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Abstract. Let S(RG) be a normed Sylow p-subgroup in a group ring RG of an abelian
group G with p-component Gp and a p-basic subgroup B over a commutative unitary
ring R with prime characteristic p. The first central result is that 1 + I(RG;Bp) +

I(R(pi)G;G) is basic in S(RG) and B[1 + I(RG;Bp) + I(R(pi)G;G)] is p-basic in V (RG),

and [1 + I(RG;Bp) + I(R(pi)G;G)]Gp/Gp is basic in S(RG)/Gp and [1 + I(RG;Bp) +

I(R(pi)G;G)]G/G is p-basic in V (RG)/G, provided in both cases G/Gp is p-divisible and

R is such that its maximal perfect subring Rpi

has no nilpotents whenever i is natural. The
second major result is that B(1+ I(RG;Bp)) is p-basic in V (RG) and (1+ I(RG;Bp))G/G
is p-basic in V (RG)/G, provided G/Gp is p-divisible and R is perfect.
In particular, under these circumstances, S(RG) and S(RG)/Gp are both starred or

algebraically compact groups. The last results offer a new perspective on the long-standing
classical conjecture which says that S(RG)/Gp is totally projective.
The present facts improve the results concerning this topic due to Nachev (Houston

J.Math., 1996) and others obtained by us in (C. R.Acad. Bulg. Sci., 1995) and (Czechoslovak
Math. J., 2002).

MSC 2000 : 16S34, 16U60, 20K10, 20K20, 20K21

1. Introduction

Throughout this work, RG denotes the group algebra of an abelian group G over

a commutative ring R with identity in prime characteristic, for instance, p. As usual,

S(RG) = Vp(RG) will denote the p-primary component (often called the Sylow p-

subgroup) of the group V (RG) of all normalized units in RG. For L a subring of R

and A a subgroup of G, we denote by I(LG; A) the relative augmentation ideal of

the ring LG with respect to A; 1 + I(LG; A) = V (LG; A) for simpleness. All other

notation used and the terminology from the abelian group theory and abelian group

ring theory are standard and follow essentially those in the monographs of [6] and

[9].
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The attempts at obtaining basic subgroups of V (RG) were first started in [17] and

independently and more generally in [1]. After this, we have developed in [2] and [5]

this branch by making use of modern ideas. New results in this way are presented

in the next paragraph.

2. Main results

p-basic subgroups of V (RG) and V (RG)/G. The main aim of the current

section is to give a description of the p-basic subgroups of V (RG) and V (RG)/G

under minimal restrictions on R and G. This can be made by the following assertions

which are useful for applications. But, before proving the global goals, we need some

preliminaries to begin with.

Lemma 1. Let Rpi

have no nilpotents for some positive integer i. Then, for each

natural n,

[R(pi)]p
n

= Rpn

(pi).

���������
. Observe that n > i implies Rpn

(pi) = 0 = [R(pi)]p
n

. That is why we

restrict our attention to n < i. It is clear that the right hand side contains the left

hand side. For the converse, take an arbitrary element x from the right hand side.

Hence x = ypn

and ypn+i

= 0 for some y ∈ R. But (ypi

)pn

= 0 and so ypi

= 0, i.e. in

other words y ∈ R(pi). We conclude that x lies in the left hand side, as well. The

statement is proved. �

The next technical claim is crucial for our further investigations.

Lemma 2. Assume 1 ∈ L 6 R and A 6 G, H 6 C 6 G such that H is p-primary.

Then for n > 0 we have

[1 + I(RG; H) + I(R(pn)G; G)] ∩ S(LA)(1)

= 1 + I(LA; A ∩ H) + I(L(pn)A; A),

[Gp(1 + I(RG; H) + I(R(pn)G; G))] ∩ S(LA)(2)

= Ap[1 + I(LA; A ∩ H) + I(L(pn)A; A)],

[C(1 + I(RG; H) + I(R(pn)G; G))] ∩ V (LA)(3)

= (A ∩ C)[1 + I(LA; A ∩ H) + I(L(pn)A; A)].

