ON PERFECT AND UNIQUE MAXIMUM INDEPENDENT SETS IN GRAPHS

Lutz Volkmann, Aachen

(Received September 24, 2003)

Abstract. A perfect independent set I of a graph G is defined to be an independent set with the property that any vertex not in I has at least two neighbors in I. For a nonnegative integer k, a subset I of the vertex set $V(G)$ of a graph G is said to be k-independent, if I is independent and every independent subset I^{\prime} of G with $\left|I^{\prime}\right| \geqslant|I|-(k-1)$ is a subset of I. A set I of vertices of G is a super k-independent set of G if I is k-independent in the graph $G[I, V(G)-I]$, where $G[I, V(G)-I]$ is the bipartite graph obtained from G by deleting all edges which are not incident with vertices of I. It is easy to see that a set I is 0 -independent if and only if it is a maximum independent set and 1 -independent if and only if it is a unique maximum independent set of G.

In this paper we mainly investigate connections between perfect independent sets and k-independent as well as super k-independent sets for $k=0$ and $k=1$.

Keywords: independent sets, perfect independent sets, unique independent sets, strong unique independent sets, super unique independent sets

MSC 2000: 05C70

1. Terminology and introduction

We will assume that the reader is familiar with standard terminology on graphs (see, e.g., Chartrand and Lesniak [2] or Lovász and Plummer [11]). In this paper, all graphs are finite, undirected, and simple. The vertex set and edge set of a graph G are denoted by $V(G)$ and $E(G)$, respectively. The neighborhood $N_{G}(x)$ of a vertex x is the set of vertices adjacent to x, and the number $d_{G}(x)=\left|N_{G}(x)\right|$ is the degree of x. If $S \subseteq V(G)$, then we define the neighborhood of S by $N_{G}(S)=\bigcup_{x \in S} N_{G}(x)$. If S and T are two disjoint subsets of $V(G)$, then let $G[S, T]$ be the bipartite graph consisting of the partite sets S and T and all edges of G with one end in S and the other one in T, and we define $e_{G}(S, T)=|E(G[S, T])|$. A graph without any cycle is called a forest.

A set I of vertices is independent if no two vertices of I are adjacent. The independence number $\alpha(G)$ of a graph G is the maximum cardinality among the independent sets of vertices of G. Croitoru and Suditu [3] call an independent set I of a graph G a perfect independent set if any vertex not in I has at least two neighbors in I.

For a nonnegative integer k, by Siemes, Topp, Volkmann [12], an independent set I of the vertex set $V(G)$ of a graph G is said to be k-independent, if every independent subset I^{\prime} of G with $\left|I^{\prime}\right| \geqslant|I|-(k-1)$ is a subset of I. Furthermore, a set I of vertices of G is super k-independent if I is k-independent in the bipartite graph $G[I, V(G)-I]$. Obviously, a set I is 0 -independent if and only if it is maximum independent and 1-independent if and only if it is a unique maximum independent set of G. In this paper we mainly deal with super k-independent sets for $k=0,1$. We call a super 0-independent and super 1-independent set also a super independent and super unique independent set, respectively.

If a bipartite graph G has partite sets A and B such that B is a unique maximum independent set of G, then Hopkins and Staton [5] speak of a strong unique independence graph. If a bipartite graph G has partite sets A and B such that B is a maximum independent set of G, then G will be called a strong maximum independence graph.

A vertex cover in G is a set of vertices that are incident with all edges of G. The minimum cardinality of a vertex cover in a graph G is called the covering number and is denoted by $\tau(G)$. A set of edges in a graph is called a matching if no two edges are incident. The size of any largest matching in G is called the matching number of G and is denoted by $\nu(G)$. It is easy to see and well-known that $\nu(G) \leqslant \tau(G)$ and $\alpha(G)+\tau(G)=|V(G)|$ for any graph G.
A block of a graph is a maximal connected subgraph having no cut-vertex. A block-cactus graph is a graph whose blocks are either complete graphs or cycles.

In this paper we investigate connections between perfect independent sets and k independent as well as super k-independent sets for $k=0$ and $k=1$. In addition, we present various families of graphs with a strong unique (or maximum) independence spanning forest.

