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Abstract. Dually residuated lattice ordered monoids (DR`-monoids) are common gener-
alizations of, e.g., lattice ordered groups, Brouwerian algebras and algebras of logics behind
fuzzy reasonings (MV -algebras, BL-algebras) and their non-commutative variants (GMV -
algebras, pseudo BL-algebras). In the paper, lex-extensions and lex-ideals of DR`-monoids
(which need not be commutative or bounded) satisfying a certain natural condition are
studied.
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1. Introduction

Recently, the study of algebras which are in connection with logics behind fuzzy

reasoning has been intensively developed. Let us recall that e.g.MV -algebras [2]

are an algebraic counterpart of the  Lukasiewicz infinite valued logic and that BL-

algebras are in the same connection with the Hájek basic fuzzy logic [7]. GMV -

algebras [17] (equivalently: pseudo MV -algebras [6]) and pseudo BL-algebras [4],

respectively, are non-commutative generalizations of the above algebras, and hence

one can view them as algebraic semantics of non-commutative reasoning allowing

two negations and two implications. At the same time, all the above mentioned

algebras are polynomially equivalent to special subclasses of the general class of all

dually residuated lattice ordered monoids (briefly: DR`-monoids) [14], [15], [16], [10],
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which, moreover, contains the classes of lattice ordered groups (briefly: `-groups),

positive cones of `-groups and Brouwerian and Boolean algebras.

In the paper we search lexicographic extensions (briefly: lex-extensions) of ideals

and lex-ideals of DR`-monoids. The main results are obtained forDR`-monoids from

the class characterized by condition (∗) which contains the above mentioned algebras

of logics as well as all `-groups. Special results are then obtained for DR`-monoids

satisfying the cancellation property.

2. Basic notions and notation

Definition. An algebra M = (M,+, 0,∨,∧,⇀,↽) of signature 〈2, 0, 2, 2, 2, 2〉

is called a dually residuated (non-commutative) lattice ordered monoid (a DR`-

monoid), if and only if

(M1) (M,+, 0,∨,∧) is a lattice ordered monoid (`-monoid), that is, (M,+, 0) is a

(non-commutative) monoid, (M,∨,∧) is a lattice, and for any x, y, u, v ∈ M,

the following identities are satisfied:

u+ (x ∨ y) + v = (u+ x+ v) ∨ (u+ y + v),

u+ (x ∧ y) + v = (u+ x+ v) ∧ (u+ y + v);

(M2) if 6 denotes the order on M induced by the lattice (M,∨,∧) then, for any

x, y ∈ M, x ⇀ y is the least element s ∈ M such that s + y > x, x ↽ y is the

least element t ∈M such that y + t > x;

(M3) M fulfils the identities

((x ⇀ y) ∨ 0) + y 6 x ∨ y, y + ((x ↽ y) ∨ 0) 6 x ∨ y,

x ⇀ x > 0, x ↽ x > 0.

An element x ∈ M is called positive if 0 6 x. Let us denote by M+ = {x ∈

M ; 0 6 x} the set of all positive elements in M .

If a DR`-monoid M is commutative, i.e. (M,+) is a commutative semigroup, then

the binary operations ⇀ and ↽ coincide. Commutative DR`-monoids were intro-

duced by K. L. N. Swamy in [20] as a common generalization of abelian lattice ordered

groups (`-groups) and Brouwerian algebras. General DR`-monoids (which need not

be commutative) were defined by T. Kovář in [9] and their properties were further

studied in [10], [11], [12], [13], [18], [19].

Let M be a DR`-monoid and x ∈M . Then the absolute value of an element x is

|x| = x∨ (0 ⇀ x) = x∨ (0 ↽ x). By [11, Proposition 9], we have |x| ∈M+. Further,

by the positive part of x ∈M we mean the element x+ = x ∨ 0.
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Definition. a) Let M be a DR`-monoid and ∅ 6= I ⊆ M . Then I is called an

ideal of M if the following conditions are satisfied:

(1) x, y ∈ I =⇒ x+ y ∈ I ;

(2) x ∈ I , y ∈M , |y| 6 |x| =⇒ y ∈ I.

b) An ideal I is said to be normal if for each x, y ∈ M the following equivalence

holds:

(3) x ⇀ y ∈ I ⇐⇒ x ↽ y ∈ I.

