsion theory, Goldie's torsion theory, non-singular ring, precover class, cover class

MSC 2000: 16S90, 18E40, 16D80

In what follows, R stands for an associative ring with identity and R-mod denotes the category of all unitary left R-modules. The basic properties of rings and modules can be found in [1]. A class \mathscr{G} of modules is called *abstract*, if it is closed under isomorphic copies, *co-abstract*, if its members are pairwise non-isomorphic and *complete* with respect to a given property, if every module with this property is isomorphic to a member of the class \mathscr{G} .

Recall that a hereditary torsion theory $\tau = (\mathscr{T}_{\tau}, \mathscr{F}_{\tau})$ for the category *R*-mod consists of two abstract classes \mathscr{T}_{τ} and \mathscr{F}_{τ} , the τ -torsion class and the τ -torsionfree class, respectively, such that $\operatorname{Hom}(T, F) = 0$ whenever $T \in \mathscr{T}_{\tau}$ and $F \in \mathscr{F}_{\tau}$, the class \mathscr{T}_{τ} is closed under submodules, factor-modules, extensions and arbitrary direct sums, the class \mathscr{F}_{τ} is closed under submodules, extensions and arbitrary direct products

The research has been partially supported by the Grant Agency of the Charles University, grant #GAUK 268/2002/B-MAT/MFF and also by the institutional grant MSM 113 200 007.

³⁹⁵

and for each module M there exists an exact sequence $0 \to T \to M \to F \to 0$ such that $T \in \mathscr{T}_{\tau}$ and $F \in \mathscr{F}_{\tau}$. For two hereditary torsion theories τ and τ' the symbol $\tau \leqslant \tau'$ means that $\mathscr{T}_{\tau} \subseteq \mathscr{T}_{\tau'}$ and consequently $\mathscr{F}_{\tau'} \subseteq \mathscr{F}_{\tau}$. Associated with each hereditary torsion theory τ is the *Gabriel filter* \mathscr{L}_{τ} of left ideals of R consisting of all left ideals $I \leqslant R$ with $R/I \in \mathscr{T}_{\tau}$. Recall that τ is said to be of *finite type*, if \mathscr{L}_{τ} contains a cofinal subset \mathscr{L}'_{τ} of finitely generated left ideals. A submodule N of the module M is called τ -closed (or τ -pure), if the factor-module M/N belongs to \mathscr{F}_{τ} . A module M is said to be τ -noetherian, if the set of all τ -closed submodules of M satisfies the maximum condition. A module Q is said to be τ -injective, if it is injective with respect to all short exact sequences $0 \to A \to B \to C \to 0$, where $C \in \mathscr{T}_{\tau}$. Further, a hereditary torsion theory τ is called exact, if E(Q)/Q is τ -torsionfree τ -injective, E(Q) being the injective hull of Q, whenever Q is a τ -torsionfree τ -injective module. If, in addition, τ is of finite type, then it is called perfect. For more details on torsion theories we refer to [7] or [6].

For a module M, the singular submodule Z(M) consists of all elements $a \in M$, the annihilator left ideal $(0: a) = \{r \in R; ra = 0\}$ of which is essential in R. Goldie's torsion theory for the category R-mod is the hereditary torsion theory $\sigma = (\mathscr{T}_{\sigma}, \mathscr{F}_{\sigma})$, where $\mathscr{T}_{\sigma} = \{M \in R$ -mod; $Z(M/Z(M)) = M/Z(M)\}$ and $\mathscr{F}_{\sigma} = \{M \in R$ -mod; $Z(M) = 0\}$. If the ring R is σ -torsionfree, Z(R) = 0, then R is called non-singular. Note that in this case the Gabriel filter \mathscr{L}_{σ} consists of essential left ideals only.

If \mathscr{G} is an abstract class of modules, then a homomorphism $\varphi \colon G \to M$ is called a \mathscr{G} -precover of the module M, if $G \in \mathscr{G}$ and every homomorphism $f \colon F \to M, F \in \mathscr{G}$, factors through φ , i.e. there exists a homomorphism $g \colon F \to G$ such that $\varphi g = f$. Moreover, a \mathscr{G} -precover φ of M is said to be a \mathscr{G} -cover, if each endomorphism f of G with $\varphi f = \varphi$ is an automorphism of the module G. An abstract class \mathscr{G} of modules is called a precover (cover) class, if every module has a \mathscr{G} -precover (\mathscr{G} -cover). It is well-known that an \mathscr{F}_{τ} -precover $\varphi \colon G \to M$ is an \mathscr{F}_{τ} -cover if and only if Ker φ contains no non-zero submodule τ -closed in G. For more details concerning the theory of precovers and covers we refer to [10].