2. Preliminary Results

In [1], p. 272, Berge proved that an independent set I in a graph G is 0 -independent if and only if $\left|N_{G}(J) \cap I\right| \geqslant|J|$ for every independent subset J of $V(G)-I$. In [12], the authors presented the following extensions of Berge's result.

Theorem 2.1 (Siemes, Topp, Volkmann [12] 1994). For a nonnegative integer k, an independent set I of vertices of a graph G is a k-independent set in G if and only
if

$$
\left|N_{G}(J) \cap I\right| \geqslant|J|+k
$$

for every independent subset J of $V(G)-I$ with $J \neq \emptyset$ when $k \geqslant 1$.
Corollary 2.2. For a nonnegative integer k, an independent set I of vertices of a graph G is a super k-independent set in G if and only if

$$
\left|N_{G}(J) \cap I\right| \geqslant|J|+k
$$

for every subset J of $V(G)-I$ with $J \neq \emptyset$ when $k \geqslant 1$.
Proof. In view of the definition, I is a super k-independent set in G if and only if I is k-independent in the bipartite graph $G^{*}=G[I, V(G)-I]$. According to Theorem 2.1, this is equivalent to

$$
\left|N_{G^{*}}(J) \cap I\right| \geqslant|J|+k
$$

for every independent subset J of $V\left(G^{*}\right)-I$ with $J \neq \emptyset$ when $k \geqslant 1$. However, this is equivalent to

$$
\left|N_{G}(J) \cap I\right| \geqslant|J|+k
$$

for every subset J of $V(G)-I$ with $J \neq \emptyset$ when $k \geqslant 1$, and the proof is complete.
Theorem 2.1 as well as Corollary 2.2 play an important role in our investigations.
Observation 2.3. If G is a claw-free graph, then every perfect independent set is also a maximum independent set.

Proof. If $I \subseteq V(G)$ is a perfect independent set and $J \subseteq V(G)-I$ an independent set, then $e_{G}(J, I) \geqslant 2|J|$. Since G is claw-free, we observe that

$$
2|J| \leqslant e_{G}(J, I)=e_{G}\left(J, I \cap N_{G}(J)\right) \leqslant 2\left|I \cap N_{G}(J)\right|
$$

and hence $|J| \leqslant\left|I \cap N_{G}(J)\right|$. Theorem 2.1 with $k=0$ yields the desired result.

Theorem 2.4 (Listing [9] 1862, König [8] 1936). A graph G is a forest if and only if $|E(G)|-|V(G)|+\sigma(G)=0$, where $\sigma(G)$ denotes the number of components of G.

Theorem 2.5 (König [6] 1916). A graph is bipartite if and only if it contains no cycle of odd length.

3. Perfect and super unique independent sets

Clearly, a super unique independent set is a unique maximum independent set, and a unique maximum independent set is a perfect independent set. In this section we will present some classes of graphs with the property that each perfect independent set is also a super unique independent set.

Proposition 3.1. Let G be a graph with a perfect independent set I. If I is not a super unique independent set, then the bipartite graph $G[I, V(G)-I]$ contains a cycle.

Proof. Since I is not a super unique independent set, there exists, in view of Corollary 2.2 with $k=1$, a set $\emptyset \neq J \subseteq V(G)-I$ such that $\left|N_{G}(J) \cap I\right| \leqslant|J|$. Let $H=G\left[N_{G}(J) \cap I, J\right]$ be the induced bipartite subgraph of $G[I, V(G)-I]$. Since I is a perfect independent set, it follows that $|E(H)| \geqslant 2|J|$, and this leads to

$$
|V(H)|=\left|N_{G}(J) \cap I\right|+|J| \leqslant 2|J| \leqslant|E(H)| .
$$

Therefore, Theorem 2.4 implies that the graph H and hence also the bipartite graph $G[I, V(G)-I]$ contains a cycle.

Proposition 3.1 and Theorem 2.5 immediately yield the following corollary.

Corollary 3.2. Let G be a graph without any even cycle, and let I be an independent set. Then I is a perfect independent set if and only if I is a super unique independent set.

Theorem 3.3. If G is a graph, then every even cycle of G induces a complete subgraph of G if and only if the bipartite graph $G[I, V(G)-I]$ is a forest for each independent set $I \subseteq V(G)$.