���������
. For the first identity, take x in the left hand side. Thus, x = 1 +

∑

i

∑

j

fijgij(1 − hi) +
∑

k

∑

l

rklckl(1 − bk) =
∑

m

αmam, where fij ∈ R; rkl ∈ R(pn),
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αm ∈ L; gij , ckl, bk ∈ G; hi ∈ H and am ∈ A. Therefore, we observe that the

canonical forms of the two left sums contain elements of the type gij and gijhi

plus ckl and cklbk, and, on the other hand, their general canonical form eventually

possesses elements of the present kind. Now, we examine three cases. First, if some

gij = ckl and fij + rkl = 0, we derive gijhi ∈ A and cklbk ∈ A when gijhi 6= cklbk.

Hence fijgijhi + rklcklbk = fijgijhi (1 − bkh−1
i ) ∈ I(L(pn)A; A). In the second

case when gijhi = cklbk with fij + rkl = 0 but gij 6= ckl, we deduce gij ∈ A,

ckl ∈ A and so fijgij + rklckl = fijgij (1 − cklg
−1
ij ) ∈ I(L(pn)A; A). In the last

third case when gij = cklbk with fij + rkl = 0, we conclude gijhi ∈ A, ckl ∈ A

and fijgijhi + rklckl = fijgijhi (1 − cklg
−1
ij h−1

i ) ∈ I(L(pn)A; A), as well. All other

situations in which there are no relations between elements of the two sums are in

agreement with [2].

The second ratio may be proved similarly to the third, which will be showed

below. Really, choose again an arbitrary element y from the left-hand side. So,

y = c(1 +
∑

i

∑

j

fijgij(1 − hi) +
∑

k

∑

l

rklckl(1 − bk)) =
∑

m

αmam, where c ∈ C and

the other letters are as above. Further, we observe that the double sums both

written in canonical records contain an element that belongs to H , say h ∈ H (even

if all hi = 1 because 1 /∈ R(pn)). That is why ch ∈ A ∩ C and we can write

y = ch(1 + (h−1 − 1) +
∑

i

∑

j

fijgijh
−1(1 − hi) +

∑

k

∑

l

rklcklh
−1(1 − bk)), where the

sums obviously lie in [1+ I(RG; H) + I(R(pn)G; G)]∩S(LA). However, by what we

have just shown, this intersection is equal to 1 + I(LA; A∩H) + I(L(pn)A; A), thus

proving the assertion since the converse is trivial. Consequently, the equalities are

proved in all generality. �

We will now attack a significant

Proposition 3. Suppose H is a pure direct sum of cyclic p-subgroups of G.

Then [1 + I(RG; H) + I(R(pi)G; G)]/H is a direct sum of cyclics and thus H is a

direct factor of 1 + I(RG; H) + I(R(pi)G; G) with a direct sum of p-cyclics as the

complementary factor.

���������
. According to [6], [1 + I(RG; H) + I(R(pi)G; G)]/H is a direct sum

of cyclic groups if and only if [(1 + I(RG; H) + I(R(pi)G; G))/H ]p
i

= H [1 +

I(Rpi

Gpi

; Hpi

)]/H ∼= [1 + I(Rpi

Gpi

; Hpi

)]/Hpi

is such. But H being pure in G

implies that Hpi

is pure in Gpi

and so the claim follows automatically from [2,

Theorem 6]. The proof is over. �

Now, we come to the first main affirmation motivating the present article.
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Theorem 4. Let G be an abelian group for which G/Gp is p-divisible and

let R be a commutative ring with unity with characteristic p for which there

exists a nonnegative number i such that Rpi

is perfect without nilpotent ele-

ments. Then 1 + I(RG; Bp) + I(R(pi)G; G) is a basic subgroup of S(RG), and

[1 + I(RG; Bp) + I(R(pi)G; G)]Gp/Gp is a basic subgroup of S(RG)/Gp. Moreover,

1+ I(RG; Bp)+ I(R(pi)G; G) is a proper lower basic subgroup of S(RG) if and only

if inf
n∈N

max(|Rpn

|, |Gpn

|) = max(|Rpi

|, |G/Bp|).

