A NOTE ON THE INDEX OF B-FREDHOLM OPERATORS

M. Berkani, Oujda, D. Medková, Praha

(Received August 25, 2003)

Abstract

From Corollary 3.5 in [Berkani, M; Sarih, M.; Studia Math. 148 (2001), 251257] we know that if S, T are commuting B-Fredholm operators acting on a Banach space X, then $S T$ is a B-Fredholm operator. In this note we show that in general we do not have $\operatorname{ind}(S T)=\operatorname{ind}(S)+\operatorname{ind}(T)$, contrarily to what has been announced in Theorem 3.2 in [Berkani, M; Proc. Amer. Math. Soc. 130 (2002), 1717-1723]. However, if there exist $U, V \in L(X)$ such that S, T, U, V are commuting and $U S+V T=I$, then $\operatorname{ind}(S T)=$ $\operatorname{ind}(S)+\operatorname{ind}(T)$, where ind stands for the index of a B-Fredholm operator.

MSC 2000: 47A53, 47A55

Keywords: B-Fredholm operators, index

1. Index of B-Fredholm operators

B-Fredholm operators were introduced in [1] as a natural generalization of Fredholm operators, and have been extensively studied in [1], [2], [3], [4], [5].

For a bounded linear operator T and a nonnegative integer n define $T_{[n]}$ to be the restriction of T to $R\left(T^{n}\right)$ viewed as a map from $R\left(T^{n}\right)$ into $R\left(T^{n}\right)$ (in particular, $\left.T_{[0]}=T\right)$. If for an integer n the range space $R\left(T^{n}\right)$ is closed and $T_{[n]}$ is a Fredholm operator, then T is called a B-Fredholm operator. The index $\operatorname{ind}(T)$ of a B-Fredholm operator T is defined as the index of the Fredholm operator $T_{[n]}$. Thus $\operatorname{ind}(T)=$ $\alpha\left(T_{[n]}\right)-\beta\left(T_{[n]}\right)$, where $\alpha\left(T_{[n]}\right)$ is the dimension of the kernel $\operatorname{Ker}\left(T_{[n]}\right)$ of $T_{[n]}$, and $\beta\left(T_{[n]}\right)$ is the codimension of the range $R\left(T_{[n]}\right)=R\left(T^{n+1}\right)$ of $T_{[n]}$ into $R\left(T^{n}\right)$. By [1, Proposition 2.1] the definition of the index is independent of the integer n.
In [5] the following problem was formulated: If S, T are commuting B-Fredholm operators, then from [5, Corollary 3.5] we know that $S T$ is a B-Fredholm operator. Is it true that $\operatorname{ind}(S T)=\operatorname{ind}(S)+\operatorname{ind}(T)$? This question was answered affirmatively in [3, Theorem 3.2]. However, the proof of [5, Theorem 3.2] is incorrect, as the following example shows:

Example 1. Let $X=l_{2}$, and let S, T be operators defined on X by:

$$
\begin{aligned}
& S\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)=\left(x_{1}, 0,0,0, \ldots, 0, \ldots\right), \forall x=\left(x_{i}\right)_{i} \in l_{2}, \\
& T\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)=\left(x_{1}, x_{3}, x_{4}, x_{5}, x_{6}, \ldots\right), \forall x=\left(x_{i}\right)_{i} \in l_{2}
\end{aligned}
$$

Then S is a B-Fredholm operator with index $0, T$ is a B-Fredholm operator with index 1 , but $S T=T S=S$ is a B-Fredholm operator with index 0 .

The mistake in the proof of [3, Theorem 3.2] originated in [1, Remark, i)] and was repeated in [3, Remark A, i)] where it is affirmed that if S, T are B-Fredholm operators, $S T=T S$ and $\|T-S\|$ is small, then $\operatorname{ind}(T)=\operatorname{ind}(S)$. But this is not true as shown by the following example:

Example 2. Let $X=l_{2}, c>0$, let S be the operator defined in Example 1 and let T be an operator defined on X by

$$
T\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)=\left(x_{1}, c \cdot x_{3}, c \cdot x_{4}, c \cdot x_{5}, c \cdot x_{6}, \ldots\right), \forall x=\left(x_{i}\right)_{i} \in X
$$

Then S is a B-Fredholm operator with index $0, T$ is a B-Fredholm operator with index $1, T S=S T=S,\|T-S\|=c$. We can choose c arbitrarily small, but the index of S is different from the index of T.
However, by [6, Theorem 4.7], if S, T are B-Fredholm operators, $S T=T S$ and $\|T-S\|$ is small and $S-T$ invertible, then $\operatorname{ind}(T)=\operatorname{ind}(S)$.