Proof. Assume that every even cycle of G induces a complete graph. Suppose that there exists an independent set $I \subseteq V(G)$ such that $G[I, V(G)-I]$ contains a cycle C. This implies $|I \cap V(C)| \geqslant 2$. Since C induces a complete graph, we arrive at the contradiction that I is an independent set.

Conversely, let $G[I, V(G)-I]$ be a forest for each independent set $I \subseteq V(G)$. Let $C=v_{1} v_{2} \ldots v_{p} v_{1}$ be an even cycle of length $p \geqslant 4$. We will prove by induction on p that C induces a complete subgraph. Let $A=\left\{v_{1}, v_{3}, \ldots, v_{p-1}\right\}$ and $B=$
$\left\{v_{2}, v_{4}, \ldots, v_{p}\right\}$. Neither $G[A, V(G)-A]$ nor $G[B, V(G)-B]$ is a forest and thus, neither A nor B is an independent set in G. Hence, there exist odd integers $1 \leqslant i<$ $j \leqslant p-1$ and even integers $2 \leqslant k<l \leqslant p$ such that v_{i} and v_{j} as well as v_{k} and v_{l} are adjacent. In the case that $p=4$, it follows that C induces a complete graph. Let now $p \geqslant 6$ and assume, without loss of generality, that $i<k$. Then there are the two possibilities, namely $1 \leqslant i<k<l<j \leqslant p-1$ or $1 \leqslant i<k<j<l \leqslant p$. In both cases we will show that C has a chord $u w$ with $u \in A$ and $w \in B$.

If $1 \leqslant i<k<l<j \leqslant p-1$, then

$$
C_{0}=v_{i} v_{i+1} \ldots v_{k} v_{l} v_{l+1} \ldots v_{j} v_{i}
$$

is an even cycle with $\left|V\left(C_{0}\right)\right|<|V(C)|$. Therefore, by the induction hypothesis, C_{0} induces a complete graph. In particular, $v_{i} v_{l}$ is a chord of C.

If $1 \leqslant i<k<j<l \leqslant p$, then

$$
\begin{aligned}
C_{1} & =v_{i} v_{i+1} \ldots v_{k} v_{l} v_{l-1} \ldots v_{j+1} v_{j} v_{i} \\
C_{2} & =v_{i} v_{j} v_{j-1} \ldots v_{k+1} v_{k} v_{l} v_{l+1} \ldots v_{i}
\end{aligned}
$$

are even cycles such that $\left|V\left(C_{1}\right)\right|+\left|V\left(C_{2}\right)\right|=|V(C)|+4$ and hence $\left|V\left(C_{1}\right)\right|=$ $\left|V\left(C_{2}\right)\right|=|V(C)|$ if and only if $|V(C)|=4$. Since $|V(C)| \geqslant 6$, we conclude that $\left|V\left(C_{1}\right)\right|<|V(C)|$ or $\left|V\left(C_{2}\right)\right|<|V(C)|$. According to the induction hypothesis, the cycle C_{1} or C_{2} induces a complete graph. In particular, $v_{i} v_{k}, v_{k} v_{j}, v_{j} v_{l}, v_{l} v_{i} \in E(G)$. Since $|V(C)| \geqslant 6$, at least one of these four edges is a chord of C.

If C has a chord $u w$ with $u \in A$ and $w \in B$, then we will finally show that C induces a complete graph. Let, without loss of generality, $u=v_{1}$ and $w=v_{q}$ with an even integer $4 \leqslant q \leqslant p-2$. The cycles

$$
C_{3}=v_{1} v_{2} \ldots v_{q-1} v_{q} v_{1}, \quad C_{4}=v_{1} v_{q} v_{q+1} \ldots v_{p-1} v_{p} v_{1}
$$

are even and such that $\left|V\left(C_{3}\right)\right|,\left|V\left(C_{4}\right)\right|<|V(C)|$. By the induction hypothesis, the cycles C_{3} and C_{4} induce complete graphs. Now let x and y be two arbitrary vertices in $V(C)$. If $x, y \in V\left(C_{3}\right)$ or $x, y \in V\left(C_{4}\right)$, then they are adjacent. If not, then $v_{1} x v_{q} y v_{1}$ is a cycle of length four, and by the induction hypothesis, the vertices x and y are adjacent. Consequently, C induces a complete subgraph, and the proof is complete.