���������
. Following [6], we shall inspect that the definition for a basic subgroup

given in [6] is satisfied. In fact, the first half holds like this:

1) By virtue of Proposition 3, the desired group is a direct sum of cyclics.

2) Using successively Lemmas 2 and 1, for each natural n we calculate [1 +

I(RG; Bp)+I(R(pi)G; G)]∩Spn

(RG) = 1+I(Rpn

Gpn

; Bpn

p )+I(Rpn

(pi)Gpn

; Gpn

) =

1 + Ipn

(RG; Bp) + Ipn

(R(pi)G; G) = [1 + I(RG; Bp) + I(R(pi)G; G)]p
n

, whence the

purity is fulfilled.

3) The divisibility is proved in the following manner: Since Rpi

= Rpi+1

, for every

r ∈ R we have rpi

= αpi+1

for some α ∈ R. Hence r ∈ αp + R(pi). Besides,

G = GpG
p = BpG

p. Let us now choose an arbitrary element x = r1g1 + . . . + rsgs ∈

S(RG). Hence, we can write r1 = αp
1 + β1, . . . , rs = αp

s + βs and g1 = b1a
p
1, . . . , gs =

bsa
p
s , where αj ∈ R, βj ∈ R(pi); bj ∈ Bp, aj ∈ G whenever 1 6 j 6 s ∈ N .

Consequently, x = αp
1b1a

p
1 + β1b1a

p
1 + . . . + αp

sbsa
p
s + βsbsa

p
s = αp

1a
p
1 + αp

1(b1 − 1)ap
1 +

β1b1a
p
1 + . . . + αp

sa
p
s + αp

s(bs − 1)ap
s + βsbsa

p
s = (1 − αp

1 − . . . − αp
s + αp

1a
p
1 + . . . +

αp
sa

p
s) +αp

1(b1 − 1)ap
1 + . . . + αp

s(bs − 1)ap
s + β1(b1a

p
1 − 1) + . . . + βs(bsa

p
s − 1). Denote

u = 1 − αp
1 − . . . − αp

s + αp
1a

p
1 + . . . + αp

sa
p
s . Apparently αp

1 + β1 + . . . + αp
s + βs = 1

yields αpi+1

1 + . . . + αpi+1

s = 1, and moreover there exists t ∈ N such that gpt

1 =

apt+1

1 , . . . , gpt

s = apt+1

s . Therefore upi+t

= αpi+t+1

1 gpi+t

1 + . . . + αpi+t+1

s gpi+t

s = xpi+t

,

thus u is also a normed p-torsion element, i.e.u ∈ Sp(RG). Now, we may deduce

x = u(1+αp
1a

p
1u

−1(b1−1)+. . .+αp
sa

p
su

−1(bs−1)+β1u
−1(b1a

p
1−1)+. . .+βsu

−1(bsa
p
s−

1)) ∈ Sp(RG)[1 + I(RG; Bp) + I(R(pi)G; G)].

Finally, we derive S(RG) = Sp(RG)[1 + I(RG; Bp) + I(R(pi)G; G)], as claimed.

For the second half, by making use of Proposition 3 we first observe that [1 +

I(RG; Bp) + I(R(pi)G; G)]Gp/Gp
∼= [1 + I(RG; Bp) + I(R(pi)G; G)]/Bp is a di-

rect sum of cyclics. Employing subsequently Lemma 2 and Lemma 1 we com-

pute [(1 + I(RG; Bp) + I(R(pi)G; G))Gp] ∩ S(Rpn

Gpn

) = Gpn

p [1 + Ipn

(RG; Bp) +

Ipn

(R(pi)G; G)] = [Gp(1+I(RG; Bp)+I(R(pi)G; G))]p
n

, hence this subgroup is pure

in S(RG) or equivalently [1+I(RG; Bp)+I(R(pi)G; G)]Gp/Gp is pure in S(RG)/Gp

(see [6]). Finally, the divisibility is true because of the fact that S(RG)/Gp/[1 +