���������! 
. a) ∅ 6= I ⊆ M is an ideal of M if and only if I is a convex sub-

DR`-monoid of M . In [11, Theorem 13] (for commutative DR`-monoids also in [9,

Theorem 2.2.4]) it is moreover required that a convex subDR`-monoid I satisfies

the following condition: for each x ∈ M, x ∈ I if and only if |x| ∈ I . Let us

show that this condition is superfluous and hence it can be omitted. Namely, let

x ∈ M . Then 0 ⇀ |x| = 0 ⇀ (x ∨ (0 ↽ x)) 6 0 ⇀ (0 ↽ x). By [9, Lemma 1.1.6],

p ⇀ (q ↽ r) 6 (p ⇀ q) + r for any p, q, r ∈ M , therefore in our case we get

0 ⇀ |x| 6 (0 ⇀ 0) + x = x. Hence 0 ⇀ |x| 6 x 6 |x| and so, if |x| ∈ I , then also

x ∈ I . The converse implication is obvious.

b) Normal ideals of DR`-monoids are just the kernels of DR`-homomorphisms. In

particular, for `-groups the normal ideals coincide with kernels of `-homomorphisms

and ideals coincide with convex `-subgroups.

c) Let M be a DR`-monoid and I an ideal of M . If x ∈M then by the left coset

of I containing x we mean the set x/lI = {a ∈ M ; (a ⇀ x) ∨ (x ⇀ a) ∈ I}. By

[11], left cosets of I form a decomposition M/lI of M . If we put x/lI 6 y/lI if and

only if (x ⇀ y)+ ∈ I , then (M/lI,6) is a distributive lattice. If, moreover, I is a

normal ideal then M/lI is the underlying set of the factor DR`-monoid M/I of the

DR`-monoid M by I .

The set C(M) of all ideals of a DR`-monoid M was studied in [11] and [12]. Let us

recall that (C(M),⊆) is an algebraic Brouwerian lattice, in which infima are formed

by set intersections, and that the set N (M) of all normal ideals of M is a complete

sublattice in C(M). If A ⊆M then the ideal C(A) generated by A satisfies

C(A) = {x ∈ M ; |x| 6 |a1| + . . .+ |an|, where a1, . . . , an ∈ A, n ∈ " }.
If a ∈M and C(a) is the principal ideal generated by a then

C(a) = {x ∈M ; |x| 6 n|a|, where n ∈ " }.
If I, J ∈ N (M) then

I ∨ J = {x ∈ M ; |x| 6 a+ b, where a ∈ I+, b ∈ J+}.
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An ideal I is called a prime ideal of M if I is a finitely meet-irreducible element

in the lattice C(M), i.e.

I = J ∩K =⇒ I = J or J = K

for every J,K ∈ C(M).

If I ∈ C(M) is (infinitely) meet-irreducible in C(M) then I is called a regular ideal

of M .

Let 0 6= a ∈ M . Then each ideal of M which is maximal with respect to the

property “not containing a” is called a value of the element a. Denote by val(a)

the set of all values of a. Then val(a) 6= ∅ for any 0 6= a ∈ M . If I ∈ C(M) then

I ∈ val(a) for some 0 6= a ∈ M if and only if I is regular. An element 0 6= a ∈ M is

said to be special if val(a) is a singleton.

Let A ⊆M . Then the polar of the set A is

A⊥ = {x ∈ M ; |x| ∧ |a| = 0 for each a ∈ A}.

For A = {a} we will write a⊥ instead of {a}⊥.