Proposition 3.1 and Theorem 3.3 immediately lead to the following results.

Corollary 3.4. Let G be a graph with the property that every even cycle induces a complete subgraph, and let I be an independent set. Then I is a perfect independent set if and only if I is a super unique independent set.

Corollary 3.5. Let G be a block-cactus graph such that every even block is a complete subgraph, and let I be an independent set. Then I is a perfect independent set if and only if I is a super unique independent set.

Theorem 3.6. Let G be a bipartite graph, and let $I \subseteq V(G)$ be an independent set. Then I is a unique maximum independent set if and only if I is a super unique independent set.

Proof. Let I be a unique maximum independent set. Theorem 2.1 implies that $\left|N_{G}(J) \cap I\right|>|J|$ for all independent sets $\emptyset \neq J \subseteq V(G)-I$. Let A and B be the partite sets of G and let $L \neq \emptyset$ be an arbitrary subset of $V(G)-I$. It follows that $L \cap A$ and $L \cap B$ are independent sets such that, without loss of generality, $L \cap A \neq \emptyset$. We deduce from Theorem 2.1 that

$$
\left|N_{G}(L \cap A) \cap I\right|>|L \cap A|, \quad\left|N_{G}(L \cap B) \cap I\right| \geqslant|L \cap B|
$$

Therefore, we obtain

$$
\left|N_{G}(L) \cap I\right|=\left|N_{G}(L \cap A) \cap I\right|+\left|N_{G}(L \cap B) \cap I\right|>|L \cap A|+|L \cap B|=|L| .
$$

Thus, with respect to Corollary 2.2, I is a super unique independent set, and the proof is complete.

4. Perfect and unique independent sets

Proposition 4.1. Let G be a graph with a perfect independent set I. If I is not a unique maximum independent set, then there exists an induced bipartite subgraph of G which is not a forest.

Proof. Since I is not a unique maximum independent set, there exists, in view of Theorem 2.1 with $k=1$, an independent set $\emptyset \neq J \subseteq V(G)-I$ such that $\left|N_{G}(J) \cap I\right| \leqslant|J|$. If we define the induced bipartite graph $H=G\left[N_{G}(J) \cap I, J\right]$, then, since I is a perfect independent set, it follows that $|E(H)| \geqslant 2|J|$. This yields

$$
|V(H)|=\left|N_{G}(J) \cap I\right|+|J| \leqslant 2|J| \leqslant|E(H)| .
$$

Therefore, Theorem 2.4 implies that the induced bipartite subgraph H is not a forest.

Observation 4.2. If G is a graph, then every even cycle of G contains a chord if and only if every induced bipartite subgraph of G is a forest.

Proof. Assume that every even cycle contains a chord. Suppose that there exists an induced bipartite subgraph H with a cycle. Let C be a shortest cycle in H. Since C has a chord in G, this chord also belongs to H, a contradiction to the minimum length of C.

Conversely, assume that every induced bipartite subgraph of G is a forest. Let C be an even cycle in G. Suppose that C has no chord. Then C is an induced bipartite subgraph of G but no forest. This contradiction completes the proof.

Proposition 4.1 and Observation 4.1 immediately lead to the next result.
Corollary 4.3. Let G be a graph with the property that every even cycle contains a chord, and let I be an independent set. Then I is a perfect independent set if and only if I is a unique maximum independent set.

5. Strong (unique) maximum independence spanning forests

In view of Theorem 2.1, we establish easily the following facts.
Corollary 5.1. Let G be a bipartite graph.
The graph G is a strong maximum independence graph if and only if there exist partite sets A and B such that $\left|N_{G}(S)\right| \geqslant|S|$ for all $S \subseteq A$.

The graph G is a strong unique independence graph if and only if there exist partite sets A and B such that $\left|N_{G}(S)\right|>|S|$ for all $\emptyset \neq S \subseteq A$.