It is well-known (see e.g. [7; Proposition 42.9]) that a hereditary torsion theory τ is of finite type if and only if any directed union of τ -torsionfree τ -injective modules is τ -injective and that this condition is sufficient for the existence of τ -torsionfree covers (see [9] for the τ -torsionfree rings and [2] for the general case). On the other hand, in [8] a necessary condition has been presented saying that the directed union of τ -exact submodules of a given module is τ -injective. By a τ -exact module we mean any τ -torsionfree module, every τ -torsionfree homomorphic image of which is τ -injective. The purpose of this note is to prove that for Goldie's torsion theory σ the finite type condition is necessary and sufficient for the existence of σ -torsionfree covers. Moreover, if \mathscr{F}_{σ} is a precover class, then \mathscr{F}_{τ} is a precover class whenever

 $\tau \ge \sigma$ and the same holds for cover classes provided that the ring R is non-singular. More precisely, we are going to prove the following two theorems.

Theorem 1. Let $\sigma = (\mathscr{T}_{\sigma}, \mathscr{F}_{\sigma})$ be Goldie's torsion theory for the category *R*-mod. If \mathscr{F}_{σ} is a precover class, then \mathscr{F}_{τ} is a precover class for any hereditary torsion theory $\tau \ge \sigma$.

Theorem 2. Let $\sigma = (\mathscr{T}_{\sigma}, \mathscr{F}_{\sigma})$ be Goldie's torsion theory for the category *R*-mod. The following conditions are equivalent:

- (i) \mathscr{F}_{σ} is a cover class;
- (ii) σ is of finite type;
- (iii) σ is perfect.

If, moreover, the ring R is non-singular (Z(R) = 0), then these conditions are equivalent to the following three conditions:

- (iv) every non-zero left ideal of R contains a finitely generated essential left ideal;
- (v) $_{R}R$ is σ -noetherian;
- (vi) for every hereditary torsion theory $\tau \ge \sigma$ the class \mathscr{F}_{τ} is a cover class.

We start with some preliminary lemmas, the symbol σ will always denote Goldie's torsion theory.

Lemma 1. Let $\tau \ge \sigma$ be a hereditary torsion theory for the category *R*-mod. Then

- (i) a module $Q \in \mathscr{F}_{\tau}$ is τ -injective if and only if it is injective;
- (ii) a submodule $K \leq Q$ with $Q \in \mathscr{F}_{\tau}$ injective is τ -closed if and only if it is injective. In this case the factor-module Q/K is also injective.

Proof. (i) If $Q \in \mathscr{F}_{\tau}$ is τ -injective and E(Q) is the injective hull of Q, then $E(Q)/Q \in \mathscr{F}_{\tau} \subseteq \mathscr{F}_{\sigma}$ by [7; Corollary 44.3]. In view of the obvious fact $E(Q)/Q \in \mathscr{T}_{\sigma}$ we have Q = E(Q). The converse is obvious.

(ii) If K is τ -closed in Q, then $Q/K \in \mathscr{F}_{\tau} \subseteq \mathscr{F}_{\sigma}$. Hence K has no proper essential extension in Q and consequently it is injective. The rest is clear.

Lemma 2. Let $\tau \ge \sigma$ be a hereditary torsion theory for the category *R*-mod. If every module has an \mathscr{F}_{τ} -cover, then every directed union of τ -torsionfree injective modules is τ -torsionfree injective.

Proof. Let $K = \bigcup_{\alpha \in \Lambda} K_{\alpha}$ be a directed union of τ -torsionfree injective modules, let M = E(K) be the injective hull of K and let $\varphi \colon G \to M/K$ be an \mathscr{F}_{τ} -cover of the module M/K. Denoting by $\pi_{\alpha} \colon M/K_{\alpha} \to M/K$ the corresponding natural projections, there are homomorphisms $f_{\alpha} \colon M/K_{\alpha} \to G$ such that $\varphi f_{\alpha} = \pi_{\alpha}$ for

every $\alpha \in \Lambda$. Obviously, Ker $f_{\alpha} \subseteq K/K_{\alpha}$ and we are going to show that the equality holds for each $\alpha \in \Lambda$. If not, then $K_{\beta}/K_{\alpha} \notin \text{Ker } f_{\alpha}$ for some $\alpha, \beta \in \Lambda$ and so $0 \neq f_{\alpha}(K_{\beta}/K_{\alpha}) \cong K_{\beta}/L_{\beta} \in \mathscr{F}_{\tau} \subseteq \mathscr{F}_{\sigma}$ yields according to Lemma 1 that $0 \neq f_{\alpha}(K_{\beta}/K_{\alpha}) \subseteq \text{Ker } \varphi$ is injective. This contradicts the fact that φ is an \mathscr{F}_{τ} -cover of the module M/K and consequently $\text{Im } f_{\alpha} \cong M/K \in \mathscr{F}_{\tau}$ for each $\alpha \in \Lambda$. Thus $M/K \in \mathscr{F}_{\sigma} \cap \mathscr{T}_{\sigma} = 0, M = K$ and we are through. \Box

Lemma 3. Let $\tau = (\mathscr{T}_{\tau}, \mathscr{F}_{\tau})$ be an arbitrary hereditary torsion theory for the category *R*-mod. The following conditions are equivalent:

(i) every module has a τ -torsionfree precover;

- (ii) every injective module has a τ -torsionfree precover;
- (iii) every injective module has an injective τ -torsionfree precover.