I(RG; Bp) + I(R(pi)G; G)]Gp/Gp
∼= S(RG)/[1 + I(RG; Bp) + I(R(pi)G; G)]Gp is an
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epimorphic image of the divisible group S(RG)/[1 + I(RG; Bp) + I(R(pi)G; G)], as

we have shown.

For the third part concerning the lower basic subgroup, we deduce via the definition

stated in [6] along with [15] and [16] that inf
n∈N

rank (Spn

(RG)) = rank [S(RG)/[1 +

I(RG; Bp) + I(R(pi)G; G)]]. But rank (Spn

(RG)) = rank (Spn

(RG)[p]) = rank

(S(Rpn

Gpn

)[p]) = |S(Rpn

Gpn

)[p]| = max(|Rpn

|, |Gpn

|) since Gpn

p 6= 1. On the other

hand we calculate the cardinal number rank [S(RG)/(1+I(RG; Bp)+I(R(pi)G; G))].

Foremost we observe that G/Bp is p-divisible because so are Gp/Bp and G/Gp
∼=

G/Bp/Gp/Bp (see, for instance, [6]). In the sequel, the natural map G → G/Bp

and the epimorphism R → Rpi

can be naturally extended to a homomorphism

S(RG) → S(Rpi

(G/Bp)) by the map
∑

t

rtgt →
∑

t

rpi

t gtBp. It is only a rou-

tine technical exercise to establish that the kernel of this map is equal to 1 +

I(RG; Bp) + I(R(pi)G; G). Furthermore, S(RG)/(1 + I(RG; Bp) + I(R(pi)G; G))

is isomorphic to a subgroup of the divisible group S(Rpi

(G/Bp)). Moreover, we have

seen that the factor-group is divisible. Besides, using [15], [16], we find that rank

(S(Rpi

(G/Bp))) = max(|Rpi

|, |G/Bp|). Now, since R/R(pi) ∼= Rpi

and S(RG) =

1 + I(RG; Bp) + I(R(pi)G; G) only when Gp = Bp, it is elementary to conclude that

the rank of the quotient group is the same, as required. The proof is complete. �

���������� 
. Under the word “a proper basic subgroup” we have in mind that it

does not coincide with the reduced part of the group, i.e. the group is not algebraically

compact torsion.

Theorem 5. Suppose that G is an abelian group whose G/Gp is p-divisible and

R is a commutative unitary ring whose Rpi

is perfect with no nilradical for some

nonnegative number i. Then B[1+I(RG; Bp)+I(R(pi)G; G)] is a p-basic subgroup of

V (RG), and G[1+I(RG; Bp)+I(R(pi)G; G)]/G is a p-basic p-subgroup of V (RG)/G.

���������
. First, we see that B[1+I(RG; Bp)+I(R(pi)G; G)]/B ∼= [1+I(RG; Bp)+

I(R(pi)G; G)]/Bp. Therefore in view of Proposition 3 the last factor-group is a di-

rect sum of cyclic groups. On the other hand, B is pure in B[1 + I(RG; Bp) +

I(R(pi)G; G)]. Really, for all naturals n and primes q 6= p, owing to the modular

law we derive B ∩ [B(1 + I(RG; Bp) + I(R(pi)G; G))]q
n

= B ∩ [Bqn

(1 + I(RG; Bp) +

I(R(pi)G; G))] = Bqn

[B ∩ (1 + I(RG; Bp) + I(R(pi)G; G))] = Bqn

Bp = Bqn

. More-

over, by definition B is p-pure in G, and as is well-known G is p-pure in V (RG),

hence by [6] we obtain that B is p-pure in V (RG) and thus also in every subgroup

of V (RG) that contains B. This substantiates our claim.

