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1. Introduction

1.1. Preliminaries. This article is inspired by [3], [5] and generalizes the method

of Favard ([1], [4], [7]). The method used here is based on the Fourier transformation.

This method in comparison with the method from [6] (based on the Cauchy integral)

is more complicated and laborious but at the same time it is richer and stronger.

Some results, procedures, proofs and parts are the same as in [6] and therefore be

not all repeated but we shall refer to [6] only.

In what follows they will all criteria of existence and uniqueness as well as all

estimates deal with complex matrix (Bohr’s uniformly) almost periodic functions.

1.2. Notation and definitions. We denote: � the set of all positive integers,
� 0 the set of all non-negative integers, � the set of all real numbers (real axis), �
the set of all complex numbers (complex plane).
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If � is a non-void set and m, n are from � then � m denotes the Cartesian product

� × � . . . × � of m factors and � m×n is the set of all matrices of m rows and n

columns, the elements of which belong to � ; � 1×1 = � 1 = � . Analogously we could
denote more-dimensional matrices.

If n ∈ � and m = (m1, . . . , mn) ∈ � 1×n
0 , m′ = (m′

1, . . . , m
′
n) ∈ � 1×n

0 then the

inequality m 6 m′ stands for the system of inequalities mj 6 m′
j , j = 1, 2, . . . , n.

If M, N are non-void subsets of � or � and if ω, ξ are complex numbers then

ωM = {ωλ : λ ∈ M}, ξ +N = {ξ + µ : µ ∈ N},M+N = {λ + µ : λ ∈ M, µ ∈ N},

∅+N = M+∅ = ∅ and S(M) stands for the smallest additive semigroup containing

M and S(∅) = ∅.

The distance of two setsM, N , of a point z and a set N and of two points z, w

in � or � , respectively, is denoted by dist[M, N ], dist[z,N ] and dist[z, w].

The boundary of a setM is denoted by ∂M.

If α is a positive number then by a strip or an α-strip in the complex plane we

mean the set π(α) = {z ∈ � : |Re z| 6 α}. If z0 ∈ � and R ∈ (0,∞) then κ(z0, R),

κ(z0, R) and K(z0, R), respectively, denote an open disc, a closed disc and a circle

centred at z0 with its radius R in the complex plane.

For number vectors or matrices, even more-dimensional, we use the norm | · |,

which is equal to the sum of absolute values of all coordinates of the vectors or all

elements of the matrix.

In addition to the usual symbol
k∏

j=1

= a1a2 . . . ak for a product we will use the

symbol
1∏

j=k

= akak−1 . . . a1 for the product with a reversed order of factors.

For a vector m = (m1, . . . , mM ) ∈ � M
0 , M ∈ � , we introduce the combinatory

number (
|m|

m

)
=

|m|!

(m1!). . . . .(mM !)
, where |m| = m1 + . . . + mM .

1.3. Spaces and the starting problem. We will deal with functions f : � → � ,
where � is one of the spaces � , � m , � m×n and � = � or � = � .
We denote by C( � ), CB( � ) and AP ( � ), respectively, the space of all continuous

functions f : � → � , the space of all functions from C( � ) bounded on � and the
space of all almost periodic functions from CB( � ). The mean value of a function

f ∈ AP ( � ) is denoted by M(f) or Mt{f(t)}.

The spaces CB( � ) and AP ( � ) are made Banach spaces (B-spaces) with the norm

defined by |f | = sup{|f(t)| � : t ∈ � }. For a positive integer k we will denote by

Ck( � ), CBk( � ) and AP k( � ) the space of all functions from C( � ) with continuous

derivatives up to the order k on � , the space of all functions from Ck( � ) which
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are bounded on � and have bounded derivatives up to the order k, and the space

of all functions from CBk( � ) which are almost periodic and have almost periodic

derivatives up to the order k.

The spaces CB1( � ) and AP 1( � ) endowed with the norm

‖f‖ = max{|f |, |ḟ |}

become B-spaces. If all elements of a matrix almost periodic function f ∈ AP ( � )

are trigonometric polynomials then f is called a trigonometric polynomial.

If f ∈ AP ( � ) then by Λf we denote the set of all Fourier exponents of f and the

set iΛf will be called the spectrum of f .

If f is an almost periodic function with the Fourier series
∑
λ

ϕ(λ) exp (iλt), λ ∈ Λf ,

then we denote
∑

(f) =
∑
λ

|ϕ(λ)|, λ ∈ Λf . If the Fourier series of a function f

converges absolutely then
∑

(f) < ∞.

For any function f from AP ( � ) there exists a sequence of the so-called Bochner-

Fejér approximation (trigonometric) polynomials Bm, m = 1, 2, . . . , of the function f

with their spectra contained in iΛf and uniformly convergent to f on � and moreover∑
(Bm) 6

∑
(f), m = 1, 2, . . . , (see [1], [4], [7]).

The starting problem solved in [3], [5] is to find an almost periodic solution of the

almost periodic differential equation with constant coefficients

(1.1) ẋ(t) = a0x(t) + b0x(t − τ) + f(t), t ∈ �

where τ is a positive constant, the so-called time lag, a0, b0 belong to � n0×n0 , n0 ∈

� , f ∈ AP ( � n0×n0) and x is a function from C1( � n0×1). An important role is played

by the properties of the matrix function

(1.2) Φ(z) = zE − a0 − b0 exp (−zτ), z ∈ � ,

where E = En0
is the unit matrix from � n0×n0 , and by the properties of its determi-

nant ∆(z) = detΦ(z), the so-called characteristic quasipolynomial, and the equation

∆(z) = 0, the so-called characteristic equation of (1.1).

Under σ(∆(z)) we understand the set of all roots of the characteristic quasipoly-

nomial, which is a transcendent entire function (in general) of the complex variable

z. Consequently, the quasipolynomial ∆(z) has an infinite number of roots with-

out any finite limit point. Each strip π(α), α > 0, contains only a finite number

of roots of ∆(z) because Φ(z)z−1 is arbitrarily close to the unit matrix E in the

strip π(α) for all z sufficiently large (in absolute value). Hence the matrix Φ(z)

is a regular one for such z. Therefore a positive number α can be chosen so that
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the finite set π(2α) ∩ σ(∆(z)) lies on the imaginary axis of the complex plane. If

π(2α) ∩ σ(∆(z)) 6= ∅ and this set contains just the points iξ1, . . . , iξj0 , j0 ∈ � , then
we set θ = {ξj − ξk : j, k = 1, . . . , j0}, and if π(2α) ∩ σ(δ(z)) = ∅, then we set θ = ∅.

2. Equations with almost periodic coefficients

2.1. Basic equations. In the sequel we study the differential equation

(2.1) ẋ(t) = a0x(t) + b0x(t − τ) + a(t)x(t) + b(t)x(t − τ) + f(t), t ∈ �

where τ, a0, b0, f, x have the same meaning as in 1.4 and further a, b ∈ AP ( � n0×n0)

with
∑

(a) < ∞,
∑

(b) < ∞. Our aim is to prove the existence and uniqueness of

an almost periodic solution of Equation (2.1) the spectrum of which is contained in

a certain apriori given set iΛ, Λ ⊂ � . Such a solution is called an almost periodic
Λ-solution.

2.2. Formal solutions. First,we solve the given equation in a formal manner.

This means that we are looking for the so-called formal solution xf represented by

a trigonometric series with coefficients from � n0×1 which formally satisfies Equation

(2.1). In [6] the proof of the following theorem can be found.

Theorem 2.1. If in Equation (2.1) a, b are nonconstant trigonometric polyno-

mials a(t) =
M∑

k=1

α(µk) exp (iµkt), b(t) =
N∑

k=1

β(νk) exp (iνkt) and f is a (non-zero)

trigonometric polynomial f(t) =
∑
λ

ϕ(λ) exp (iλt) for M, N ∈ � , t ∈ � and if (see at
the end of 1.3 concerning the definition of the set θ)

∆ = inf(Λa ∪ Λb) > 0,(2.2)

dθ =

{
dist [θ, S(Λa ∪ Λb)] > 0 for θ 6= ∅,

4 for θ = ∅,
(2.3)

d = dist [iΛ, σ(∆(z))] > 0,(2.4)

where Λ = Λf + S(Λa ∪Λb ∪ {0}), then there exists a unique formal almost periodic

Λ-solution xf of Equation (2.1).