Now we give the correct version of [3, Theorem 3.2]
Theorem 1.1. If S, T, U, V are commuting operators such that $U S+V T=$ I and if S, T are B-Fredholm operators, then $S T$ is a B-Fredholm operator and $\operatorname{ind}(S T)=\operatorname{ind}(S)+\operatorname{ind}(T)$.

Proof. Since S and T are commuting B-Fredholm operators, then by [5 , Corollary 3.5], $S T$ is also a B-Fredholm operator. Therefore there exists an integer n such that $R\left(S^{n}\right), R\left(T^{n}\right)$ and $R\left((S T)^{n}\right)$ are closed and the operators $S_{[n]}, T_{[n]}$ and $(S T)_{[n]}$ are Fredholm operators. From [8, Lemma 2.6] we know that $R\left((S T)^{n}\right)=$ $R\left(S^{n}\right) \cap R\left(T^{n}\right)$. Let $\widetilde{T}(\widetilde{S})$ be the restriction of $S\left(T\right.$, respectively) to $R\left((S T)^{n}\right)$. Since $(S T)_{[n]}=\widetilde{S} \widetilde{T}$ is a Fredholm operator, hence \widetilde{S} and \widetilde{T} are Fredholm operators and $\operatorname{ind}(S T)=\operatorname{ind}\left((S T)_{[n]}\right)=\operatorname{ind}(\widetilde{S} \widetilde{T})=\operatorname{ind}(\widetilde{S})+\operatorname{ind}(\widetilde{T})$, where the last equality is a consequence of the properties of Fredholm operators. Let us show that $\operatorname{ind}(S)=$ $\operatorname{ind}(\widetilde{S})$. First we have $\operatorname{Ker}(\widetilde{S})=\operatorname{Ker}(S) \cap R\left((S T)^{n}\right)=\operatorname{Ker}(S) \cap R\left(T^{n}\right) \cap R\left(S^{n}\right)$. Since $U S+V T=I$, we have from [8, Lemma 2.6] that $\operatorname{Ker}(S) \subset R\left(T^{n}\right)$. Hence $\operatorname{Ker}(\widetilde{S})=\operatorname{Ker}(S) \cap R\left(S^{n}\right)$. So $\alpha(\widetilde{S})=\alpha\left(S_{[n]}\right)$.

Similarly we have $R(\widetilde{S})=R\left(S^{n+1} T^{n}\right)$. Moreover, as can be seen easily, T^{n} define a natural isomorphism from $R\left(S^{n}\right) / R\left(S^{n+1}\right)$ onto $R\left(S^{n} T^{n}\right) / R\left(S^{n+1} T^{n}\right)$. Therefore we have $\beta(\widetilde{S})=\beta\left(S_{[n]}\right)$. Consequently, we have $\operatorname{ind}(\widetilde{S})=\operatorname{ind}(\widetilde{S})$. By the same $\operatorname{argument}$ we have $\operatorname{ind}(\widetilde{T})=\operatorname{ind}(T)$. Since $\operatorname{ind}(S T)=\operatorname{ind}(\widetilde{S})+\operatorname{ind}(\widetilde{T})$, it follows that $\operatorname{ind}(S T)=\operatorname{ind}(S)+\operatorname{ind}(T)$.

Proposition 1.2. If T is a B-Fredholm operator and if n is a strictly positive integer, then T^{n} is a B-Fredholm operator and $\operatorname{ind}\left(T^{n}\right)=n \cdot \operatorname{ind}(T)$.