So, applying a classical Kulikov’s theorem (see [6], p. 143, Theorem 28.2), B is a

direct factor of B[1+ I(RG; Bp)+ I(R(pi)G; G)] with a direct sum of p-cyclics as the
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complementary factor, hence the last mentioned group is a direct sum of p-cyclics

and infinite cyclics, as well.

Further, combining Lemmas 2 and 1 together with folklore technical matters, the

p-purity follows: [B[1+I(RG; Bp)+I(R(pi)G; G)]]∩V pn

(RG) = [B[1+I(RG; Bp)+

I(R(pi)G; G)]] ∩ V (Rpn

Gpn

) = Bpn

[1 + I(Rpn

Gpn

; Bpn

p ) + I(Rpn

(pi)Gpn

; Gpn

)] =

Bpn

[1 + Ipn

(RG; Bp) + Ipn

(R(pi)G; G)] = Bpn

[1 + I(RG; Bp) + I(R(pi)G; G)]p
n

=

[B(1 + I(RG; Bp) + I(R(pi)G; G))]p
n

, as required.

For the p-divisibility, we obtain: Because for some t ∈ N and each normed element

v ∈ RG we have v ∈ V (RG) if and only if vpt

∈ V (RG), by the same token as

in Theorem 4 we get that V (RG) = V p(RG)[1 + I(RG; Bp) + I(R(pi)G; G)] =

V p(RG)B[1 + I(RG; Bp) + I(R(pi)G; G)], as claimed.

Because of the isomorphism [1+I(RG; Bp)+I(R(pi)G; G)]G/G ∼= [1+I(RG; Bp)+

I(R(pi)G; G)]/Bp
∼= Gp[1+ I(RG; Bp)+ I(R(pi)G; G)]/Gp, the final part holds as in

the above formulated Theorem 4. The proof is finished. �

Theorem 6. Suppose G is an abelian group whose G/Gp is p-divisible and R is a

perfect commutative ring with identity of prime characteristic p. Then BV (RG; Bp)

is a p-basic subgroup of V (RG), and GV (RG; Bp)/G is a p-basic p-subgroup of

V (RG)/G. Moreover, B is a direct factor of BV (RG; Bp).
���������

. We shall show that the three conditions from the definition of a p-basic

subgroup are satisfied (see [6]):

Really, BV (RG; Bp)/B ∼= V (RG; Bp)/Bp is a direct sum of cyclics according to [2].

But B is pure in BV (RG; Bp). In fact, B∩[BV (RG; Bp)]
qn

= B∩[Bqn

V (RG; Bp)] =

Bqn

(B∩V (RG; Bp)) = Bqn

Bp = Bqn

for all primes q 6= p and naturals n. Continuing

in this direction, we compute B ∩ [BV (RG; Bp)]
pn

= B ∩ [Bpn

V (Rpn

Gpn

; Bpn

p )] =

Bpn

(B ∩ V (Rpn

Gpn

; Bpn

p )) = Bpn

Bpn

p = Bpn

. Combining the two equalities, we

conclude that the claim on the purity is valid [6]. Further, referring to ([6], p. 143,

Theorem 28.2 of L.Kulikov) B is a direct factor of BV (RG; Bp) with a direct sum

of p-cyclics complement, hence BV (RG; Bp) is also a direct sum of p-cyclics and

infinite cyclics.

Second, BV (RG; Bp) is p-pure in V (RG) since in accordance with [2], [3], we calcu-

late [BV (RG; Bp)]∩V pn

(RG) = [BV (RG; Bp)]∩V (Rpn

Gpn

) = Bpn

V (Rpn

Gpn

; Bpn

p )

= Bpn

V pn

(RG; Bp) = [BV (RG; Bp)]
pn

.

Third, because of the isomorphism V (RG)/V (RG; Bp) ∼= V (R(G/Bp)) and the

fact that G/Bp is p-divisible [1], we easily derive that V (RG)/BV (RG; Bp) is p-

divisible as an epimorphic image of the p-divisible V (RG)/V (RG; Bp).