A set B ⊆ M is called a polar in M if B = A⊥ for some A ⊆ M . The set P(M)

of all polars in M is a subset of C(M) and (P(M),⊆) is a complete Boolean lattice.

In the paper we will deal not only with DR`-monoids in general, but we will very

often study properties of DR`-monoids satisfying the inequalities

(∗)
(x ⇀ y) ∧ (y ⇀ x) 6 0,

(x ↽ y) ∧ (y ↽ x) 6 0.

For instance, any `-group G considered as a DR`-monoid (i.e.x ⇀ y = x− y and

x ↽ y = −y + x for each x, y ∈ G) satisfies (∗).

Further, DR`-monoids induced by pseudo BL-algebras (that is also by BL-

algebras, GMV -algebras and MV -algebras) satisfy condition (∗).

3. Lex-extensions of ideals of DR`-monoids

In this part we introduce the notion of a lexicographic extension of an ideal of a

DR`-monoid. In what follows, we denote by M a DR`-monoid.

Lemma 1. If I is an ideal of M and x > y for each x ∈ M+ \ I and y ∈ I then I

is comparable with every K ∈ C(M).
#$�!%&%('

. We suppose K ∈ C(M), K ) I and x ∈ K \ I . It is obvious that

any element y ∈ M belongs to the ideal I if and only if |y| belongs to I . Therefore

|x| ∈ K+ \ I and we have I ⊆ I(|x|) ⊆ K. �
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Lemma 2. If I is a prime ideal of M which is comparable with every K ∈ C(M)

then I contains all proper polars in M .
#$�!%&%('

. Let B be a polar in M such that B ) I . Then I ⊂ B. We suppose

0 < y ∈ B \ I . If z ∈ y⊥ then |z| ∧ y = 0 and so, as I is a prime ideal of M , by [12,

Theorem 2.1] we have |z| ∈ I and therefore also z ∈ I . That means y⊥ ⊆ I , hence

B⊥ ⊆ I . So we obtain B⊥ ⊆ I ⊂ B, thus B = M . �

Lemma 3. Let I ∈ C(M) contain all proper polars in M . Then I contains all

minimal prime ideals of M .
#$�!%&%('

. By [13, Lemma 4], if P is a minimal prime ideal of M then P =
⋃

{a⊥; 0 6 a /∈ P}. For this reason, if I contains all proper polars in M then it also

contains all minimal prime ideals of M . �

Lemma 4. If I ∈ C(M) contains all minimal prime ideals of M then a⊥ = {0}

for each a ∈M \ I .
#$�!%&%('

. Consider a ∈ M \ I . If P is a minimal prime ideal of M then P ⊆ I ,

hence a /∈ P and therefore a⊥ ⊆ P . Each regular ideal of M is prime, the intersection

of all regular ideals of M is equal to {0} and each prime ideal contains a minimal

prime ideal, therefore also the intersection of all minimal prime ideals is equal to

{0}. Consequently, a⊥ = {0}. �

Lemma 5. If M satisfies condition (∗) and if a⊥ = {0} for any a ∈ M \ I , then

every element of M \ I is special.
#$�!%&%('

. Assume that a ∈ M \ I . Then there exists H ∈ val(a) such that I ⊆ H .

Let K ∈ val(a) and K 6= H . Let us consider 0 < x ∈ H \K and 0 < y ∈ K \H . By

[9, Lemma 1.1.14], p > q implies (p ⇀ q) + q = p = q + (p ↽ q) for any p, q ∈ M .

Thus in our case we obtain

x = (x ⇀ (x ∧ y)) + (x ∧ y) and y = (y ⇀ (x ∧ y)) + (x ∧ y).

