OPERATORS ON $G M V$-ALGEBRAS

Filip Švrček, Olomouc

(Received November 7, 2003)

Abstract

Closure $G M V$-algebras are introduced as a commutative generalization of closure $M V$-algebras, which were studied as a natural generalization of topological Boolean algebras.

Keywords: $M V$-algebra, $D R l$-monoid
MSC 2000: 06D35, 06F99

1. Introduction

It is well known that Boolean algebras are algebraic counterparts of the classical propositional two-valued logic similarly as $M V$-algebras (see [1], [2]) are for Łukasiewicz infinite valued logic. Every $M V$-algebra contains a Boolean algebra, which is formed by the set of its idempotent elements. The same property is possessed also by $G M V$-algebras, the non-commutative generalization of $M V$-algebras (see [5] or [9]).
In the paper [11], closure $M V$-algebras are introduced and studied as a natural generalization of topological Boolean algebras (see [12]). The additive closure operator is here introduced as a natural generalization of the topological closure operator on topological Boolean algebras. The aim of this paper is to generalize the results of [11] to the case of $G M V$-algebras.

The paper is divided into Introduction and three main sections. In Section 2, the closure $G M V$-algebras are introduced and the relation between additive closure operators and multiplicative interior operators on $G M V$-algebras is described. In the case of closure $M V$-algebras there is a one-to-one correspondence between additive closure operators and multiplicative interior operators. In the paper, it is shown that this correspondence exists also for closure $G M V$-algebras, but the relation is there a little bit different.

In Section 3 one works with idempotent elemets of a closure $G M V$-algebra, for example, it is shown that every idempotent element of a closure $G M V$-algebra induces a new closure $G M V$-algebra, similarly as is the case for closure $M V$-algebras.

Finally, in the last section $G M V$-algebras are factorized via their normal ideals and the connections between congruences and normal c-ideals of closure $G M V$-algebras are described with help of $D R l$-monoids, which are studied in [6] or in [13].

2. Closure $G M V$-algebras

Definition 1. An algebra $\mathscr{A}=(A, \oplus, \neg, \sim, 0,1)$ of signature $\langle 2,1,1,0,0\rangle$ is called a $G M V$-algebra, iff the following conditions are satisfied for each $x, y, z \in A$:
(GMV1) $x \oplus(y \oplus z)=(x \oplus y) \oplus z$,
(GMV2) $x \oplus 0=0=0 \oplus x$,
(GMV3) $x \oplus 1=1=1 \oplus x$,
(GMV4) $\sim 1=0, \neg 1=0$,
(GMV5) $\sim(\neg x \oplus \neg y)=\neg(\sim x \oplus \sim y)$,
(GMV6) $y \oplus(x \odot \sim y)=(\neg y \odot x) \oplus y=x \oplus(y \odot \sim x)=(\neg x \odot y) \oplus x$,
(GMV7) $y \odot(x \oplus \sim y)=(\neg y \oplus x) \odot y$,
(GMV8) $\sim(\neg x)=x$,
where $x \odot y:=\sim(\neg x \oplus \neg y)$.
Remark 1 . We can define the relation of the partial order \leqslant on every $G M V$ algebra \mathscr{A}. We put

$$
x \leqslant y \Leftrightarrow \neg x \oplus y=1 \quad \forall x, y \in A .
$$

Then (A, \leqslant) is a distributive lattice, where each x, y satisfy

- $x \vee y=y \oplus(x \odot \sim y)=(\neg y \odot x) \oplus y$,
- $x \wedge y=y \odot(x \oplus \sim y)=(\neg y \oplus x) \odot y$.

Definition 2. An algebraic structure $G=(G,+, 0, \vee, \wedge)$ of signature $\langle 2,0,2,2\rangle$ is called an l-group iff

1. $(G,+, 0)$ is a group,
2. (G, \vee, \wedge) is a lattice,
3. $x+(y \vee z)+w=(x+y+w) \vee(x+z+w) \quad \forall x, y, z, w \in G$,
$x+(y \wedge z)+w=(x+y+w) \wedge(x+z+w) \quad \forall x, y, z, w \in G$.
An element $u \in G(u>0)$ is said to be a strong unit of an l-group G iff

$$
(\forall a \in G)(\exists n \in \mathbb{N})(a \leqslant n u)
$$

where $n u \stackrel{\text { def }}{=} \underbrace{u+u+\ldots+u}_{n}$.

If an l-group G contains a strong unit u, then we call it a unital l-group and write (G, u).

Let \leqslant be the lattice order on (G, \vee, \wedge). Then for the l-group G we can use notation $G=(G,+, 0, \leqslant)$, which is equivalent to the former notation.