Theorem 5.2 (König [7] 1931). If G is a bipartite graph, then

$$
\tau(G)=\nu(G) .
$$

Theorem 5.3 (König-Hall, König [7] 1931, Hall [4] 1935). Let G be a bipartite graph with partite sets A and B. Then G contains a matching M with the property that every vertex in A is incident with an edge in M if and only if $\left|N_{G}(S)\right| \geqslant|S|$ for all $S \subseteq A$.

Theorem 5.4 (Lovász [10] 1970). Let G be a bipartite graph with partite sets A and B. Then G contains a spanning forest F such that $d_{F}(v)=2$ for all $v \in A$ if and only if $\left|N_{G}(S)\right|>|S|$ for all $\emptyset \neq S \subseteq A$.

A proof of Theorem 5.4 can also be find in [11] on p. 20. Corollary 5.1 shows that Theorem 5.3 and Theorem 5.4 characterize the strong maximum and the strong unique independence graphs, respectively.

Theorem 5.5. If G is a graph, then the following statements are equivalent.
(a) $\nu(G)=\tau(G)$.
(b) There exists a super independent set in G.
(c) Every maximum independent set in G is a super independent set.

Proof. (a) $\Rightarrow(\mathrm{c})$: Let I be a maximum independent set, and let M be a maximum matching in G. This leads to

$$
|V(G)-I|=\tau(G)=\nu(G)=|M|
$$

This implies that M is a matching in the bipartite graph $G[I, V(G)-I]$ with the property that every vertex in $V(G)-I$ is incident with an edge in M. It follows that $\left|N_{G}(S) \cap I\right| \geqslant|S|$ for all $S \subseteq V(G)-I$. Hence, by Corollary 2.2, I is a super independent set in G.
$(\mathrm{b}) \Rightarrow(\mathrm{a})$: Let I be a super independent set in G. As a consequence of Corollary 2.2 we obtain $\left|N_{G}(S) \cap I\right| \geqslant|S|$ for all $S \subseteq V(G)-I$. Hence, by Theorem 5.3, there exists a matching M in the bipartite graph $G[I, V(G)-I]$ with the property that every vertex in $V(G)-I$ is incident with an edge in M. It follows that $\tau(G)=$ $|V(G)-I|=|M| \leqslant \nu(G)$. Because of $\nu(G) \leqslant \tau(G)$, we deduce that $\nu(G)=\tau(G)$.

Since $(\mathrm{c}) \Rightarrow(\mathrm{b})$ is immediate, the proof is complete.
For reason of completeness, we will give a short proof of the next theorem by Hopkins and Staton [5].

Theorem 5.6 (Hopkins, Staton [5] 1985). Let G be a connected bipartite graph. The graph G is a strong unique independence graph if and only if G has a strong unique independence spanning tree T. In addition, the unique maximum independent sets of G and T coincide.

Proof. Assume that G is a strong unique independence graph. Let A and B be the partite sets such that B is a unique maximum independent set of G. Combining Corollary 5.1 and Theorem 5.4, we find that G contains a spanning forest F such that $d_{F}(v)=2$ for all $v \in A$. We now extend F to a spanning tree T of G by adding as many edges as necessary. This yields $d_{T}(v) \geqslant 2$ for all $v \in A$. Hence, B is a perfect independent set in T, and Corollary 3.2 implies that B is a unique independent set in T.

Conversely, assume that G has a strong unique independence spanning tree T with the partite sets A and B such that B is the unique maximum independent set of T. It follows easily from Theorem 2.5 that A and B are also independent sets in G. Obviously, B is also a unique maximum independent set in G.

Using Theorem 5.3 instead of Theorem 5.4, one can prove the next result similar to Theorem 5.6. Its proof is therefore omitted.

Theorem 5.7 (Volkmann [13] 1988). Let G be a connected bipartite graph. The graph G is a strong maximum independence graph if and only if G has a strong maximum independence spanning tree T. In addition, the maximum independent sets of G and T coincide.

Theorem 5.8. If G is a graph, then the following statements are valid.
(a) If G has a super unique independent set, then G has a strong unique independence spanning forest T with $\alpha(T)=\alpha(G)$.
(b) If G is a bipartite graph with a unique maximum independent set, then G has a strong unique independence spanning forest T with $\alpha(T)=\alpha(G)$.
(c) If $\nu(G)=\tau(G)$, then G has a strong maximum independence spanning forest T with $\alpha(T)=\alpha(G)$.
(d) If G is a bipartite graph, then G has a strong maximum independence spanning forest T with $\alpha(T)=\alpha(G)$.