Combining these conclusions we obtain the first half.

Further, GV (RG; Bp)/G ∼= V (RG; Bp)/Bp and we may copy our method in [2] to

complete the proof in all generality. �
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The following questions are actual.

�����"!$#%���
. Since when R possesses zero divisors or G is not p-mixed, V (RG)/G

may not be a p-group, then of some interest and importance is the question what is

the mixed p-basic subgroup of V (RG)/G? Moreover, whether the condition G/Gp

to be p-divisible or Rpi

to be without nilradical when i ∈ N can be omitted? We

observe that it is needed (but no directly) only for the divisibility of the quotient

group.

Finally, we note that the basic and p-basic subgroups established by us enlarge the

main result in [17] and also are supplement to those in [1] and [2]. Generalizations

of the last cited papers in another direction are given in [5], too.

In the next section, we shall examine some crucial applications of the above proved

facts concerning the group structure and the invariant properties in RG.

3. Applicable results

Let us start with the computation of the cardinality of the basic subgroups and

with the power estimation of the set of all distinguished basic subgroups in commu-

tative modular group rings. This will be made by the following useful

Proposition 7. Let G be abelian and such that G/Gp is p-divisible and either R

is perfect or there is a natural number i such that Rpi

is perfect with trivial nilradical.

Then the basic subgroup of S(RG) and the p-basic subgroup of V (RG) have power

max(|R|, |G|), and the set of all different basic subgroups of S(RG) and the set of all

different p-basic subgroups of V (RG) have cardinality max(|R|, |G|)max(|R|,|G|). In

particular, no every basic subgroup is of the established above kind.

���������
. Follows directly by Theorems 4, 5 and 6 plus the methodology used by

us in [2]. �

We continue with a study of

Commutative group algebras of starred abelian groups. The definition for

a starred abelian group is given in [10] or [8, p. 446]. This class of groups is large

and contains as subclasses certain types of abelian groups. Here we shall use the

following two simple equivalent conditions.
& ��')(*���+'%�",

(Khabbaz [10]). An infinite abelian p-group A is starred if and only

if one of the following identities holds:

(∗) |A| = |A/Ap|

(∗∗) |A| = |B|, where B is a basic subgroup of A.
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We shall provide the proof of the equivalence. In fact, because A = BAp we

conclude A/Ap ∼= B/Bp (cf. [6]) and thus |A| = |A/Ap| = |B/Bp| = |B|, where the

last equality is valid since B as a direct sum of cyclics is starred. This verifies the

proof.

���������� 
. The class of starred abelian groups is quite general and it contains

for example all reduced direct sums of countable abelian groups. Moreover, it is

evident that nontrivial divisible groups are not starred. A major property argued by

Khabbaz [10] is that any abelian p-group is a direct factor of some starred abelian

p-group.

A key consequence is the following

Corollary 8. Let A = M × C be infinite.

(i) If |A| = |M | > |C| > ℵ0, then A is starred if and only if M is starred.

(ii) If M and C are starred, then A is starred.

(iii) If A is starred, then M or C is starred.

���������
. Indeed, in virtue of the above criterion and of the fact that |A/Ap| =

|M/Mp × C/Cp| = max(|M/Mp|, |C/Cp|) whenever |A/Ap| > ℵ0, we can conclude:

If A is starred, then |A| = |A/Ap| = |M/Mp| = |M |; otherwise |A| = |C/Cp| 6 |C|,

a contradiction. Thus M is starred as well.

Conversely, if M is starred, then |A/Ap| = |M/Mp| = |M | = |A| since |M/Mp| =

|M | > |C| > |C/Cp|. So A is starred.

Let now M and C be both infinite starred. Hence |A/Ap| = max(|M |, |C|) = |A|,

i.e.A is starred. If M is finite, |A/Ap| = |C/Cp| = |C| = |A|.