Remark 2 .
a) Let $(G,+, 0, \leqslant)$ be an l-group and let u be a strong unit of G. If we put

$$
x \oplus y:=(x+y) \wedge u, \quad \neg x:=u-x, \quad \sim x:=-x+u
$$

then $\Gamma(G, u)=([0, u], \oplus, \neg, \sim, 0, u)$ is a $G M V$-algebra.
b) On the other hand, A. Dvurečenskij has shown that for each $G M V$-algebra \mathscr{A} there exists a unital l-group (G, u) such that $\mathscr{A} \cong \Gamma(G, u)$-see [4].

We can now define the additive closure and the multiplicative interior operator in the same way as for the $M V$-algebras. From [12], Theorem 5 and Theorem 6, we know that additive closure operators on an $M V$-algebra \mathscr{A} generalize topological closure operators on the Boolean algebra $B(\mathscr{A})$ of its idempotent elements.

Definition 3.

a) Let $\mathscr{A}=(A, \oplus, \neg, \sim, 0,1)$ be a $G M V$-algebra and $\mathrm{Cl}: A \rightarrow A$ a mapping. Then Cl is called an additive closure operator on \mathscr{A} iff for each $a, b \in A$

1. $\mathrm{Cl}(a \oplus b)=\mathrm{Cl}(a) \oplus \mathrm{Cl}(b)$;
2. $a \leqslant \mathrm{Cl}(a)$;
3. $\mathrm{Cl}(\mathrm{Cl}(a))=\mathrm{Cl}(a)$;
4. $\mathrm{Cl}(0)=0$.
b) If Cl is an additive closure operator on \mathscr{A} then $\mathscr{A}=(A, \oplus, \neg, \sim, 0,1, \mathrm{Cl})$ is called a closure $G M V$-algebra and $\mathrm{Cl}(a)$ is called the closure of an element $a \in A$. An element a is said to be closed iff $\mathrm{Cl}(a)=a$.

Definition 4.

a) Let $\mathscr{A}=(A, \oplus, \neg, \sim, 0,1)$ be a $G M V$-algebra and Int: $A \rightarrow A$ a mapping. Then Int is called a multiplicative interior operator on \mathscr{A} if and only if for each $a, b \in A$
$1^{\prime} . \operatorname{Int}(a \odot b)=\operatorname{Int}(a) \odot \operatorname{Int}(b) ;$
$2^{\prime} . \operatorname{Int}(a) \leqslant a$;
3^{\prime}. $\operatorname{Int}(\operatorname{Int}(a))=\operatorname{Int}(a)$;
$4^{\prime} . \operatorname{Int}(1)=1$.
b) If Int is a multiplicative interior operator on \mathscr{A}, then an algebra $\mathscr{A}=$ $(A, \oplus, \neg, \sim, 0,1$, Int) is called an interior $G M V$-algebra and $\operatorname{Int}(a)$ is called the interior of an element $a \in A$. An element a is said to be open $\operatorname{iff} \operatorname{Int}(a)=a$.

Lemma 1. Let $\mathscr{A}=(A, \oplus, \neg, \sim, 0,1, \mathrm{Cl})$ be a closure $G M V$-algebra. We put
a) $\operatorname{Int}^{\urcorner}(a)=\neg \mathrm{Cl}(\sim a)$,
b) $\operatorname{Int}^{\sim}(a)=\sim \mathrm{Cl}(\neg a)$
for each $a \in A$. Then these two operators are multiplicative interior operators on \mathscr{A} and for each $a, b \in A$ we have
a) $\mathrm{Cl}(a)=\sim \operatorname{Int}^{\urcorner}(\neg a)$,
b) $\mathrm{Cl}(a)=\neg \operatorname{Int}^{\sim}(\sim a)$.

Proof. We restrict ourselves to the case a), since b) can be proved analogously.
$1^{\prime} . \operatorname{Int}^{\urcorner}(a \odot b)=\neg \mathrm{Cl}(\sim(a \odot b))=\neg \mathrm{Cl}(\sim a \oplus \sim b)=\neg(\mathrm{Cl}(\sim a) \oplus \mathrm{Cl}(\sim b))=\neg \mathrm{Cl}(\sim a) \odot$ $\neg \mathrm{Cl}(\sim b)=\operatorname{Int}\urcorner(a) \odot \operatorname{Int}^{\urcorner}(b) ;$
$2^{\prime} . \operatorname{Int}^{\neg}(a)=\neg \mathrm{Cl}(\sim a) \leqslant \neg \sim a=a ;$
$\left.\left.\left.3^{\prime} . \operatorname{Int}\right\urcorner(\operatorname{Int}\urcorner(a)\right)=\neg \mathrm{Cl}(\sim \neg \mathrm{Cl}(\sim a))=\neg \mathrm{Cl}(\mathrm{Cl}(\sim a))=\neg \mathrm{Cl}(\sim a)=\operatorname{Int}\right\urcorner(a) ;$
$4^{\prime} . \operatorname{Int}^{\urcorner}(1)=\neg \mathrm{Cl}(\sim 1)=\neg \mathrm{Cl}(0)=\neg 0=1$.
The next lemma shows that the operator Cl from Definition 3 and the operators Int \sim, Int \urcorner from Lemma 1 are all isotone.