At the same time

(x ⇀ (x ∧ y)) ∧ (y ⇀ (x ∧ y)) = ((x ⇀ x) ∨ (x ⇀ y)) ∧ ((y ⇀ x) ∨ (y ⇀ y))

= (0 ∨ (x ⇀ y)) ∧ ((y ⇀ x) ∨ 0)

= (0 ∧ (y ⇀ x)) ∨ (0 ∧ 0) ∨ ((x ⇀ y) ∧ (y ⇀ x)) ∨ ((x ⇀ y) ∧ 0),

and since M satisfies (∗), we have

(x ⇀ (x ∧ y)) ∧ (y ⇀ (x ∧ y)) = 0.

287



Moreover, x ⇀ (x ∧ y) /∈ K and y ⇀ (x ∧ y) /∈ H , hence y ⇀ (x ∧ y) /∈ I and

(y ⇀ (x ∧ y))⊥ 6= {0}, a contradiction. Therefore a is a special element. �

Lemma 6. Let every element from M \ I be special. Then a⊥ = {0} for each

a ∈M \ I .

#$�!%&%('
. Suppose a ∈ M+ \I and let H be the only value of the element a. Then

I ⊆ H . Assume x ∈ a⊥. Then a ∨ |x| ∈ M \ H (otherwise, 0 < a 6 a ∨ |x| would

imply a ∈ H), and so H ⊆ K where K is the only value of the element a ∨ |x|. At

the same time a ∧ |x| = 0 and a /∈ H , hence |x| ∈ H and thus also x ∈ H .

If a ∨ |x| /∈ C(a) held, then it would follow that C(a) ⊆ K and hence a ∨ |x| ∈

C(a) ∨H ⊆ K, a contradiction. For this reason a∨ |x| ∈ C(a), hence also x ∈ C(a).

From this we have C(a)⊥ = a⊥ ⊆ C(a), i.e.C(a)⊥ = a⊥ = {0}. �

Lemma 7. Let M satisfy (∗) and let a⊥ = {0} for each a ∈ M \ I . Then I is a

prime ideal of M and x > y for any x ∈M+ \ I and y ∈ I .

#$�!%&%('
. Consider a ∈M+ \I and b ∈ I . It is true that a = (a ⇀ (a∧b))+(a∧b)

and b = (b ⇀ (a∧b))+(a∧b). Therefore a ⇀ (a∧b) /∈ I , hence (a ⇀ (a∧b))⊥ = {0},

and since M satisfies (∗), we conclude that (a ⇀ (a ∧ b)) ∧ (b ⇀ (a ∧ b)) = 0, which

yields b ⇀ (a ∧ b) = 0. This implies b = a ∧ b < a. �

We have actually proved the following theorem.

Theorem 8. Let M be a DR`-monoid satisfying (∗) and I ∈ C(M). Then the

following conditions are equivalent:

(1) I is a prime ideal and x > y holds for each x ∈ M+ \ I and y ∈ I .

(2) I is a prime ideal and I is comparable with every K ∈ C(M).

(3) I contains all proper polars.

(4) I contains all minimal prime ideals.

(5) a⊥ = {0} for any a ∈ M \ I .

(6) Every element in M \ I is special.

Definition. Let M be a DR`-monoid and let I ∈ C(M). Then M is called a

lexicographic extension of I (briefly: lex-extension of I), if

a) I is a prime ideal of M ;

b) x > y for each x ∈M+ \ I and y ∈ I .

���������! 
. a) If I is not a principal ideal of M generated by an idempotent

element (in particular, I 6= {0}) then condition a) can be omitted from the definition.

Indeed, let I ∈ C(M) satisfy condition b) and let x, y ∈M+ be such that x∧y ∈ I .

Suppose x ∈M+ \I and y ∈M+ \I . Then x > z, y > z and hence x∧y > z for each
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z ∈ I . Therefore if I is not a principal ideal generated by an idempotent element,

then x ∧ y /∈ I . Thus, by [12, Theorem 2.1], I is a prime ideal.

b) In case M satisfies (∗) and I ∈ C(M), then M is a lex-extension of I if anyone

of the conditions from Theorem 8 holds.