In [6] in the proof of this theorem the unique formal almost periodic Λ-solution

xf = xf (t) ∼
∑
τ

c(τ) exp(iτt) for σ ∈ Λ is expressed in the form

(2.5) xf (t) =
∑

λ

xλ ∼
∑

λ

∑

s̄>0

∑

P

ΦP (iλ)ϕ(λ) exp (i(λ + s̄ω)t)
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for λ ∈ Λf , t ∈ � . Here P = P (s̄) denotes an increasing sequence

0 = P 0 6 P 1 6 . . . 6 P |s̄| = s̄

of vectors from � 0
1×(M+N), which satisfies |P j − P j−1| = 1, j = 1, . . . , |s̄|. With

every such sequence P = P (s̄) for a fixed λ ∈ Λf we can associate in a unique

manner a sequence p = p(s̄) of vectors p0, p1, . . . , p|s̄| from � 1×(M+N)
0 satisfying

p0 = 0, |pj | = 1, j = 1, . . . , |s̄|, and P k =
k∑

j=0

pj , k = 0, 1, . . . , |s̄|, while pj = (q̄j , r̄j),

q̄j ∈ � 1×M
0 , r̄j ∈ � 1×N

0 , j = 1, . . . , |s̄|. The function ΦP is given by the formula

ΦP (z) =

0∏

j=|s̄|

Φ−1(z + iP jω)γ(pjω)

with γ(0) = 1, γ(pjω) = α(q̄jµ) + β(r̄jν) exp (−iP j−1ωτ), j = 1, . . . , |s̄|, while

α(µ) = 0 for µ 6∈ Λa, β(ν) = 0 for ν 6∈ Λb (α(0) = β(0) = 0).

������� �"!
2.2. Every almost periodic Λ-solution of Equation (2.1) is at the same

time a formal almost periodic Λ-solution of Equation (2.1). The contrary is not true

in general.

Every σ ∈ Λ can be presented in the form σ = λ + s̄ω = λ + mµ + nν, where

λ ∈ Λf ,

µ =




µ1
...

µM


 ν =




ν1
...

νN


 , ω =

(
µ

ν

)
,

m = (m1, . . . , mM ) ∈ � 1×M
0 , n = (n1, . . . , nN ) ∈ � 1×N

0 , s̄ = (m, n).

The number of all possible different “descents” from λ + s̄ω to λ represented by

all sequences P = P (s̄) is

(
|s̄|

s̄

)
=

|s̄|!

(m1!) . . . (mM !)(n1!) . . . (nN !)
.

2.3. Closed regions Gj , GP . The positive number α was chosen such that

iB(α) = π(2α) ∩ σ(∆(z)) ⊂ i � (B(α) ⊂ � ). If B(α) contains at least two points

then we define dξ = min{|ξ − ξ̃| : ξ, ξ̃ ∈ B(α), ξ 6= ξ̃} and if B(α) contains one or no

point then we define dξ = 4. Further, we shall assume that the number v0 = inf Λf

is positive. We pick a positive number δ = 1
4 min{α, ∆, dξ, dθ, d, τ, v0, 4}, where we

suppose dθ > 0.

47



Further, unless stated otherwise, we assume that we are given a fixed vector s̄ and

a fixed sequence P = P (s̄) of vectors. Recall that κ(z, δ) and κ(z, δ) are the open

disc and the closed disc centred at z with radius δ in the complex plane � . In � we
construct closed regions

(2.6) Gj = π(α) \
⋃

ξ∈B(α)

κ(iξ − iP jω; δ), j = 0, 1, . . . , |s̄|,

and we denote

(2.7) GP =

|s̄|⋂

j=0

Gj = π(α) \

|s̄|⋃

j=0

⋃

ξ∈B(α)

κ(iξ − iP jω; δ).

Since the matrix function Φ(z) introduced in (1.2) is analytic and regular on G0, the

matrix function Φ(z + iP jω) is analytic and regular on Gj and the same property is

possessed also by Φ−1((z + iP jω), j = 0, . . . , |s̄|. It follows that the matrix function

ΦP (z) is analytic on the closed region G(P ).

Now we define the set iBj(α) = π(2α) ∩ σ(∆(z + iP jω)) which lies also on i � ,
j = 0, . . . , |s̄|. We have Bj(α) ∩ Bk(α) = 0 for j 6= k, j, k ∈ {0, . . . , |s̄|} provided we

suppose dθ > 0.

If for an integer j from {0, . . . , |s̄|} there exists ξ̃ ∈ Bj(α) then there exists ξ ∈

B(α) = B0(α) such that ξ̃ + P jω = ξ. It means that ξ̃ = ξ − P jω. We define the set

Bj = 〈v0,∞) ∩ Bj(α), j = 0, . . . , |s̄|. If there exists ξ̃ ∈ Bj ⊂ Bj(α) then we have

ξ̃ + P jω = ξ for a point ξ ∈ B0(α) and ξ̃ > v0, P jω > 4δj, v0 6 ξ̃ + P jω = ξ so that

ξ > v0 and ξ ∈ B0.

In the sequel we will take up the case B0 6= ∅ but the case B0 = ∅ would be

even easier. We set ξ̂ = sup B0 so that for any ξ ∈ B0 the inequality v0 6 ξ 6 ξ̂

holds (ξ̂ < ∞ because B0 is a non-void and finite set of real numbers). By virtue

of the relation ξ̃ = ξ − P jω > v0 we get 0 6 4δj 6 P jω 6 ξ − v0 6 ξ̂ − v0 and

0 6 j 6 j0 = j(P ) 6 ĵ0 = [(ξ̂ − v0)/(4δ)] (the entire part [a] of a real number a is

an integer for which the inequality [a] 6 a < [a] + 1 holds), where j0 is the smallest

integer such that Bj = ∅ for j > j0 (or Bj do not exist). Finally, we define the

set B =
j0⋃

j=0

Bj . According to the preceding assumption we have B 6= ∅. Because

v0 = inf Λf > 4δ and d = dist[iΛ, σ(∆(z))] > 4δ, the inequality |ξ − δ − v0| >

|ξ − v0| − δ > d − δ > 3δ holds for any ξ ∈ B. If there exist ξ, ξ̃ ∈ B, ξ 6= ξ̃, then

|(ξ ± δ) − (ξ̃ ± δ)| > |ξ − ξ̃| − 2δ > dξ − 2δ > 2δ owing to |ξ − ξ̃| > dξ > 4δ.

At this time we construct the real number set

(2.8) J0 = 〈v0,∞) \
⋃

ξ∈B

(ξ − δ, ξ + δ).
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There exist k0 ∈ � and a finite sequence of real numbers 0 = u0 < v0 < u1 < . . . <

uk0
< vk0

< ∞ such that

(2.9) J0 = 〈v0, u1〉 ∪ . . . ∪ 〈vk0−1, uk0
〉 ∪ 〈vk0

,∞)

while v0−u0 = v0 > 4δ, vj −uj = 2δ, j = 1, . . . , k0, uj+1−vj > 2δ, j = 0, . . . , k0−1.

(The number k0 is equal at most to the product ĵ0m0, where m0 is the number of

all mutually different points from the finite set B0.)

3. Trigonometric integrals

3.1. Auxiliary relations and calculations. Let us recall and derive some prop-

erties of a few trigonometric integrals which we will use in what follows. In the sequel

we shall deal with functionsH = H(t) of the real variable t and with functional values

from a linear space.

(i) If H is a linear function on a real interval 〈u, v〉, −∞ < u < v < ∞, it means

that H(t) = H(u)+ ((t−u)/(v−u))(H(v)−H(u)), t ∈ 〈u, v〉, then for any non-zero

real number s the equality
∫ v

u

H(t) sin ts dt = −
1

s
(H(v) cos vs − H(u) cosus)(3.1)

+
sin vs − sinus

(v − u)s2
(H(v) − H(u))

is valid.

(ii) If a function H has derivatives Ḣ , Ḧ absolutely integrable on a real interval

〈u, v〉, −∞ < u < v < ∞, then for any non-zero real number s the equality
∫ v

u

H(t) sin ts dt = −
1

s
(H(v) cos vs − H(u) cosus)(3.2)

+
1

s2
((Ḣ(v) sin vs − Ḣ(u) sin us) −

1

s2

∫ v

u

Ḧ(t) sin ts dt

holds.

(iii) If a function H has derivatives Ḣ , Ḧ absolutely integrable on a real interval

〈v,∞), v ∈ � , and if lim H(t) = 0 for t → ∞ then for any non-zero real number s

the equality
∫ ∞

v

H(t) sin ts dt =
1

s
H(v) cos vs −

1

s2
Ḣ(v) sin vs(3.3)

−
1

s2

∫ ∞

v

Ḧ(t) sin ts dt

holds.
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(iv) If on the real interval 〈0,∞) a real function H is nonnegative, monotone

and if lim H(t) = 0 for t → ∞ and the integral
∫ #
0 H(t) sin t dt exists then for any

nonnegative number v

(3.4) S(v) =

∣∣∣∣
∫ ∞

v

H(t) sin t dt

∣∣∣∣ 6

∫ #

0

H(t) sin t dt = a0

holds.
$%�"&'&)(

. First we recall the well-known Leibniz criterion for alternating number

series: If a sequence of nonnegative real numbers {ak}∞k=0 is monotone and lim ak = 0

for k → ∞ is true then the series
∞∑

k=0

(−1)kak is convergent and for any nonnegative

integer m the estimate am >
∣∣ ∞∑

k=m

(−1)kak

∣∣ holds.

To verify the validity of (3.4) we denote

ak =

∣∣∣∣
∫ (k+1) #

k #
H(t) sin t dt

∣∣∣∣, k = 0, 1, . . . ,

Sm =

∣∣∣∣
∫ ∞

m #
H(t) sin t dt

∣∣∣∣ =

∞∑

k=m

(−1)k−mak, m = 0, 1, . . . .