Proof. For an arbitrary injective module M we obviously have the commutative diagram

$$\begin{array}{ccc} G & \xrightarrow{\varphi} & M \\ \iota & & & \parallel \\ \iota & & & \parallel \\ E(G) & \xrightarrow{\psi} & M \end{array}$$

where ι is the inclusion map of G into its injective hull E(G) and φ is an \mathscr{F}_{τ} -precover of the module M. Then ψ is obviously an \mathscr{F}_{τ} -precover of M and consequently (ii) implies (iii).

Assuming (iii) let us consider the pullback diagram

$$\begin{array}{c|c} F & \xrightarrow{\varphi} & M \\ i & & & \downarrow^{j} \\ G & \xrightarrow{\psi} & E(M) \end{array}$$

where $M \in R$ -mod is arbitrary and ψ is an \mathscr{F}_{τ} -precover of E(M) with G injective. Clearly, i is injective, hence $F \in \mathscr{F}_{\tau}$ and the pullback property yields that φ is an \mathscr{F}_{τ} -precover of the module M. The rest is clear.

Lemma 4. Let $\tau = (\mathscr{T}_{\tau}, \mathscr{F}_{\tau})$ be a hereditary torsion theory for the category R-mod. A homomorphism $\varphi \colon G \to M$ with $G \in \mathscr{F}_{\tau}$ and M injective is an \mathscr{F}_{τ} -precover of the module M if and only if to each homomorphism $f \colon Q \to M$ with $Q \in \mathscr{F}_{\tau}$ injective, there exists a homomorphism $g \colon Q \to G$ such that $\varphi g = f$.

Proof. Only the sufficiency requires verification. So, let us consider the commutative diagram

$$E(F) = E(F) \xleftarrow{i} F$$

$$g \downarrow \qquad h \downarrow \qquad \downarrow f$$

$$G \xrightarrow{\varphi} M = M$$

with the given φ , M injective and $f: F \to M$, $F \in \mathscr{F}_{\tau}$, arbitrary. Then there is $h: E(F) \to M$ with hi = f, M being injective, and $g: E(F) \to G$ with $\varphi g = h$ by the definition of a precover. Thus $\varphi(gi) = hi = f$ and the proof is complete. \Box

Proof (of Theorem 1). Let λ be an arbitrary infinite cardinal and let \mathfrak{M}_{λ} be any complete co-abstract set of modules of cardinalities at most λ . For any $M \in \mathfrak{M}_{\lambda}$ we fix an \mathscr{F}_{σ} -precover $\varphi_M \colon G_M \to M$ and denote by κ the first cardinal with $\kappa > |G_M|$ for each $M \in \mathfrak{M}_{\lambda}$.

Further, let $Q \in \mathscr{F}_{\tau}$ be an arbitrary injective module with $|Q| \ge \kappa$ and let $K \le Q$ be its submodule such that $|Q/K| \le \lambda$. Then, obviously, $Q \in \mathscr{F}_{\sigma}$ and consequently, by the above part, the factor-module Q/K has an \mathscr{F}_{σ} -precover $\varphi \colon G \to Q/K$ with $|G| < \kappa$. Thus, there is a homomorphism $f \colon Q \to G$ such that $\varphi f = \pi, \pi$ being the canonical projection $Q \to Q/K$. Now Ker f = L is contained in K and it is a direct summand of Q by Lemma 1 (ii) owing to the fact that $Q/L \cong \text{Im } f \in \mathscr{F}_{\sigma}$. Moreover, $|Q/L| = |\text{Im } f| \le |G| < \kappa$.