Lex-extensions of `-groups were studied in [3] (see also [1]), of GMV -algebras

in [8], of representable commutative DR`-monoids in [9] and of bounded (non-

commutative) DR`-monoids in [19]. In this paper, we deal with lex-extensions of

any DR`-monoids satisfying condition (∗). Under this condition we can recognize

the ordering of a DR`-monoid M which is a lex-extension of its ideal I by means of

the orders of I and M/lI . Namely, if M satisfies (∗) then by [12] for any I ∈ C(M),

I is a prime ideal in M if and only if M/lI is a chain. (Note that the last equivalence

is not true for general DR`-monoids.) Hence let M be a DR`-monoid satisfying (∗).

If M is a lex-extension of I ∈ C(M) then the lattice M is isomorphic to the lexico-

graphic product of lattices I and M/lI (since the lexicographic product of lattices

A and B is a lattice if and only if B is linearly ordered set). If, moreover, I is a

normal ideal then the DR`-monoid M is isomorphic to the lexicographic product of

the DR`-monoids I and M/I .

4. Values of elements in ideals of DR`-monoids

Now, we will show connections between values of elements in DR`-monoids and

in their ideals.

Theorem 9. Let M be a DR`-monoid and I ∈ C(M). Then the assignment

ϕ : A 7−→ A ∩ I is an isomorphism of the ordered set of all prime ideals of M not

containing I onto the ordered set of all proper prime ideals of I . The inverse mapping

to ϕ is the assignment ψ : B 7−→ {x ∈ M ; |x| ∧ |a| ∈ B for all a ∈ I}.

#$�!%&%('
. If A is a prime ideal of M not containing I then ϕ(A) is obviously a

prime ideal of I .

Let B be a proper prime ideal of I . Let us denote ψ(B) = {x ∈ M ; |x| ∧ |a| ∈ B

for all a ∈ I}. Let y, z ∈ M+ and let y /∈ ψ(B) and z /∈ ψ(B). Then there exist

a1, a2 ∈ I such that y ∧ |a1| /∈ B and z ∧ |a2| /∈ B, thus also y ∧ z ∧ |a1| ∧ |a2| /∈ B,

and hence y ∧ z /∈ ψ(B). Consequently, ψ(B) is a prime ideal of M .

If A is a prime ideal of M then evidently A ⊆ ψ(A ∩ I). Let 0 6 x ∈ ψ(A ∩ I).

Then x ∧ |a| ∈ A ∩ I for each a ∈ I . Let us consider a ∈ I \ A. Since A is a prime

ideal, x ∈ A. Therefore ψ(A ∩ I) ⊆ A, and so ψ(A ∩ I) = A.

If B is a prime ideal of I then B ⊆ ψ(B)∩I . If 0 6 x ∈ ψ(B)∩I then |x|∧|x| ∈ B,

hence x ∈ B. Therefore ψ(B) ∩ I = B.
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So we have proved that ϕ is a bijective mapping of the set of all prime ideals of M

not containing I onto the set of all proper prime ideals of I which is an isomorphism

of ordered sets, and that ψ = ϕ−1. �

Theorem 10. Let M be a DR`-monoid, I ∈ C(M) and a ∈ I . Then the assign-

ment P 7−→ P ∩ I is a bijection of the set valM (a) of all values of a in M onto the

set valI(a) of all values of a in I .

#$�!%&%('
. Let I ∈ C(M) and a ∈ I . Let us consider P ∈ valM (a). Then P ∩ I is

contained in some value B ∈ valI(a). By Theorem 9, P ⊆ ϕ−1(B) and a /∈ ϕ−1(B),

thus ϕ−1(B) = P . Hence P ∩ I = ϕ−1(B) ∩ I = B, i.e., P ∩ I ∈ valI(a).