Evidently ak > ak+1, k = 0, 1, . . ., and at the same time lim ak = 0 for k → ∞. Hence

for the series Sm, m = 0, 1, . . ., the conditions of the Leibniz convergence criterion

are fulfilled. Consequently, Sm 6 am 6 a0 holds for m = 0, 1, . . .. This proves (3.4)

for v = mπ, m = 0, 1, . . .. If a nonnegative number v is not an integer multiple of the

number π then there exists such an integer m = m(v) that 0 6 (m − 1)π < v < mπ

(m = [v/π] + 1, where [v/π] is the entire part of the real number v/π). We denote

V = V (v) =
∣∣ ∫ m #

v
H(t) sin t) dt

∣∣ for m = m(v). Evidently the inequality 0 6 V 6

am−1 is valid. For v /∈ � 0π the inequality (3.4) is split into four cases (α), (β), (γ),

(δ).

(α) If 0 6 V < am − am+1 6 Sm then S(v) = Sm − V 6 Sm 6 am 6 a0.

(β) If am − am+1 6 V < Sm then S(v) = Sm − V = am − am+1 − V + Sm+2 6

Sm+2 6 am+2 6 a0.

(γ) If Sm 6 V < am then S(v) = V − Sm = V − am + Sm+1 6 Sm+1 6 am+1 6 a0.

(δ) If am 6 V 6 am−1 then S(v) = V −Sm 6 am−1−Sm = Sm−1 6 am−1 6 a0. �

(v) If a real function H is monotone and 0 6 H(t) 6 C/t with a positive constant

C on the real interval (0,∞) then

(3.5)

∣∣∣∣
∫ ∞

v

H(t) sin ts dt

∣∣∣∣ 6 Cπ

holds for any positive number s, v.
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$%�"&'&)(
. From (3.4) we get relations

∣∣ ∫ ∞

v
H(t) sin ts dt

∣∣ = 1
s

∣∣ ∫ ∞

vs
H( t

s
) sin t dt

∣∣ 6
1
s

∫ #
0 H( t

s
) sin t dt 6 C

s

∫ #
0

s
t
t dt = Cπ. �

(vi) If a real function H is defined on the real interval 〈v,∞) with the positive

number v and if H converges to zero for t → ∞ and its derivative Ḣ exists and is

absolutely integrable on the interval 〈v,∞) and if the inequality |Ḣ(t)| 6 C/t2 with

a positive constant C holds then the inequality

(3.6)

∣∣∣∣
∫ ∞

v

H(t) sin tsdt

∣∣∣∣ 6 2πC

is valid for any real number s.
$%�"&'&)(

. It will be enough to consider positive numbers s. The function H

can be expressed in the form H = H1 − H2, where Hj = Hj(t) = 1
2

∫ ∞

t
(|Ḣ(w)| −

(−1)jḢ(w)) dw, j = 1, 2. The functions Hj ; j = 1, 2, are nonnegative, monotone on

the interval 〈v,∞) and the inequality Hj(t) 6 C/t holds for t ∈ 〈v,∞) and j = 1, 2.

If we extend these functions by the formula Hj(t) = v
t
Hj(v) for t ∈ (0, v), j =

1, 2, then with the same notation for the extended functions we have on (0,∞) two

functions H1, H2 with the properties demanded in (v). Hence we get the inequalities∣∣ ∫ ∞

v
Hj(t) sin ts dt

∣∣ 6 Cπ, j = 1, 2, and the validity of (3.6). �

3.2. Fourier integrals and transformations. For real numbers a and α we

define three trigonometric integrals

C(α) = C(α, f, a) =

∫ ∞

a

f(x) cos αx dx,

S(α) = S(α, f, a) =

∫ ∞

a

f(x) sin αx dx,

E(α) = E(α, f, a) =

∫ ∞

a

f(x) exp (iαx) dx = C(α) + iS(α),

where a complex function f is defined on the real interval (a,∞).

Theorem 3.1. If on the interval (a,∞) a complex function f = f(x) is defined

and locally integrable and if for x → ∞ either

1. f is absolutely integrable or

2. the real part and the imaginary part of f converges to zero

then the integrals C(α), S(α), E(α) exist respectively

1. for any real α or

2. for any real non-zero α and they converge to zero for α → ±∞, respectively.
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Theorem 3.2. Let a complex function H = H(t) be absolutely integrable on

� . We denote h(s) = 1
2 #

∫ ∞

−∞ H(t) exp (−ist) dt for s ∈ � . If in a neighbourhood of
a point t0 ∈ � the function H has a finite variation then 1

2 (H(t0+) + H(t0−)) =

lim
n→∞

∫ n

−n
h(s) exp (ist0) ds holds. If the function h is absolutely integrable on � and

the function H is continuous on � then H(t) =
∫ ∞

−∞
h(s) exp (its) ds is valid for any

t ∈ � . (The function h is the Fourier transformation of the function H and H is the

conjugated Fourier transformation of h.)
������� �"!

3.3. The proofs of Theorems 3.1 and 3.2 can be found in [2]. The

condition α 6= 0 from Theorem 3.1 is not necessary for S(α) because S(0) = 0. For

the existence of h for any real non-zero s it satisfies according to Theorem 3.1 if H

is odd and continuous on � and if its real and imaginary parts are monotone for all
sufficiently large t ∈ � (in absolute value) and lim H(t) = 0 for t → ±∞. In this

case the formula h(s) = − i
s

∫ ∞

0
H(t) sin st dt is valid. If moreover the function h is

absolutely integrable on � and the function H has a finite variation then for any

t ∈ � we have H(t) =
∫ ∞

−∞ h(s) exp (its) ds = 2i
∫ ∞

0 h(s) sin ts ds.

3.3. Convolution of Fourier transformation with almost periodic func-

tions. In the sequel we suppose that functions H, h satisfy the conditions from

Remark 3.3.

Theorem 3.4. For a complex almost periodic function f with its Fourier series∑
λ

ϕ(λ) exp (iλt), t ∈ � , λ ∈ Λf , we define a function F = F (t) =
∫ ∞

−∞ h(s)f(t+s) ds,

t ∈ � , where h is the Fourier transformation of a given complex function H defined

on � . The function F is almost periodic with its Fourier series
∑
λ

H(λ)ϕ(λ) exp (iλt),

t ∈ � , λ ∈ Λf .
$%�"&'&)(

. For any real numbers t, v the inequality |F (t + v) − F (t)| = |
∫ ∞

−∞ h(s)

(f(t+v+s)−f(t+s)) ds| 6 sup
t∈ *

|f(t+v)−f(t)|
∫ ∞

−∞
|h(s)| ds holds. This immediately

implies that F is uniformly continuous on � and an almost periodic function. If we
denote by b(λ) the Fourier coefficient of the function F for a real number λ then

b(λ) = Mt{F (t) exp (−iλt)}

= Mt

{∫ ∞

−∞

h(s) exp (iλs)f(t + s) exp (−iλ(t + s)) ds

}

=

∫ ∞

−∞

h(s) exp (iλs)Mt+s{f(t + s) exp (−iλ(t + s))} ds

=

∫ ∞

−∞

h(s) exp (iλs) ds · ϕ(λ).

For λ 6∈ Λf we have ϕ(λ) = 0, consequently b(λ) = 0. �
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������� �"!
3.5. The consideration in 3.2 and 3.3 can be easily generalized to

matrix functions.

4. Almost periodic Λ-solutions

4.1. Modifications of the functions ΦP in functions HP . In view of the defi-

nition of Φ and in view of Φ′ = E−(−τ)b0 exp (−zτ), Φ(m)(z) = −(−τ)mb0 exp (−zτ)

for z ∈ � , m = 2, 3, . . ., and the relations (Φ−1(z))′ = −Φ−1(z)Φ′(z)Φ−1(z),

(Φ−1(z))′′ = 2Φ−1(z)Φ′(z)Φ−1(z)Φ′(z)Φ−1(z) − Φ−1(z)Φ′′(z)Φ−1(z) = 2Φ−1(z) ×

Φ′(z)Φ−1(z)Φ′(z)Φ−1(z) − Φ−1(z)Φ′′(z)Φ−1(z)Φ(z)Φ−1(z) it is possible to choose

the already defined constant C1 (see [6]) large enough so that besides the estimates

(4.1)

{
|Φ−1(z)| 6 C1 for z ∈ G0,

|Φ−1(z)| 6 C1/|z| for z ∈ G0 \ {0}

also the following ones are true:

(4.2)






|(Φ−1(z))(m)| 6 C1 for z ∈ G0,

|(Φ−1(z))(m)| 6 C1/|z| for z ∈ G0 \ {0},

|(Φ−1(z))(m)| 6 C1/|z|2 for z ∈ G0 \ {0}

for m = 1, 2.