Proof. From [5, Corollary 3.5] it follows that T^{n} is a B-Fredholm operator. Let m be a positive integer such that $R\left(T^{m}\right)$ is closed and $T_{[m]}$ is a Fredholm operator. Then by [1, Proposition 2.1], $R\left(T^{n m}\right)$ is closed, $T_{[n m]}$ is a Fredholm operator, and $\operatorname{ind}(T)=\operatorname{ind}\left(T_{[m]}\right)=\operatorname{ind}\left(T_{[n m]}\right)$. We have $R\left(\left(T^{n}\right)^{m}\right)=R\left(T^{n m}\right)$ and $\left(T^{n}\right)_{[m]}=\left(T_{[n m]}\right)^{n}$. As $\left(T^{n}\right)_{[m]}$ and $T_{[n m]}$ are Fredholm operators, it follows $\operatorname{ind}\left(T^{n}\right)=\operatorname{ind}\left(\left(T^{n}\right)_{[m]}\right)=\operatorname{ind}\left(\left(T_{[n m]}\right)^{n}\right)=n \cdot \operatorname{ind}\left(\left(T_{[n m]}\right)\right)=n \cdot \operatorname{ind}(T)$. So $\operatorname{ind}\left(T^{n}\right)=n \cdot \operatorname{ind}(T)$.

Corollary 1.3. Let $P(X)=\left(X-\lambda_{1} I\right)^{m_{1}} \ldots\left(X-\lambda_{n} I\right)^{m_{n}}$ be a polynomial with complex coefficients. Assume that for each $i, 1 \leqslant i \leqslant n, T-\lambda_{i} I$ is a B-Fredholm operator. Then $P(T)=\left(T-\lambda_{1} I\right)^{m_{1}} \ldots\left(T-\lambda_{n} I\right)^{m_{n}}$ is a B-Fredholm operator and $\operatorname{ind}(P(T))=\sum_{i=1}^{n} m_{i} \cdot \operatorname{ind}\left(T-\lambda_{i} I\right)$.

Proof. From [5, Corollary 3.5] we know that $P(T)$ is a B-Fredholm operator. Let $P_{1}(X)=\left(X-\lambda_{1} I\right)^{m_{1}}$ and $P_{2}(X)=\left(X-\lambda_{2} I\right)^{m_{2}} \ldots\left(X-\lambda_{n} I\right)^{m_{n}}$. It is clear that $P_{1}(X)$ and $P_{2}(X)$ are prime to each other. Therefore there exist two polynomials $U(X), V(X)$ such that $U(X) P_{1}(X)+V(X) P_{2}(X)=1$. Then we have $P(T)=$ $P_{1}(T) P_{2}(T)$ and $U(T) P_{1}(T)+V(T) P_{2}(T)=I$. Theorem 1.1 and Proposition 1.2 show that $\operatorname{ind}(P(T))=m_{1} \cdot \operatorname{ind}\left(T-\lambda_{1} I\right)+\operatorname{ind}\left(P_{2}(T)\right)$. By induction it follows that $\operatorname{ind}(P(T))=\sum_{i=1}^{n} m_{i} \cdot \operatorname{ind}\left(T-\lambda_{i} I\right)$.

Theorem 1.4. Let X be a Hilbert space, T a bounded linear B-Fredholm operator on X. Then the following assertions are equivalent:

1. T is Fredholm.
2. $\operatorname{ind}(T S)=\operatorname{ind}(S)+\operatorname{ind}(T)$ for each Fredholm operator S on X.