By hypothesis max(|M |, |C|) = |A| = |A/Ap| = max(|M/Mp|, |C/Cp|). It is

no harm in assuming that |M | > |C|. Therefore if |M/M p| > |C/Cp| we have

|M | = |M/Mp| and we are done. In the remaining case |M | = |C/Cp| > |C| and

thus |C| = |C/Cp|, i.e. in other words C is starred. �

Now we are ready to formulate

Theorem 9. Suppose R is perfect and G/Gp is p-divisible. Then S(RG) and

S(RG)/Gp are starred or divisible groups. In particular so is V (FG)/G provided G

is p-mixed and F is a perfect field of charF = p > 0.

���������
. Employing [2], we obtain that V (RG; Bp) is basic in S(RG) and

GpV (RG; Bp)/Gp is basic in S(RG)/Gp. Moreover, it is clear that |V (RG; Bp)| =

max(|R|, |G|) = |S(RG)| when R or G are infinite and Bp 6= 1 (the other case is

elementary if we observe that S(RG) and S(RG)/Gp are finite whence starred, or
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are divisible since Gp must be divisible, hence the same p-divisibility holds for G-

cf. [6]) whence (∗∗) is applicable. Besides, as we have just seen GpV (RG; Bp)/Gp
∼=

V (RG; Bp)/Bp. That is why, constructing the elements [1 + rg(1 − bp)]Bp and

[1 + rg(1 − gp)]Gp where r ∈ R, g ∈ G, bp ∈ Bp and gp ∈ Gp are special selected,

(we omit the details) we deduce that |V (RG; Bp)/Bp| = max(|R|, |Bp|, |G/Bp|) =

max(|R|, |G|) = (|R|, |Gp|, |G/Gp|) = |S(RG)/Gp|, whence we obtain the equality of

the powers needed for the application of (∗∗).

Now, when G has a p-torsion part it is well-known that ([12], [13] plus [3])

V (FG) = GS(FG) and thus V (FG)/G ∼= S(FG)/Gp. �

As an immediate consequence we obtain

Corollary 10. Let G be p-primary and R perfect. Then V (RG) and V (RG)/G

are starred or divisible groups.

Next we treat the case when R is not obviously perfect.

Proposition 11. Suppose G is a starred abelian p-group. Then V (RG) is starred.

���������
. We shall consider only the infinite case since the other is routine; G

bounded implies V (RG) is bounded whence starred. As |V (RG)| = max(|R|, |G|) >

ℵ0, |V (R(G/Gp))| = max(|R|, |G/Gp|) and V (RG)/V (RG; Gp) ∼= V (R(G/Gp)),

we have |V (RG)/V p(RG)| > |V (RG)/V (RGp)| > |V (RG)/V (RG; Gp)| = |V (R

(G/Gp))| = |V (RG)|. Thus, |V (RG)| = |V (RG)/V p(RG)| and the Khabbaz crite-

rion leads to V (RG) starred, as claimed. �

The next example shows that the converse implication is not always true.

- .$���0/1#%�
. Assume S(RG)/Gp is an infinite direct sum of (reduced) countables

and Gp is not starred; for instance G is a p-group with length(G) = ω1, |G| = ℵ1

and |B| = ℵ0 (see [13]). Then S(RG) can be possibly starred. In fact, if |R| > |G|

then because |S(RG)| = |R| when Gp 6= 1 (otherwise we are done) and S(RG) ∼=

Gp × S(RG)/Gp, we derive |S(RG)| = |S(RG)/Gp| and so we need only to apply

the group-theoretic corollary to get the claim.

In that aspect, the readers can see directly Proposition 7.

Theorem 12. Suppose R is weakly perfect whose maximal perfect subring is

without nilpotents and G/Gp is p-divisible. Then S(RG) and S(RG)/Gp are starred

groups or algebraically compact groups.