Now we begin with trigonometric polynomials a, b, f from (2.1) fulfilling the con-

ditions (2.2), (2.3), (2.4) and in addition we suppose that v0 = inf Λf > 0 and again

B0 6= ∅. We denote S =
∑

(a), T =
∑

(b). For a fixed s̄ ∈ � 0
1×(M+N) and a given

sequence P = P (s̄) we construct an odd square matrix function HP by the formula

HP (t) =





= 0 for t = 0,

= ΦP (it) for t ∈ J0,

= HP (uj) +
t−uj

vj−uj
(Hp(vj) − HP (uj)) for t ∈ (uj , vj),

j = 0, 1, . . . , k0,

= −HP (−t) for t < 0,

(u0 = 0, J0 = 〈v0, u1〉 ∪ . . . ∪ 〈vk0−1, uk0
〉 ∪ 〈vk0

,∞)). The function HP = HP (t)

is defined, continuous and piecewise smooth up to any order on � . We shall prove
that HP has absolutely integrable derivatives on � , which is necessary for us in the
sequel. Denote by hP the Fourier transformation of the function HP , which means

hP (s) = 1
2 #

∫ ∞

−∞
HP (t) exp (−its) dt, s ∈ � .
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This improper integral converges owing to the properties of HP on J0 (more ex-

actly: ΦP on G0) except for the case s̄ = 0 when for s = 0 the improper integral

does not converge.

Therefore, for s̄ = 0 we denote HP , hP also by H0, h0. Since the function HP is

odd on � we get hP (s) = − i#
∫ ∞

0
HP (t) sin ts dt, s ∈ � \ {0}.

4.2. Estimates of HP . In what follows we will show that for s̄ 6= 0 the Fourier

transformation hP of HP is absolutely integrable on � and therefore

(4.3) HP (t) =

∫ ∞

−∞

hP (s) exp its ds; t ∈ � .

To this aim we need to prove a few assertions.

Lemma 4.1. For all t ∈ J0 the inequalities

|HP (t)| 6

|s̄|∏

j=0

C1|γj |

t + P jω
6

C1

(|s̄| + 1)!4δ

[ M∏

k=1

(C1|αk|

4δ

)mk

] N∏

k=1

(C1|βk|

4δ

)nk

,(4.4)

|ḢP (t)| 6

|s̄|∑

k=0

|s̄|∏

j=0

C1|γj |

t + P jω
(4.5)

6
C1

(|s̄| + 1)!4δ

[ M∏

k=1

(C1|αk|

4δ

)mk

] N∏

k=1

(C1|βk|

4δ

)nk

,

|ḦP (t)| 6

|s̄|∑

k=0

|s̄|∑

k=0

|s̄|∏

j=0

C1|γj |

t + P jω
(4.6)

6
C1

(|s̄| + 1)!4δ

[ M∏

k=1

(C1|αk|

2δ

)mk

] N∏

k=1

(C1|βk|

2δ

)nk

are valid for αk = α(µk), k = 1, . . . , M ; βk = β(νk), k = 1, . . . , N ; γ0 = γ(0) = 1,

γj = γ(pjω) = α(q̄jω) + β(r̄jω) exp(−ipj−1ω), pj = (q̄j , r̄j), 1, . . . , |s̄|. (The deriva-

tives ḢP , ḦP at the boundary points of J0 are the corresponding one-sided deriva-

tives on J0.)

$%�"&'&)(
. Owing to |pj | = |q̄j | + |r̄j | = 1, j = 1, . . . , |s̄|, the equality

(4.7)

|s̄|∏

j=1

|γj | =

[ M∏

k=1

|αk|
mk

] N∏

k=1

|βk|
nk

54



is true. Further, for t ∈ J0 in accord with the definition of HP we have

HP (t) = ΦP (it) =

0∏

j=|s̄|

Φ−1
(
it + iP jω

)
γ (pjω) ,

ḢP (t) = iΦ′
P (it) = i

|s̄|∑

k=0

0∏

j=|s̄|

(
Φ−1

(
it + iP jω

))(δjk)
γ (pjω) ,

ḦP (t) = −Φ′′
P (it) = −

|s̄|∑

l=0

|s̄|∑

k=0

0∏

j=|s̄|

(
Φ−1

(
it + iP jω

))(δjk+δjl)
γ (pjω) ,

where δjk = 0 for j 6= k and δjk = 1 for j = k (analogously for δjl). Hence, the

validity of (4.4), (4.5), (4.6) already follows by means of (4.1) and (4.2) for t ∈ J0.

�

Corollary 4.2. The consequences of the estimates (4.4), (4.5), (4.6)

|HP (t)| 6
C1

(|s̄| + 1)!4δ

[ M∏

k=1

(C1|αk|

4δ

)mk

] N∏

k=1

(C1|βk|

4δ

)nk

,(4.4′)

|ḢP (t)| 6
C1

|s̄|!4δ

[ M∏

k=1

(C1|αk|

4δ

)mk

] N∏

k=1

(C1|βk|

4δ

)nk

,(4.5′)

|ḦP (t)| 6
C1

|s̄|!4δ

[ M∏

k=1

(C1|αk|

2δ

)mk

] N∏

k=1

(C1|βk|

2δ

)nk

(4.6′)

are valid for any t ∈ � .
$%�"&'&)(

. The validity of these estimates follows at once from (4.4), (4.5), (4.6),

because HP and its derivatives are continuous on J0 ∪ (−J0), odd or even functions

on � and linear on each component of the open set � \ J0 ∪ (−J0). �

For s̄ 6= 0 the absolute integrability of HP on � follows from Lemma 4.1 and
Corollary 4.2.

4.3. Estimates of hP . Now we shall estimate the function hP .

Lemma 4.3. For any m ∈ � the inequality

(4.8)

∫ ∞

0

dt
m∏

j=0

(t + j + 1)
6

1

m!

holds.
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$%�"&'&)(
. First we define the converging series

Zm =
∞∑

k=0

1

(k + 1) . . . (k + m + 1)
, m = 1, 2, . . . ,

Z1 =

∞∑

k=0

1

(k + 1)(k + 2)
=

∞∑

k=0

(
1

k + 1
−

1

k + 2

)
= 1 6

1

1!
.

If for a number m ∈ � the inequality Zm 6 1
m! is true then Zm+1 6 1

m+1Zm 6
1

(m+1)! . This means that the inequality Zm 6 1
m! is true for any m ∈ � . Hence, we

have

∫ ∞

0

dt
m∏

j=0

(t + j + 1)
=

∞∑

k=0

∫ k+1

k

dt
m∏

j=0

(t + j + 1)

6

∞∑

k=0

1

(k + 1) . . . (k + m + 1)
= Zm 6

1

m!

for any m ∈ � . �

Lemma 4.4. There exists a positive constant C2 independent of s̄ and P such

that for all non-zero real numbers s the inequality

(4.9) |hP (s)| 6
1

s2

C1C2

|s̄|!

[ M∏

k=1

(C1|αk|

δ

)mk

] N∏

k=1

(C1|βk|

δ

)nk

holds for s̄ 6= 0.

$%�"&'&)(
. Since the function HP is odd on � , the equality

hP (s) = −
i

π

∫ ∞

0

HP (t) sin ts dt

= −
i

π

( k0∑

j=0

∫ vj

uj

+

∫

J0

)
HP (t) sin tsdt
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holds. By double integration by parts and using (3.1) and (3.2) we get for any s̄ > 0

hP (s) = −
i

π

[
−

1

s

k0∑

j=0

(HP (vj) cos vjs − HP (uj) cosujs)

+
1

s2

k0∑

j=0

sin vjs − sin ujs

vj − uj

(HP (vj) − HP (uj))

−
1

s

k0−1∑

j=0

(HP (uj+1) cos uj+1s − HP (vj) cos vjs)

+
1

s2

k0−1∑

j=0

(ḢP (uj+1) sin uj+1s − ḢP (vj) sin vjs)

+
1

s
HP (vk0

) cos vk0
s −

1

s2
ḢP (vk0

) sin vk0
s −

1

s2

∫

J0

ḦP (t) sin tsdt

]

=
i

πs2

[
−

k0∑

j=0

sin vjs − sin ujs

vj − uj

(HP (vj) − HP (uj))

−
k0−1∑

j=0

(ḢP (uj+1) sin uj+1s − ḢP (vj) sin vjs)

+ ḢP (vk0
) sin vk0

s +

∫

J0

ḦP (t) sin ts dt

]
.

Recall that 1
δ

6 1
δ2 , v0 − u0 = v0 > 4δ, vj − uj = 2δ, j = 1, . . . , k0, where 0 = u0 <

v1 < u1 < . . . < uk0
< vk0

< ∞ so that
k0∑

j=0

2
vj−uj

6 k0+1
δ
,

k0−1∑
j=0

(uj+1−vj) 6 uk0
−v0.

By means of further modifications we get

|hP (s)| 6
1

πs2

[ k0∑

j=0

2

vj − uj

(|HP (vj)| + |HP (uj)|) +

k0∑

j=0

|ḢP (vj)|

+

k0∑

j=1

|ḢP (uj)| +
k0−1∑

j=0

∫ uj+1

vj

|ḦP (t)| dt +

∫ ∞

vk0

|ḦP (t)| dt

]
.