Conversely, let C ∈ valI(a). Then a /∈ ϕ−1(C), hence ϕ−1(C) ⊆ Q for some

Q ∈ valM (a). We have C = ϕ−1(C) ∩ I ⊆ Q ∩ I and a /∈ Q ∩ I , thus ϕ−1(C) = Q,

that means ϕ−1(C) ∈ valM (a). �

Corollary. Let M be a DR`-monoid, a ∈ M , and let I ∈ C(M) contain a. Then

a is special in M if and only if a is special in I . In particular, a is special in M if

and only if C(a) has a greatest proper ideal.

5. Lex-ideals of DR`-monoids

Proposition 12. Let a DR`-monoid M satisfy condition (∗), let I, J ∈ C(M)

and let I ⊂ J . Then M is a lex-extension of I if and only if M is a lex-extension of

J and J is a lex-extension of I .

#$�!%&%('
. The assertion follows from condition (6) of Theorem 8, because by

Corollary 11, an element belonging to J is special in J if and only if it is special in

M . �

Throughout this section, we will suppose that a DR`-monoid M satisfies (∗).

Definition. a) The join of all proper polars (i.e. different from M) in the lattice

C(M) is called the lex-kernel of a DR`-monoid M . (Notation: lexM .)

b) If lexM = M then M is called a lex-simple DR`-monoid.

Proposition 13. If I ∈ C(M) then M is a lex-extension of I if and only if

lexM ⊆ I .

#$�!%&%('
. It follows from condition (3) of Theorem 8. �
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Proposition 14. The ideal lexM is the greatest ideal in C(M) which is lex-simple.

#$�!%&%('
. Let I ∈ C(M), lex I = I . If lexM ⊂ I , then I is a lex-extension of lexM .

Hence lexM ⊂ lex I , a contradiction. Therefore by condition (2) of Theorem 8, we

have I ⊆ lexM .

Let J ∈ C(M), J ⊂ lexM . If lexJ 6= J then lexM is a lex-extension of J , and thus

M is also a lex-extension of J . Then J = lexM , a contradiction. Hence lexJ = J .

(From the proof it is also obvious that lexM is lex-simple.) �

Definition. If I ∈ C(M) then I is called a lex-ideal of M provided lex I 6= I .

Proposition 15. If a ∈M then a is a special element in M if and only if C(a) is

a lex-ideal.

#$�!%&%('
. Let an element a ∈ M be special and let P be its unique value in

M . Then by Corollary 11, P ∩ C(a) is the unique value of a in C(a), and thus it

is the greatest proper ideal in C(a). Hence by Theorem 8 we get that C(a) is a

lex-extension of P ∩ C(a).

Conversely, let a /∈ lexC(a). Then by Theorem 8, a is special in C(a) and hence,

by Corollary 11, a is special in M . �

Proposition 16. Any two lex-ideals in M are either comparable or their inter-

section is a principal ideal generated by an idempotent element (in a special case

they are orthogonal).

#$�!%&%('
. Let I and J be non-comparable ideals of M . Then there exist 0 < a ∈ I

and 0 < b ∈ J such that a /∈ J ∪ lex I and b /∈ I ∪ lex J . Since I ∩ J ∈ C(I), by

Theorem 8 we conclude I ∩ J is comparable with lex I . If lex I ⊂ I ∩ J , then I is a

lex-extension of I ∩ J , and hence also I ∩ J < a. Analogously we obtain I ∩ J < b.

Therefore a∧b is the greatest element in I∩J . Since 0 6 a∧b, a∧b 6 2(a∧b) ∈ I∩J ,

thus a∧b = 2(a∧b), consequently a∧b is idempotent in (M,+) and I∩J = C(a∧b) =

{x ∈M ; |x| 6 a ∧ b}. If in particular a ∧ b = 0 then I and J are orthogonal. �

6. Lex-ideals and lex-extensions of DR`-monoids with the

cancellation property

In this part we will study further properties of lex-ideals and lex-extensions in the

class of DR`-monoids with the cancellation property that satisfy condition (∗).
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Definition. We say that a DR`-monoid M possesses the cancellation property

if

x+ y = x+ z =⇒ y = z and y + x = z + x =⇒ y = z

for each x, y, z ∈ M .
���������! 