Now let $M \in R$ -mod be an arbitrary injective module, $\lambda = \max(|M|, \aleph_0)$, and let κ be the cardinal corresponding to λ by the beginning of this proof. Further, let \mathfrak{N}_{κ} be any complete co-abstract set of τ -torsionfree injective modules of cardinalities less than κ . We put $G = \bigoplus_{Q \in \mathfrak{N}_{\kappa}} Q^{(\operatorname{Hom}(Q,M))}$ and $\varphi \colon G \to M$ will denote the corresponding natural evaluation map. To verify that φ is a τ -torsionfree precover of the module M we shall use Lemma 4. So, let $Q \in \mathscr{F}_{\tau}$ be an arbitrary injective module and let $f \colon Q \to M$ be an arbitrary homomorphism. For $|Q| < \kappa$ there exists an isomorphic copy of Q lying in \mathfrak{N}_{κ} and the existence of the homomorphism $g \colon Q \to G$ with $\varphi g = f$ can be easily verified. In the opposite case, for $|Q| \ge \kappa$, denoting $K = \operatorname{Ker} f$ we have $|Q/K| = |\operatorname{Im} f| \le |M| \le \lambda$. Thus, by the above part, there is a direct summand L of Q contained in K and such that $|Q/L| < \kappa$. Moreover, f naturally induces the homomorphism $\overline{f} \colon Q/L \to M$ such that $\overline{f}\pi = f, \pi \colon Q \to Q/L$ being the canonical projection. Thus there is $\overline{g} \colon Q/L \to G$ with $\varphi \overline{g} = \overline{f}$ by the previous case, so $\varphi(\overline{g}\pi) = \overline{f}\pi = f$ and to complete the proof it suffices now to apply Lemma 3.

 $P\,ro\,o\,f$ (of Theorem 2). (i) implies (ii). It suffices to use Lemma 2 and [7; Proposition 42.9].

(ii) implies (i). This has been proved in [9] in the case of a faithful torsion theory and in [2] in the general case.

(ii) is equivalent to (iii). This is obvious, σ being exact by Lemma 1 (see also [7; Corollary 44.3]).

Assume now that the ring R is non-singular.

(ii) implies (iv). Since R is non-singular, the Gabriel filter \mathscr{L}_{σ} consists of essential left ideals only, and consequently every essential left ideal contains an essential finitely generated left ideal by the hypothesis. So, let $0 \neq I \leq R$ be an arbitrary non-essential left ideal of R and let $J \leq R$ be any left ideal maximal with respect to $I \cap J = 0$. Then $I \oplus J$ is essential in R and consequently there is a finitely generated left ideal $K = \sum_{i=1}^{n} Ra_i \subseteq I \oplus J$ essential in R. Now $a_i = b_i + c_i$, $b_i \in I$, $c_i \in J$, $i = 1, \ldots, n$, and it remains to verify that the left ideal $\sum_{i=1}^{n} Rb_i$ is essential in I. However, for an arbitrary element $0 \neq u \in I$ we have $0 \neq ru = \sum_{i=1}^{n} r_i a_i = \sum_{i=1}^{n} r_i b_i + \sum_{i=1}^{n} r_i c_i$ for suitable elements $r, r_1, \ldots, r_n \in R$, and consequently, $0 \neq ru = \sum_{i=1}^{n} r_i b_i$, as we wished to show.

(iv) is equivalent to (v). See [7; Proposition 20.1].

(iv) implies (vi). Let $I \in \mathscr{L}_{\tau}$ be arbitrary and let $K \leq I$ be a finitely generated left ideal essential in I. Then $I/K \in \mathscr{T}_{\sigma} \subseteq \mathscr{T}_{\tau}$, hence $K \in \mathscr{L}_{\tau}$ and the torsion theory τ is of finite type. Now it suffices to use [2].

(vi) implies (i). This is trivial.

References

- [1] F. W. Anderson, K. R. Fuller: Rings and Categories of Modules. Graduate Texts in Mathematics, vol. 13, Springer, 1974.
- [2] L. Bican, B. Torrecillas: Precovers. Czechoslovak Math. J. 53 (2003), 191-203.
- [3] L. Bican, B. Torrecillas: On covers. J. Algebra 236 (2001), 645–650.
- [4] L. Bican, R. El Bashir, E. Enochs: All modules have flat covers. Proc. London Math. Society 33 (2001), 385–390.
- [5] L. Bican, B. Torrecillas: Relative exact covers. Comment. Math. Univ. Carolinae 42 (2001), 601–607.
- [6] L. Bican, T. Kepka, P. Němec: Rings, Modules, and Preradicals. Marcel Dekker, New York, 1982.
- [7] J. Golan: Torsion Theories. Pitman Monographs and Surveys in Pure an Applied Matematics, 29, Longman Scientific and Technical, 1986.
- [8] S. H. Rim, M. L. Teply: On coverings of modules. Tsukuba J. Math. 24 (2000), 15-20.
- [9] M. L. Teply: Torsion-free covers II. Israel J. Math. 23 (1976), 132–136.
- [10] J. Xu: Flat Covers of Modules. Lecture Notes in Mathematics 1634, Springer, Berlin, 1996.

Author's address: Ladislav Bican, KA MFF UK, Sokolovská 83, 18675 Praha 8-Karlín, Czech Republic, e-mail: bican@karlin.mff.cuni.cz.