Because for s̄ 6= 0 the estimate
∫ ∞

vk0

dt
|s̄|∏

j=0

(t + P jω)

=

∫ ∞

0

dt
|s̄|∏

j=0

(t + vk0
+ P jω)

6
1

(4δ)|s̄|

∫ ∞

0

dt
|s̄|∏

j=0

(t + 1 + j)

6
1

|s̄|!(4δ)|s̄|
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holds according to Lemma 4.3, by using (4.6) we obtain

∫ ∞

vk0

|ḦP (t)| dt 6 (|s̄| + 1)2
[ |s̄|∏

j=0

C1|γj |

] ∫ ∞

vk0

dt
|s̄|∏

j=0

(t + P jω)

6
C1

|s̄|!

|s̄|∏

j=1

C1|γj |

δ

by virtue of the correct inequalities m + 1 6 2m and (m + 1)2 6 4m, m = 0, 1, . . ..

Owing to (4.4′), (4.5′), (4.6′) and the previous results we conclude that

|hP (s)| 6
C1

πs2

[
2

(|s̄| + 1)!4δ

k0∑

j=0

2

vj − uj

+
2k0 + 1

|s̄|!4δ

+

k0−1∑

j=0

(uj+1 − vj)
1

|s̄|!4δ
+

1

|s̄|!

] |s̄|∏

j=1

C1|γj |

δ
6

C1C2

|s̄|!s2

|s̄|∏

j=1

C1|γj |

δ
,

where C2 = (4k0 + 4 + uk0
− v0)/(4πδ2). �

Lemma 4.5. For all s̄ 6= 0 and P there exists a positive constant C3 independent

of s̄ and P such that the following inequality

(4.10) |hP (s)| 6
C1C3

|s̄|!

[ M∏

k=1

(C1|αk|

4δ

)mk

] N∏

k=1

(C1|βk|

4δ

)nk

is true for all real non-zero s. This means that |hP (s)| is uniformly bounded on

� \ {0}.
$%�"&'&)(

. From (4.4′) and (4.4) we get

|hP (s)| 6
1

π

∫ vk0

0

|HP (t)| dt +

∫ ∞

vk0

|HP (t)| dt

6
vk0

C1

(|s̄| + 1)!4πδ

|s̄|∏

j=1

C1|γj |

4δ
+

C1

π

∫ ∞

vk0

dt
|s̄|∏

j=0

(t + P jω)

|s̄|∏

j=1

C1|γj | 6

6
(vk0

+ 1)C1

|s̄|!4πδ

|s̄|∏

j=1

C1|γj |

4δ
6

C1C3

|s̄|!

|s̄|∏

j=1

C1|γj |

4δ
,

where C3 = (vk0
+ 1)/(4πδ), so that (4.10) is true. �

4.4. Estimates of H0, h0. Now we still need to verify the validity of (4.9) and

(4.10) for s̄ = 0 and s 6= 0.
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Lemma 4.6. For s 6= 0 the estimates (4.9) and (4.10) are valid for H0, h0 (if

necessary we increase the already defined positive constants C1, C2 and C3).

$%�"&'&)(
. The function H0 has an absolutely integrable derivative Ḣ0 on the

interval 〈vk0
,∞), since for t > vk0

the inequality

(4.11) |Ḣ0(t)| = |(Φ−1(it))′| 6 C1/t2

is valid by virtue of the third estimate from (4.2). This means that the real and

imaginary parts of each element of the matrix function H0 satisfy the conditions from

the assertion (vi). Consequently, for all real non-zero s we get
∣∣ ∫ ∞

vk0

H0(t) sin ts dt
∣∣ 6

4πn2
0C1 by using (3.6).

Owing to the form of H0 the inequality
∣∣ ∫ vk0

0
H0(t) sin ts dt

∣∣ 6
∫ vk0

0
|H0(t)| dt 6

vk0
C1 is correct, so that |h0(s)| 6 (vk0

+ 4n2
0)C1/(4δ). If we choose C3 = (vk0

+

4n2
0)/(4δ) then (4.10) is verified. The estimate (4.9) remains valid also for h0

with regard to the correct inequality |Ḧ0(t)| = |(Φ−1(it))′′| 6 C1/t2 for t > vk0

based on the third estimate from (4.2) and therefore by virtue of (4.11) the integral∫ ∞

vk0

H(t) sin ts dt converges. �

Lemma 4.7. Owing to the validity of (4.9) and (4.10) for any s̄ and P the

estimate

(4.12)

∫ ∞

−∞

|hP (s)| ds 6
C1C4

|s̄|!

[ M∏

k=1

(C1|αk|

δ

)mk

] N∏

k=1

(C1|βk|

δ

)nk

is true with a positive constant C4 independent of s̄ and P .

$%�"&'&)(
. With regard to

∫ vk0

0
|hP (s)| ds 6 C1C2

|s̄|!

|s̄|∏
j=1

C1|γj |
δ
and

∫ ∞

vk0

|hP (s)| ds 6
C1C3

|s̄|!

∫ ∞

vk0

ds

s2

|s̄|∏

j=1

C1|γj |

δ
=

C1C3

|s̄|!vk0

|s̄|∏

j=1

C1|γj |

δ

we obtain a true estimate

∫ ∞

−∞

|hP (s)| ds 6 2

∫ ∞

0

|hP (s)| ds 6
C1C4

|s̄|!

|s̄|∏

j=1

C1|γj |

δ

with the positive constant C4 = 2(C2v
2
k0

+ C3)/vk0
. �
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4.5. Almost periodic Λ-solutions. We show that the obtained formal Λ-

solution xf from (2.5) is an almost periodic Λ-solutions. To this aim we prove

directly only a certain absolute convergence of the trigonometric series (λ ∈ Λf )

∑

s̄>0

[ ∑

P

∑

λ

ΦP (iλ)ϕ(iλ)ϕ(λ) exp (iλt)
]
exp (is̄ωt)(4.13)

=
∑

s̄>0

[ ∑

P

∑

λ

Hp(λ)ϕ(iλ)ϕ(λ) exp (iλt)
]
exp (is̄ωt)

which arises by a rearrangement of the trigonometric series xf . Namely, the conver-

gence of the series

∑

s̄>0

∑

P

∣∣∣∣
∑

λ

HP (λ)ϕ(λ) exp (iλt)

∣∣∣∣(4.14)

=
∑

s̄>0

∑

P

∣∣∣∣
∫ ∞

−∞

hp(s)
∑

λ

ϕ(λ) exp (iλ(s + t)) ds

∣∣∣∣

=
∑

s̄>0

∑

P

∣∣∣∣
∫ ∞

−∞

hp(s)f(s + t) ds

∣∣∣∣ 6 |f |
∑

s̄>0

∑

P

∣∣∣∣
∫ ∞

−∞

|hp(s)| ds

∣∣∣∣

6 |f |C1C4

∑

s̄>0

∑

P

|
1

|s̄|!

|s̄|∏

j=1

C1|γj |

δ
6 |f |C1C4

∑

s̄>0

(
|s̄|

s̄

)
1

|s̄|!

|s̄|∏

j=1

C1|γj |

δ

= |f |C1C4

∑

s̄>0

[ M∏

k=1

(C1|αk|

δ

)mk

/mk!

] N∏

k=1

(C1|βk|

δ

)nk

/nk!

= |f |C1C4

[ M∏

k=1

( ∞∑

m=0

(C1|αk|

δ

)m

/m!

)] N∏

k=1

( ∞∑

n=0

(C1|βk|

δ

)n

/n!

)

= |f |C1C4 exp (C1(S + T )/δ) = Ã|f | for t ∈ � ,

where Ã = C1C4 exp (C1(S + T )/δ), will be considered in the sequel. In the case of

the one-point spectrum for f(t) = ϕ(λ) exp (iλt), t ∈ � , when xf and xλ coincide and

xλ coincides with (4.13), the convergence of the series (4.14) ensures the absolute

and consequently uniform convergence of xλ on � for every λ ∈ Λf . Hence, the

trigonometric series xf =
∑

xλ, λ ∈ Λf , converges absolutely and uniformly on �
and satisfies the estimate

(4.15) |xf | 6 Ã|f |.

(Recall that f is a trigonometric polynomial.)
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Theorem 4.8. The formal solution xf from Theorem 2.1 is an almost periodic

Λ-solution of Equation (2.1). Moreover, it is unique and satisfies the estimate

(4.16) ‖xf‖ 6 A|f |

where the positive constant A depends only on a0, b0, v0, ∆, dθ, d, dξ, S, T and S =∑
|α(µ)| =

∑
(a), µ ∈ Λa; T =

∑
|β(ν)| =

∑
(b), ν ∈ Λb.