. a) It is obvious that every `-group viewed as a DR`-monoid possesses

the cancellation property.

b) Let G be an `-group and G+ = {x ∈ G; 0 6 x} its positive cone. Put

x ⇀ y = (x− y) ∨ 0 and x ↽ y = (−y + x) ∨ 0

for any x, y ∈ G+. Then G+ = (G+,+, 0,∨,∧,⇀,↽) is a DR`-monoid which also

possesses the cancellation property.

Definition. We will say that a DR`-monoid M is the (inner) direct product

of its ideals I and J if there is an isomorphism ϕ of M onto the (external) direct

product I × J of DR`-monoids I and J such that for each x ∈ I and each y ∈ J the

relations ϕ(x) = (x, 0) and ϕ(y) = (0, y) are valid.

By [18, Theorem 6 and Corollary 8], M is the direct product of I, J ∈ C(M) if

and only if

1. I + J = M , I ∩ J = {0};

2. ∀x, x′ ∈ I , y, y′ ∈ J ; x+ y = x′ + y′ ⇒ x = x′, y = y′.

Definition. If for I ∈ C(M) there is J ∈ C(M) such that I and J satisfy condi-

tions 1 and 2 then I is called a direct factor of M .

By [18, Propositions 2 and 3 and Theorem 6] we have that if M is the direct

product of I and J then I = J⊥ and J = I⊥. Therefore now we denote by (∗∗) the

following condition for an ideal I of a DR`-monoids M :

(∗∗) x+ y = x′ + y′ implies x = x′ and y = y′ for every x, x′ ∈ I and y, y′ ∈ I⊥.

Lemma 17. Let M be a DR`-monoid and let I ∈ C(M) satisfy condition (∗∗). If

there exists an element 0 6 a ∈M such that I < a and a ∈ I + I⊥, then M does not

possess the cancellation property and I = C(x1), where x1 is an idempotent element.#$�!%&%('
. Let I ∈ C(M) satisfy (∗∗) and let I < a. Let us suppose that a ∈ I+I⊥,

a = x1 +x2, where x1 ∈ I and x2 ∈ I⊥. By [18, Lemma 4], x1 ∈ I+ and x2 ∈
(

I⊥
)+

.

If x ∈ I then x + 0 = x < x1 + x2. Since I satisfies condition (∗∗), by [18,

Corollary 8] we get that I + I⊥ is isomorphic to the direct product I × I⊥. Hence

x 6 x1, and that means x1 is the greatest element in I .

In the case that M possesses the cancellation property, we have a contradiction.

In the other case, x1 is an idempotent element in M and I = C(x1). �
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Theorem 18. Let M be a DR`-monoid with the cancellation property satisfying

(∗). If I is a lex-ideal in M which satisfies (∗∗) and 0 6 a ∈ M , then a /∈ I + I⊥ if

and only if I < a.

#$�!%&%('
. a) If I < a then a /∈ I + I⊥ by the preceding lemma.

b) Let 0 6 a and a /∈ I + I⊥. Let us suppose that there exists b ∈ I such that

b * a. Without loss of generality we can suppose that b /∈ lex I and 0 < b.

By [9, Lemma 1.1.14], in any DR`-monoid, x > y implies x = y+ (x ↽ y). Hence

in our case we have

2b = (2b ∧ a) + (2b ↽ (2b ∧ a)), a = (2b ∧ a) + (a ↽ (2b ∧ a)),

and since M satisfies (∗), analogously to the proof of Lemma 5 we obtain

(2b ↽ (2b ∧ a)) ∧ (a ↽ (2b ∧ a)) = 0.