Proof. (a) Let I be a super unique independent set in G. This means that I is a unique maximum independent set in the bipartite graph $H=G[I, V(G)-I]$, and thus H is a strong unique independence graph. If $H_{1}, H_{2}, \ldots, H_{p}$ are the components of H, then $I \cap V\left(H_{i}\right)$ are strong unique independent sets in H_{i} for $i=1,2, \ldots, p$. In view of Theorem 5.6, each component H_{i} has a strong maximum independence spanning tree T_{i} with a unique maximum independent set $I \cap V\left(H_{i}\right)$ for $i=1,2, \ldots, p$. Obviously, $T=\bigcup_{i=1}^{p} T_{i}$ is a strong maximum independence spanning forest of G with $\alpha(T)=\alpha(G)=|I|$.
(b) Let I be a unique maximum independent set in the bipartite graph G. According to Theorem 3.6, I is a super unique independent set in G and (a) yields the desired result.
(c) Let $\nu(G)=\tau(G)$. In view of Theorem $5.5, G$ has a super independent set. Using Theorem 5.7 instead of Theorem 5.6, the proof is analogous to the proof of (a) and is therefore omitted.
(d) If G is bipartite, then Theorem 5.2 yields $\nu(G)=\tau(G)$. Now (c) leads to the desired result.

Theorem 5.9. Let G be a block-cactus graph such that every even block is a complete subgraph. If $I \subseteq V(G)$ is a perfect independent set, then $F=G[I, V(G)-I]$ is a strong unique independence spanning forest of G.

Proof. In view of Theorem 3.3, F is a spanning forest of G. According to Corollary 3.5, I is a super unique independent set in G. Altogether, we see that F is a strong unique independence spanning forest of G with the unique maximum independent set I.

Theorem 5.8 (b) and Theorem 5.9 are generalizations of the following result by Hopkins and Staton [5].

Corollary 5.10 (Hopkins, Staton [5] 1985). A tree T has a unique maximum independent set I if and only if T has a spanning forest F such that each component of F is a strong unique independence tree and each edge in $T-E(F)$ joins two vertices not in I.

References

[1] C. Berge: Graphs. Second revised edition, North-Holland, 1985.
[2] G. Chartrand, L.Lesniak: Graphs and Digraphs. Third edition, Chapman and Hall, London, 1996.
[3] C. Croitoru, E. Suditu: Perfect stables in graphs. Inf. Process. Lett. 17 (1983), 53-56.
[4] P. Hall: On representatives of subsets. J. London Math. Soc. 10 (1935), 26-30.
[5] G. Hopkins, W. Staton: Graphs with unique maximum independent sets. Discrete Math. 57 (1985), 245-251.
[6] D. König: Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre. Math. Ann. 77 (1916), 453-465.
[7] D. König: Graphs and matrices. Math. Fiz. Lapok 38 (1931), 116-119. (In Hungarian.)
[8] D. König: Theorie der endlichen und unendlichen Graphen. Akademische Verlagsgesellschaft, Leipzig, 1936; reprinted: Teubner-Archiv zur Mathematik, Band 6, Leipzig, 1986.
[9] J. B. Listing: Der Census räumlicher Complexe oder Verallgemeinerungen des Eulerschen Satzes von den Polyedern. Göttinger Abhandlungen 10 (1862).
[10] L. Lovász: A generalization of König's theorem. Acta Math. Acad. Sci. Hung. 21 (1970), 443-446.
[11] L. Lovász, M. D. Plummer: Matching Theory. Ann. Discrete Math. 29, North-Holland, 1986.
[12] W. Siemes, J. Topp, L. Volkmann: On unique independent sets in graphs. Discrete Math. 131 (1994), 279-285.
[13] L. Volkmann: Minimale und unabhängige minimale Überdeckungen. An. Univ. Bucur. Mat. 37 (1988), 85-90.

Author's address: Lutz Volkmann, Lehrstuhl II für Mathematik, RWTH Aachen, 52056 Aachen, Germany, e-mail: volkm@math2.rwth-aachen.de.