$%�"&'&)(
. If an almost periodic Λ-solution of Equation (2.1) exists, its unique-

ness is ensured by the uniqueness of the formal almost periodic Λ-solution xf . The

function xf satisfies (4.15). Inserting xf into the right-hand side of (2.1) we get the

formal derivative ẋf of xf and the estimate

|ẋf | 6 (|a0| + |b0| + |a| + |b|) |xf | + |f | 6 [(|a0| + |b0| + S + T ) Ã + 1]|f |

which implies the absolute and uniform convergence of the trigonometric series ẋf ,

which means that ẋf is the derivative of xf and xf is the unique almost periodic

Λ-solution of Equation (2.1). Setting

A = (|a0| + |b0| + S + T + 1) Ã + 1

we conclude that the estimate (4.16) holds. �

Corollary 4.9. Let Λ1, Λ2 be two non-void sets of real numbers and let S, T be

two positive constants. If a, b, f from Equation (2.1) are trigonometric polynomials

with Λf ⊂ Λ1, Λa ⊂ Λ2, Λb ⊂ Λ2 and
∑

(a) 6 S,
∑

(b) 6 T and if

v′0 = inf Λ1 > 0,(4.17)

∆′ = inf Λ2 > 0,(4.18)

d′θ =

{
dist [θ; S(Λ2)] > 0 for θ 6= 0,

4 for θ = 0,
(4.19)

d′ = dist [iΛ′; σ (∆ (z))] > 0,(4.20)

where Λ′ = Λ1 + S (Λ2 ∪ {0}), then there exists exactly one almost periodic Λ′-

solution xf of Equation (2.1). This solution satisfies the estimate (4.16) where the

positive constant A depends only on a0, b0, v
′
0, ∆

′, dθ, d
′, dξ , τ, S, T .

$%�"&'&)(
. The existence of an almost periodic Λ′-solution xf follows from The-

orem 4.8 which ensures the existence of an almost periodic Λ-solution where Λ =

Λf + S (Λa ∪ Λb ∪ {0}), so that Λ ⊂ Λ′ and an almost periodic Λ-solution is also
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an almost periodic Λ′-solution. The uniqueness of an almost periodic Λ′-solution xf

follows from the facts that α(µ) = 0 for µ ∈ Λ2 \ Λa and β(ν) = 0 for ν ∈ Λ2 \ Λb

and ϕ(λ) = 0 for λ ∈ Λ1 \ Λf , which means that the Λ′-solution xf coincides with

the Λ-solution xf from Theorem 4.8. (More detailed explanation is in [6].)

The construction of the positive constant A is the same as before with the only

exception that the constants v0, ∆, dθ, d are replaced by the constants v′
0, ∆

′, d′θ, d
′,

respectively, for which it is apparent that v′
0 6 v0, ∆

′ 6 ∆, d′θ 6 dθ, d
′ 6 d so that

the constant A could at worst increase. �

������� �"!
4.10. Corollary 4.9 ensures the validity of the estimate (4.16) with a

positive constant A common for all almost periodic Λ′-solutions xf of Equation (2.1)

of the whole class of trigonometric polynomials a, b, f from Corollary 4.9.

4.6. Limit passages. The conclusions obtained under the assumption that a, b, f

are trigonometric polynomials remain valid even under more general assumptions.

Theorem 4.11. If in Equation (2.1) a, b are trigonometric polynomials and f is

almost periodic and if the conditions v0 = inf Λf > 0, (2.2), (2.3), (2.4) are fulfilled

then Equation (2.1) has exactly one almost periodic Λ-solution xf and this solution

satisfies the estimate (4.16).

������� �"!
4.12. Equation (2.1) may admit even infinitely many almost periodic

solutions but only one of them has its spectrum in iΛ (hence it is derived the name

of an almost periodic Λ-solution).

$%�"&'&)(+&)(�,.-/�0&1�"���
4.11. There exists a sequence of Bochner-Fejér approxi-

mation polynomials Bm, m = 1, 2, . . ., of the function f (with spectra contained in

Λf ) uniformly convergent to f on � .
If we choose Λ1 = Λf , Λ2 = Λa ∪ Λb then Λ′ ⊂ Λ and for Equation (2.1) with

f = Bm we have satisfied the assumptions from Corollary 4.9 which coincide in this

case with the assumptions from Theorem 2.1 and v′
0 = v0 = inf Λf > 0, m = 1, 2, . . . .

The equation

(2.1m) ẋ(t) = a0x(t) + b0x(t − τ) + a(t)x(t) + b(t)x(t − τ) + Bm(t), t ∈ � ,

has exactly one almost periodic Λ-solution xm and this solution satisfies the estimate

(4.16m) ‖xm‖ 6 A|Bm|, m = 1, 2, . . . .

Since the spectrum of the trigonometric polynomial Bm+k − Bm is contained in

iΛf , the equation (for t ∈ � ) ẋ(t) = a0x(t) + b0x(t − τ) + a(t)x(t) + b(t)x(t − τ) +
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Bm+k(t)−Bm(t) has also exactly one almost periodic Λ-solution, namely xm+k−xm,

and the estimate ‖xm+k − xm‖ 6 A|Bm+k − Bm| holds for m, k = 1, 2, . . . . In

virtue of the uniform convergence of the sequence of the trigonometric polynomials

Bm to the almost periodic function f on � , it is readily seen that the sequences
of almost periodic functions {xm}, {ẋm} converge uniformly on � and the limit
functions xf = lim xm, ẋf = lim ẋm satisfy Equation (2.1). Thus, xf is an almost

periodic Λ-solution of Equation (2.1) and the validity of the estimate (4.16) can be

verified by using the limit passage for m → ∞ in the estimates (4.16m).

It remains to check the uniqueness which could be damaged by the limit passage.

So, let us suppose the existence of another almost periodic Λ-solution y of Equation

(2.1). In such a case there exists a sequence ym, m = 1, 2, . . ., of Bochner-Fejér

approximation polynomials of the almost periodic function y to which they converge

uniformly on � and their derivatives ẏm, m = 1, 2, . . ., form a sequence of Bochner-

Fejér approximation polynomials of the almost periodic function ẏ to which they

converge uniformly on � form → ∞. It is easy to verify that the sequence of trigono-

metric polynomials fm(t) = ẏ(t)−a0ym(t)− b0ym(t− τ)−a(t)ym(t)− b(t)ym(t− τ),

m = 1, 2, . . ., converges uniformly on � to the almost periodic function f . Denoting

Λ1 = Λ = Λf +S (Λa ∪ Λb ∪ {0}), Λ2 = Λa ∪Λb we have Λ′ = Λ1 +S (Λ2 ∪ {0}) and

v′0 = inf Λ1 = inf Λf = v0 > 0 and the assumptions (4.18), (4.19), (4.20) are satis-

fied which coincide here with the assumptions (2.2), (2.3), (2.4). The spectra of the

trigonometric polynomials fm and consequently also the spectra of the trigonometric

polynomials Bm − fm are contained in iΛ, m = 1, 2, . . ., so that by Corollary 4.9.

the equation

ẋ(t) = a0x(t) + b0x(t − τ) + a(t)x(t) + b(t)x(t − τ) + Bm(t) − fm(t)

has exactly one almost periodic Λ-solution, namely wm = xm − ym, which satisfies

the estimate ‖wm‖ = ‖xm − ym‖ 6 A|Bm − fm|, m = 1, 2, . . .. However, ‖xf − y‖ =

lim ‖xm − ym‖ = 0 and hence xf = y. �

Corollary 4.13. Let Λ1, Λ2 be two non-void sets of real numbers and let S, T be

two positive constants. If the assumptions (4.17), (4.18), (4.19), (4.20) are satistied

and if f is an almost periodic function with its spectrum contained in iΛ1 and if

a, b are trigonometric polynomials with their spectra contained in iΛ2 for which∑
(a) 6 S,

∑
(b) 6 T , then Equation (2.1) has exactly one almost periodic Λ′-

solution xf where Λ′ = Λ1+S (Λ1 ∪ Λ2 ∪ {0}) and this solution satisfies the estimate

(4.16) where the positive constant A depends only on a0, b0, v
′
0, ∆

′, d′θ, d
′, dξ , τ, S, T .

$%�"&'&)(
. The validity of Corollary 4.13 can be verified by passing to the limit

analogously as in the proof of Theorem 4.11. �
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4.14. Corollary 4.13 ensures the validity of the estimate (4.16) with a

positive constant A common for all almost periodic Λ′-solutions xf of Equation (2.1)

of the whole class of trigonometric polynomials a, b and an almost periodic function

f from Corollary 4.13.

Now we abandon the assumptions that a, b are trigonometric polynomials.

Theorem 4.15. If a and b are almost periodic functions with absolutely con-

vergent Fourier series and f is an almost periodic function and if the assumptions

v0 = inf Λf > 0, (2.2), (2.3), (2.4) are satisfied, then Equation (2.1) has exactly

one almost periodic Λ-solution xf , where Λ = Λf + S (Λa ∪ Λb ∪ {0}), and this so-

lution satisfies the estimate (4.16) in which the positive constant A depends only on

a0, b0, v0, ∆, dθ, d, dξ , τ, S, T, where S =
∑

(a), T =
∑

(b).