Now 0 6 2b ↽ (2b ∧ a) 6 2b implies 2b ↽ (2b ∧ a) ∈ I . Let us suppose that

2b ↽ (2b ∧ a) ∈ lex I . Then (because b /∈ lex I) 2b ↽ (2b ∧ a) < b, therefore

b+ (2b ↽ (2b ∧ a)) 6 2b = (2b ∧ a) + (2b ↽ (2b ∧ a)) 6 a+ (2b ↽ (2b ∧ a)).

By assumption, M possesses the cancellation property, thus, by [9, Theorem 1.4.7],

b 6 a, a contradiction. Therefore 2b ↽ (2b ∧ a) /∈ lex I .

If 0 6 c ∈ I then (2b ↽ (2b ∧ a)) ∧ (a ↽ (2b ∧ a)) ∧ c = 0, hence (by Theorem 8)

(a ↽ (2b ∧ a)) ∧ c = 0. That means a ↽ (2b ∧ a) ∈ I⊥, and so a ∈ I + I⊥. �

The following theorem is now a consequence of the previous theorem.

Theorem 19. If M is a DR`-monoid with the cancellation property satisfying

(∗) then every I ∈ C(M) which is non-bounded and satisfies condition (∗∗) is a direct

factor in M .

Theorem 20. Let M be a DR`-monoid with the cancellation property satisfying

(∗), let I, J ∈ C(M), I ⊂ J , and let J satisfy (∗∗). Then the following conditions are

equivalent:

(1) J is a lex-extension of I .

(2) J⊥⊥ is a lex extension of I .

(3) a⊥ = J⊥ for each a ∈ J \ I .
#$�!%&%('

. (1) =⇒ (2): Let J be a lex-extension of I . Let us consider 0 < a ∈

J⊥⊥ \ J . Since in C(M)

(J ∨ J⊥) ∩ J⊥⊥ = (J ∩ J⊥⊥) ∨ (J⊥ ∩ J⊥⊥) = J,
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we get a /∈ J ∨ J⊥, and thus a /∈ J + J⊥. Hence by Theorem 18, J < a. This means

J⊥⊥ is a lex-extension of J , and therefore, by Theorem 8, J⊥⊥ is also a lex-extension

of I .

(2) =⇒ (1): Follows from Proposition 12.

(1) =⇒ (3): Let J be a lex-extension of I . If 0 < a ∈ J \ I then J⊥ ⊆ a⊥. Let

0 6 x ∈ a⊥. Then for each 0 6 y ∈ J we have a ∧ x ∧ y = 0, thus x ∧ y = 0 and

hence a⊥ ⊆ J⊥.

(3) =⇒ (1): Let b⊥ = J⊥ for every b ∈ J \ I . Let 0 < a ∈ J \ I . Let us consider

x ∈ J such that x ∧ a = 0. Then x ∈ J ∩ a⊥ = J ∩ J⊥ = {0}, hence x = 0. �

As a consequence we obtain the following theorem.

Theorem 21. If M is a DR`-monoid with the cancellation property satisfying

(∗) and if I ∈ C(M) then every lex-extension J of I which satisfies (∗∗) is contained

in the unique maximal lex-extension J⊥⊥.

Proposition 22. Let M be a DR`-monoid with the cancellation property satis-

fying (∗), let I, J ∈ C(M), and let J be a lex-extension of I . Then I⊥ = J⊥.

#$�!%&%('
. Let 0 6 x ∈ I , 0 6 y ∈ I⊥ and 0 6 z ∈ J \ I . If y∧z /∈ I then y∧z > x,

hence x = x ∧ y ∧ z = x ∧ y = 0, a contradiction. Thus y ∧ z ∈ I ∩ I⊥ = {0}. That

means I⊥ ⊆ J⊥, and so I⊥ = J⊥. �

The following theorem is now an immediate consequence.

Theorem 23. Let M be a DR`-monoid with the cancellation property satisfying

(∗). If {0} 6= I ∈ C(M) satisfies (∗∗) and has a proper lex-extension then the lex-

extensions of I form a chain with the greatest element I⊥⊥.
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