Proof. $1 \Rightarrow 2$ by [7, Theorem 23.1].
Now we will prove $2 \Rightarrow 1$. Suppose that T is not Fredholm. According to [1, Theorem 2.1] the space X is a direct sum of T-invariant closed subspaces Y, Z such that T / Y is Fredholm and T / Z is nilpotent. Evidently $\operatorname{ind}(T)=\operatorname{ind}(T / Y)$. (Fix a positive integer n such that $T^{n}=0$ on Z. Then $T^{n}(X)=T^{n}(Y)$ is a subset of Y. Since T / Y is Fredholm, the operator T^{n} / Y is Fredholm too by [7, Satz 23.2]. Therefore the codimension of $T^{n}(X)=T^{n}(Y)$ in Y is finite. Since T / Y is Fredholm and the codimension of $T^{n}(X)$ in Y is finite, the operator $T / T^{n}(X)$ is Fredholm and $\operatorname{ind}\left(T / T^{n}(X)\right)=\operatorname{ind}(T / Y)$ by [9, Proposition 3.7.1]. Hence $\operatorname{ind}(T)=$ $\operatorname{ind}\left(T / T^{n}(X)\right)=\operatorname{ind}(T / Y)$.) Since T is not Fredholm the dimension of Z must be infinite. (In the oposite case the operator T should be Fredholm, because T / Y is Fredholm and the codimension of Y is finite (see [9, Proposition 3.7.1])). Since
$T^{n}=0$ on Z and the dimension of Z is infinite, the dimension of $Z \cap \operatorname{Ker} T$ is infinite, too. On the Banach space $Z \cap \operatorname{Ker} T$ there is a Fredholm operator A with index 1. (Since the dimension of $Z \cap \operatorname{Ker} T$ is infinite there is an orthonormal sequence $\left\{x_{k}\right\}$ in $Z \cap \operatorname{Ker} T$. Denote by C the closure of the linear span of $\left\{x_{k}\right\}$ and by D the orthogonal complement of C in $Z \cap \operatorname{Ker} T$. If x is an element of $Z \cap \operatorname{Ker} T$ then there is $y \in D$ and a sequence $\left\{c_{k}\right\} \in l_{2}$ such that $x=y+\sum_{k} c_{k} x_{k}$. Define $A x=y+\sum_{k} c_{k+1} x_{k}$. Then A is a Fredholm operator on $Z \cap \operatorname{Ker} T$ with index 1.) Denote by W the orthogonal complement of $Z \cap \operatorname{Ker} T$ in Z. Since X is the direct sum of Y and Z, the space X is the direct sum of $Y+W$ and $Z \cap \operatorname{Ker} T$. Denote by P the projection of X to $Z \cap \operatorname{Ker} T$ along $Y+W$. Denote $S x=A P x+(I-P) x$. Then $S(Z \cap \operatorname{Ker} T) \subset A(Z \cap \operatorname{Ker} T) \subset Z \cap \operatorname{Ker} T, S=A$ on $Z \cap \operatorname{Ker} T$ and $S=I$ on $Y+W$. Hence S is a Fredholm operator of index 1. If $x \in Y+W$ then $T S x=T I x=T x$. If $x \in Z \cap \operatorname{Ker} T$ then $T S x=T A x=0=T x$, because $A x \in Z \cap \operatorname{Ker} T$. We thus get $T S=T$ and $\operatorname{ind}(T S)=\operatorname{ind}(T)$ but $\operatorname{ind}(T)+\operatorname{ind}(S)=\operatorname{ind}(T)+1$.

References

[1] Berkani, M.: On a class of quasi-Fredholm operators. Integral Equations Oper. Theory 34 (1999), 244-249.
[2] Berkani, M.: Restriction of an operator to the range of its powers. Stud. Math. 140 (2000), 163-175.
[3] Berkani, M.: Index of B-Fredholm operators and generalization of a Weyl Theorem. Proc. Amer. Math. Soc. 130 (2002), 1717-1723.
[4] Berkani, M.; Sarih, M.: On semi B-Fredholm operators. Glasg. Math. J. 43 (2001), 457-465.
[5] Berkani, M. ; Sarih, M.: An Atkinson-type theorem for B-Fredholm operators. Stud. Math. 148 (2001), 251-257.
[6] Grabiner, S.: Uniform ascent and descent of bounded operators. J. Math. Soc. Japan 34 (1982), 317-337.
[7] Heuser, H.: Funktionalanalysis. Teubner, Stuttgart, 1975.
[8] Kordula, V.; Müller, V.: On the axiomatic theory of the spectrum. Stud. Math. 119 (1996), 109-128.
[9] Laursen, K. B.; Neumann, M. M.: An Introduction to Local Spectral Theory. Clarendon Press, Oxford, 2000.
[10] Mbekhta, M.; Müller, V.: On the axiomatic theory of the spectrum, II. Stud. Math. 119 (1996), 129-147.

Authors' addresses: M.Berkani, Groupe d'Analyse et Théorie des Opérateurs (G.A.T.O), Université Mohammed I, Faculté des Sciences, Département de Mathématiques, Oujda, Maroc, e-mail: berkani@sciences.univ-oujda.ac.ma; D. Medková, Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, 11567 Praha 1; Faculty of Mechanical Engineering, Department of Technical Mathematics, Karlovo nám. 13, Praha 2, Czech Republic, e-mail: medkova@math.cas.cz.