$%�"&'&)(
. There exist sequences am and bm, m = 1, 2, . . ., of Bochner-Fejér

approximation polynomials of the almost periodic functions a and b, respectively,

to which they converge uniformly on � . If we denote Λ2 = Λa ∪ Λb, Λ1 = Λf +

S (Λ2 ∪ {0}) then Λ′ = Λ1 + S (Λ2 ∪ {0}) = Λ, Λam
⊂ Λ2, Λbm

⊂ Λ2, m = 1, 2, . . .;

Λf ⊂ Λ1. Moreover,
∑

(am) 6 S,
∑

(bm) 6 T , m = 1, 2, . . . . According to the

choice of Λ1, Λ2 the assumptions of Corollary 4.13 are satisfied for the equation

ẋ(t) = a0x(t) + b0x(t − τ) + am(t)x(t) + bm(t)x(t − τ) + f(t), t ∈ � . Therefore,
this equation has exactly one almost periodic Λ-solution xm and for this solution

we have the estimate ‖xm‖ 6 A|f |, m = 1, 2, . . .. Corollary 4.13 implies that the

equation ẋ(t) = a0x(t) + b0x(t − τ) + am(t)x(t) + bm(t)x(t − τ) + fm,k(t), t ∈ � ,
where fm,k(t) = (am+k(t) − am(t))xm+k(t) + (bm+k(t) − bm(t))xm+k(t − τ), t ∈ � ,
has exactly one periodic Λ-solution. It is evident that this solution is xm+k − xm

and for this solution the estimate ‖xm+k − xm‖ 6 A|fm,k| holds true, m = 1, 2, . . ..

Further, we get the inequality ‖xm+k − xm‖ 6 A|fm,k| 6 A(|am+k − am| + |bm+k −

bm|)|xm+k| 6 A2(|am+k−am|+ |bm+k−bm|)|f |; m, k = 1, 2, . . . . But this means that

lim ‖xm+k − xm‖ = 0 for m → ∞ uniformly with respect to k = 1, 2, . . ., so that the

almost periodic function xf = lim xm is an almost periodic Λ-solution of Equation

(2.1) and satisfies the estimate (4.16).

Again, it is necessary to verify the uniqueness of this solution, which could be lost

by the passage to the limit. Let y be also an almost periodic Λ-solution of Equation

(2.1). Then the almost periodic function w = xf − y is a unique almost periodic Λ-

solution of the equation ẋ(t) = a0x(t)+b0x(t−τ)+am(t)x(t)+bm(t)x(t−τ)+Fm(t),

t ∈ � , where Fm(t) = (a(t) − am(t))w(t) + (b(t) − bm(t))w(t − τ), t ∈ � , and this
solution satisfies the estimate ‖w‖ = ‖xf−y‖ 6 A(|a−am|+|b−bm|)|w|, m = 1, 2, . . . .

The right-hand side converges to zero for m → ∞, so that y = xf . �

64



Corollary 4.16. Let Λ1, Λ2 be two non-void sets of real numbers and let S, T be

two positive constants. If the assumptions (4.17), (4.18), (4.19), (4.20) are satisfied

and if f is an almost periodic function with its spectrum contained in iΛ1 and a, b are

almost periodic functions with their spectra contained in iΛ2 satisfying
∑

(a) 6 S,∑
(b) 6 T , then Equation (2.1) has exactly one almost periodic Λ′-solution xf where

Λ′ = Λ1+S(Λ2∪{0}) and this solution satisfies the estimate (4.16) where the positive

constant A depends only on a0, b0, v
′
0, ∆

′, d′θ, d
′, dξ , τ, S, T.

$%�"&'&)(
. Analogous reasoning as in the proof of Theorem 4.11. �

������� �"!
4.17. Corollary 4.14 ensures the validity of the estimate (4.16) with a

positive constant A common for all almost periodic Λ′-solution xf of Equation (2.1)

of the whole class of almost periodic functions a, b, f from Corollary 4.13.

4.7. A slight generalization. The assumption v0 = inf Λf > 0 for Equation

(2.1) can be weakend.

Theorem 4.18. If a, b, f from Equation (2.1) are almost periodic functions while

a, b have absolutely convergent Fourier series and if in addition to the conditions (2.2),

(2.3), (2.4) the condition −∞ < v0 = inf Λf is fulfilled then there exists exactly one

almost periodic Λ-solution xf of Equation (2.1). This solution satisfies the estimate

(4.16), in which the positive constant A depends only on a0, b0, ∆, dθ, d, dξ, τ, S, T ,

where S =
∑

(a), T =
∑

(b).

$%�"&'&)(
. It is sufficient to consider only the case −∞ < v0 6 0. We use the

substitution x(t) = y(t) exp (−ivt), t ∈ � . In this substitution we will choose a
suitable positive constant v such that the transformed Equation (2.1) satisfies the

conditions from Theorem 4.11. The substitution gives the equation

(4.21) ẏ(t) = ã0y(t) + b̃0y(t − τ) + ã(t)y(t) + b̃(t)y(t − τ) + f̃(t), t ∈ � ,

where ã0 = a0 + ivE, b̃0 = b0 exp (ivt), ã(t) = a(t), b̃(t) = b(t) exp (ivτ), f̃(t) =

f(t) exp (ivt). For Equation (2.1) we denote its characteristic equation detΨ(z) = 0

where the matrix function Ψ(z) = zE − ã0 − b̃0 exp (−zτ) = (z − iv)E − a0 −

b0 exp (−(z − iv)τ) = Φ(z− iv). It means that for the characteristic quasipolynomial

detΨ(z) we have detΨ(z) = ∆(z − iv) and its spectrum is σ(detΨ(z)) = σ(∆(z −

iv)) = σ(∆(z)) + iv. We denote δ = 1
4 min{α, ∆, dθ, d, dξ , τ, 4} where the positive

constants from the composed brackets have the same meaning as before. Now we

choose v = −v0 + 4δ and for Equation (4.21) we apparently get θ̃ = {ξ̃ − ξ̃′ : ξ̃, ξ̃′ ∈

σ(det (Ψ(z)))} = θ, Λf̃ = Λf + v, Λã = Λa, Λb̃ = Λb and Λ̃ = Λf̃ + S(Λa ∪ Λb ∪

{0}) = Λ + v so that ṽ0 = inf Λf̃ = v + inf Λf = −v0 + 4δ + v0 = 4δ > 0, dθ̃ =
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dist[θ̃; S(Λã ∪ Λb̃)] = dist[θ, S(Λa ∪ Λb)] = dθ > 0, d̃ = dist[iΛ̃; σ( detΨ(z))] =

dist[iΛ; σ(∆(z))] = d > 0. These conditions in accord with Theorem 4.15 ensure

the existence and uniqueness of an almost periodic Λ̃-solution yf of Equation (4.21).

This solution satisfies the estimate ‖yf‖ 6 K|f̃ | = K|f | where the positive constant

K representing the constant A from (4.16) depends only on a0, b0, ∆, dθ, d, dξ, τ, S, T ,

where S =
∑

(a), T =
∑

(b). This implies that the almost periodic function xf (t) =

yf (t) exp (ivt) is a unique almost periodic Λ-solution of Equation (2.1) and satisfies

estimates |xf | = |yf | 6 K|f |, |ẋf | = |ẏf−ivyf | 6 (1+v)|yf | 6 (1+v)K|f | = (1−v0+

4σ)K|f | 6 (5 − v0)K|f | so that the inequality ‖xf‖ 6 A|f |, where A = (5 − v0)K,

holds. �

������� �"!
4.19. From the estimate ‖xf‖ 6 (5 − v0)K|f | in the proof of Theo-

rem 4.18 it follows that a one-sided boundedness of Λf may not be omitted.

5. Quasilinear equations

5.1. Functions of several variables. Let g = g(t, x) be a continuous function

g : � ×D → � p×q , where D ⊂ � m×n is a non-void set. The function g is said to be

(a) almost periodic in the variable t on � × D if g(t, x) is almost periodic as a

function of t for any fixed x ∈ D;

(b) uniformly almost periodic in the variable t on � ×D if g(t, x) is almost periodic

in t on � × D and for any ε > 0 there exists a set {τ} ⊂ � relatively dense in
� such that |g(t + τ, x) − g(t, x)| < ε for every τ ∈ {τ}, t ∈ � , x ∈ D;

(c) localy uniformly almost periodic in the variable t on � × D if for any compact

set K ⊂ D the restriction gk of the function g on � × K is uniformly almost

periodic in the variable t on � × K.

Lemma 5.1. Let g : � ×D → � p×q be a function almost periodic in t on � ×D.

A necessary and sufficient condition for g to be locally uniformly almost periodic in

t is that it be continuous in x uniformly with respect to t ∈ � on � × D.

$%�"&'&)(
. The proof can be found in [6]. �

In the sequel we deal with the cases in which the conditions for the locally uniform

almost periodicity of the introduced function are fulfilled.