���������
. Invoking to Theorem 4 and to arguments similar to the Theorem 9,

we obtain that the basic subgroups of S(RG) and S(RG)/Gp have powers equal to
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max(|R|, |G|) when Bp 6= 1 or in other words, Gp is not divisible. Therefore it is

obvious that S(RG) and S(RG)/Gp are indeed starred groups. Further, if Gp is

divisible, i.e.G is p-divisible (see for example [6]), we easily deduce that both S(RG)

and S(RG)/Gp are weakly divisible, whence algebraically compact (cf. [6]). This

completes the proof. �

Recall that as usual F denotes a field with charF = p > 0.

Proposition 13. Suppose G is an abelian group and FH ∼= FG as F -algebras

for some group H . If Gp is starred, then Hp is starred.

���������
. The case for finite Gp is routine. We will give two different type of

arguments to confirm our claim, namely:

1. Applying the Main Proposition in [3] we derive F (G/Gp
p)

∼= F (H/Hp
p ). On

the other hand using an assertion of Karpilovsky [9] we obtain the equalities

|Gp| = |Hp| and |Gp/Gp
p| = |Hp/Hp

p |. Therefore the above criterion (∗) is

applicable to get the first part.

2. As above we deduce |Gp| = |Hp|. Besides, it follows from an excellent result of

May [11] along with [6] that |Bp| = |B′
p|, where B′

p is a basic subgroup of Hp.

Consequently, applying (∗∗) we obtain the second part. �

Corollary 14. Let G be an abelian group whose Gp is a direct sum of countables.

Then FH ∼= FG as F -algebras for any group H implies that Hp is a direct sum of a

divisible and a starred group.

���������
. Write Gp = (Gp)d × Gp/(Gp)d, where (Gp)d is the maximal divisible

subgroup of Gp. Apparently Gp/(Gp)d is starred. But the Main Proposition in [3]

guarantees that F (H/(Hp)d) ∼= F (G/(Gp)d). Furthermore, by what we have just

proved, (H/(Hp)d)p = Hp/(Hp)d is starred, thus completing the proof. �

���������� 
. The last claim gives a hint that Hp may be a direct sum of countables,

thus confirming in the affirmative a May’s question (see [12], [9], [3]).

We conclude the investigation with one new and interesting group-theoretical fact

which depends on the continuum hypothesis.
2 ��� 3 /54�6$���"���7�

. Suppose A is an abelian p-group of cardinality κ < κℵ0 .

Then A is a starred torsion complete group if and only if it is bounded.
���������

. The sufficiency is apparent. For the necessity, if A is bounded torsion

complete, we are done. Otherwise, it follows from [6, p. 29, Exercise 7] that |A| =

|B|ℵ0 , where B is the basic subgroup of A. On the other hand, by the above stated

Khabbaz criterion, |A| = |B|. Therefore we elementarily derive |A| = |A|ℵ0 , a

contradiction. This completes the proof. �
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���������� 
. The assumption concerning the power can not be omitted (see [6]).

4. Concluding discussion

In [7], P.Hill and W.Ullery have stated that V (FG)/G is almost totally projec-

tive, provided F is a perfect field of charF = p > 0 and G is an abelian p-group.

Here we have established that under these restrictions V (FG)/G is starred. This

is a good supplement to the Hill-Ullery’s result. Probably many other facts of this

type are needed to prove in general that V (FG)/G is totally projective, an old and

very difficult Direct Factor Conjecture (see, for example, [7] and [9]). Referring to

the above mentioned two descriptions for V (FG)/G and to the easy fact that each

factor-group of a primary torsion complete group modulo a balanced subgroup is

torsion complete too, then because of the balancedness of the p-group G in V (FG),

combining it in one of the cases with the last proved Group Theorem, we may suc-

cessfully attack the problem of torsion completeness of V (FG) to confirm once again

the main results in [14] and [4].

8:9  �,1�<;=#%�<>�?��0��,�(A@
. The author is very obliged to the specialist referee for

the helpful comments and suggestions, and also is indebted to the Executive Editor

Mrs. J. Bočková for the valuable editorial work and advise.
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