5.2. Harmonic analysis. Let g : � × D → � p×q be a function almost periodic

in t on � × D. For any x ∈ D the Bohr transformation

a(λ, x) = a(λ, x, g) = lim
T→∞

1

T

∫ s+T

s

g(t, x) exp (−iλt) dt
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exists for each λ ∈ � uniformly with respect to s ∈ � . If a(λ, x) is non-zero for a

given λ ∈ � for at least one point x ∈ D, i.e. a(λ, x) 6≡ 0, x ∈ D, then λ is called the

Fourier exponent and a(λ, x), x ∈ D, is called the Fourier coefficient of the function

g. The set of all Fourier exponents of the function g is denoted by Λg. If D is a

compact set, then the set Λg is at most countable (see [6]). If the set D is a region

(an open connected non-void set), then there exists a monotone sequence of compact

setsK1 ⊂ K2 ⊂ . . . ⊂ Km . . . ⊂ D for which lim Km = D. In such a case the equality

Λg =
⋃
m

Λm holds, where Λm is the set of all Fourier exponents of the restriction of

the function g onto � × Km, m = 1, 2, . . ., and thus Λg is an at most countable set.

If g is locally uniformly almost periodic in the variable t on � × D and D is a

region, then the Fourier series g(t, x) ∼
∑
λ

a(λ, x) exp (iλt), λ ∈ Λg, can be uniquely

determined except for its order of summation. If the function g is also analytic in

the variable x on a closed ball lying in D and containing the set � f of all values of

an almost periodic function f , then the inclusion ΛF ⊂ Λg + S(Λf ∪{0}) is valid for

the function F (t) = g(t, f(t)), t ∈ � .

5.3. Derivatives. Now we will deal with a function g = g(t, u, v, ε) : � × D =

� × � n×1 × � n×1 × κ → � n×1 , where κ0 = κ(0; δ0) ⊂ � , δ0 > 0. In order to avoid

complicated expressions, we will use the symbolic records for Jacobi matrices, as for

example

gt =
∂g

∂t
=

∂(g1, . . . , gn)

∂t
=




∂g1

∂t
...

∂gn

∂t


 ,

gu =
∂g

∂u
=

∂(g1, . . . , gn)

∂u1, . . . , un

=




∂g1

∂u1
, . . . , ∂g1

∂un

. . . . . . . . .
∂gn

∂u1
, . . . , ∂gn

∂un


 =

( ∂gj

∂uk

)

j,k=1,...,n
,

and analogously gv. These Jacobi matrices will be called derivatives of the function

g. The norm of a matrix is the sum of absolute values of all its elements.

For any given positive constant R we define the “norms” |g|R, |gt|R, |gu|R, |gv|R as

the maximum value of the least upper bounds of magnitudes of functions g, gt, gu, gv,

respectively, on the (metric) space ΩR = � × � × � R × κ0, where � n×1
R = {w ∈

� n×1 : |w| 6 R}. Further, we denote ‖g‖R = max{|g|R, |gt|R, |gu|R, |gv|R}. If

two points U = [t, u, v, ε], Ũ = [t, ũ, ṽ, ε] are from ΩR then we have the inequality

|g(U) − g(Ũ)| 6 ‖g‖R(|u − ũ| + |v − ṽ|).
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5.4. Quasilinear equations. Using the Banach contraction principle we will deal

with the quasilinear (weakly nonlinear) system

ẋ(t) = a0x(t) + b0x(t − τ) + a(t)x(t) + b(t)x(t − τ)(5.1)

+ f(t) + εg(t, x(t), x(t − τ), ε), t ∈ � ,

where ε is a small complex parameter. For ε = 0 we get the generating equation (2.1)

with its conditions for a0, b0, a, b, f. Assume that the function g = g(t, u, v, ε) together

with its derivatives gu, gv are locally uniformly almost periodic in the variable t on

� × D, where D = � n×1 × � n×1 × κ0 and κ0 = κ(0, δ0), δ0 > 0, and g is analytic

in the variables u, v, ε. (Lemma 5.1 implies that g is continuous in the variables u, v

uniformly to t ∈ � and ε ∈ κ0 on � × D.)

Put Λ = S(Λf ∪ Λg + S(Λa ∪ Λb ∪ {0})). If Λξ ⊂ Λ for a function ξ ∈ AP ( � n×1 ),

then the composite function F (t) = F (t, ξ(t)) = g(t, ξ(t), ξ(t − τ), ε), t ∈ � , is an
almost periodic function whose spectrum is contained in iΛ for each ε ∈ κ0 (see the

end of 5.2), as ΛF ⊂ Λg +S(Λf ∪{0}) ⊂ Λf ∪Λg +S(Λ∪{0}) ⊂ Λ is valid due to the

analyticity of the function g in the variables u, v. Thus the “spectrum” iΛ is wide

enough to allow the existence of an almost periodic Λ-solution of Equation (5.1).

Theorem 5.2. If Equation (5.1) satisfies the conditions (4.17), (4.18), (4.19),

(4.20) for Λ1 = Λf ∪ Λg, Λ2 = Λa ∪ Λb, Λ
′ = Λ = S(Λf ∪ Λg + S(Λa ∪ Λb ∪ {0})),

then for each positive number R > A|f |, where A is from (4.16), there exists such

a positive number ε(R) that Equation (5.2) has a unique almost periodic Λ-solution

xε with the norm ‖xε‖ 6 R for each ε ∈ κ0 for which |ε| < ε(R) holds.

$%�"&'&)(
. Let us consider the Banach space H(Λ) = {ξ ∈ AP 1( � n×1 ) : Λξ ⊂ Λ}

with a norm ‖ · ‖. If a non-negative number R is given, then we define the metric

closed subspace HR(Λ) = {ξ ∈ H(Λ): ‖ξ‖ 6 R} of the space H(Λ).

If ξ ∈ H(Λ), R > ‖ξ‖ and ε ∈ κ0, then the function

γ(t) = γ(t, ξ) = g(t, ξ(t), ξ(t − τ), ε), t ∈ � ,

is almost periodic and belongs again to H(Λ) and |γ| 6 |g|R 6 ‖g‖R, |γ̇| = |gt +

guξ̇(t) + gv ξ̇(t − τ)| 6 (1 + 2R)‖g‖R. Thus ‖γ‖ 6 (1 + 2R)‖g‖R.

Define an operator A = A(ε) on the Banach space H(Λ) for each ε ∈ κ0 such that

the operator A maps any function ξ ∈ H(Λ) to the function Aξ ∈ H(Λ) which is the

unique almost periodic Λ-solution of the equation

ẋ(t) = a0x(t)+b0x(t−τ)+a(t)x(t)+b(t)x(t−τ)+f(t)+εg(t, ξ(t), ξ(t−τ), ε), t ∈ � ,
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(uniqueness is guaranteed by Theorem 4.8) and which satisfies the estimate (4.16),

i.e. ‖Aξ‖ 6 A|f +εγ|. Due to Corollary 4.9 the constant A is common for all functions

from H(Λ) for Λ1 = Λ, Λ2 = Λa ∪ Λb as Λ′ = Λ. Thus the final estimate reads

‖Aξ‖ 6 A[|f |+ ε(1 + 2R)|g|R]. If a positive number R is chosen such that R > A|f |,

then the operator A = A(ε) maps the space HR(Λ) into itself for any ε ∈ κ0 for

which |ε| 6 (R − A|f |)/(1 + 2R)A|g|R).

Further, it is necessary to find out for which ε ∈ κ0 the operator A = A(ε) is

contractive on HR(Λ). If two functions ξ, η belong to HR(Λ) and ε ∈ κ0 is given,

then we put γξ(t) = g(t, ξ(t), ξ(t − τ), ε), γη(t) = g(t, η(t), η(t − τ), ε), t ∈ � . The
function w = Aξ −Aη is the unique almost periodic Λ-solution of the equation

ẋ(t) = a0x(t) + b0x(t − τ) + a(t)x(t) + b(t)x(t − τ) + ε(γξ(t) − γη(t)), t ∈ � ,

and satisfies the inequality

‖w‖ = ‖Aξ −Aη‖ 6 |ε|A|γξ − γη | 6 |ε|2A‖g‖R|ξ − η| 6 ε|2A‖g‖R‖ξ − η‖,

since

|γξ − γη| 6 |gu|R|ξ − η| + |gv|R|ξ − η| 6 2 ‖g‖R |ξ − η|.

In order to get a contractive operator A on HR(Λ) it is sufficient to put |ε| <

1/(2A‖g‖R).

The operator A maps the space HR(Λ) into itself and turns out to be a contraction

on HR(Λ) for |ε| < ε(R), where

ε(R) = min
{

δ0,
R − A|f |

(1 + 2R)A|g|R
,

1

2A‖g‖R

}
.

Consequently, there exists a unique function xε from HR(Λ) for |ε| < ε(R), R >

A|f |, such that Axε = xε, i.e. there exists a unique almost periodic Λ-solution xε of

Equation (5.1) for each ε ∈ κ0 if |ε| < ε(R). This completes the proof of Theorem 5.2.

�

2 &13546 7 8�9:&)3
. In comparison with the method of solution from [6] we have here

weaker conditions for a, b, f from Equation (2.1) (we do not require the existence

of first derivative of a, b, f) except the assumption inf Λf > 0. Also the estimate

‖xf‖ 6 A|f | of the Λ-solution xf of Equation (2.1) is simpler in comparison with

the estimate ‖xf‖ 6 A‖f‖ in [6]. The method developed in this paper for the

construction of almost periodic solutions of almost periodic systems of differential

equations can be used also for finding an approximative solution of this problem.
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