Lemma 2. If $a \leqslant b$ for any $a, b \in A$, then $\mathrm{Cl}(a) \leqslant \mathrm{Cl}(b)$ and $\operatorname{Int}\urcorner(a) \leqslant \operatorname{Int}\urcorner(b)$, as well as $\operatorname{Int}^{\sim}(a) \leqslant \operatorname{Int}^{\sim}(b)$.

Proof. Let $a \leqslant b$. Then $\mathrm{Cl}(b)=\operatorname{Cl}(a \vee b)=\operatorname{Cl}(a \oplus(b \odot \sim a))$. Therefore $\mathrm{Cl}(b)=\mathrm{Cl}(a) \oplus \mathrm{Cl}(b \odot \sim a) \geqslant \mathrm{Cl}(a) \vee \mathrm{Cl}(b \odot \sim a)$, and so $\mathrm{Cl}(a) \leqslant \mathrm{Cl}(b)$.

Similarly from $a \leqslant b$ we have $\operatorname{Int}^{\sim}(a)=\operatorname{Int}^{\sim}(a \wedge b)=\operatorname{Int}^{\sim}(b \odot(a \oplus \sim b))=$ $\operatorname{Int}^{\sim}(b) \odot \operatorname{Int}^{\sim}(a \oplus \sim b) \leqslant \operatorname{Int}^{\sim}(b) \wedge \operatorname{Int}^{\sim}(a \oplus \sim b)$, hence $\operatorname{Int}^{\sim}(a) \leqslant \operatorname{Int}^{\sim}(b)$ and analogously for Int \urcorner.

In the case of closure $M V$-algebras, here we were able to construct from one closure operator just one interior operator by the rule $\operatorname{Int}(x)=\neg \mathrm{Cl}(\neg x)$ and then get back to the original one. Now, let us try to describe the situation for closure $G M V$-algebras.

Remark 3. Let us consider a closure $G M V$-algebra \mathscr{A} and a mapping $f: A \rightarrow$ A. We can define two new operators $\Phi\urcorner(f)$ and $\Phi^{\sim}(f)$ on A by the reles $\left.\Phi\right\urcorner(f)(a)=$ $\neg f(\sim a)$ and $\Phi^{\sim}(f)(a)=\sim f(\neg a)$. Then we clearly have that $\left.\Phi\right\urcorner \circ \Phi^{\sim}=\mathrm{id}=\Phi^{\sim} \circ \Phi^{\urcorner}$ and if we take an additive closure operator Cl on \mathscr{A} instead of the arbitrary mapping f on \mathscr{A}, then (by Lemma 1) we see that there exists a one-to-one correspondence between the aditive closure operators and the multiplicative interior operators on the closure $G M V$-algebras. Compared to closure $M V$-algebras, the relation is here a little bit different as we are going to show.

Let us denote for each even non-negative integer i and for an operator Cl_{0}

$$
\begin{aligned}
\mathrm{Cl}_{i}^{\urcorner} & =\underbrace{\Phi^{\urcorner} \circ \ldots \circ \Phi^{\urcorner}}_{i}\left(\mathrm{Cl}_{0}\right), \\
\mathrm{Cl}_{i}^{\sim} & =\underbrace{\Phi^{\sim} \circ \ldots \circ \Phi^{\sim}}_{i}\left(\mathrm{Cl}_{0}\right)
\end{aligned}
$$

and for each odd non-negative integer i

$$
\begin{aligned}
\operatorname{Int}_{i} & =\underbrace{\Phi\urcorner \circ \ldots \circ \Phi\urcorner}_{i}\left(\mathrm{Cl}_{0}\right), \\
\operatorname{Int}_{i}^{\sim} & =\underbrace{\Phi^{\sim} \circ \ldots \circ \Phi^{\sim}}_{i}\left(\mathrm{Cl}_{0}\right) .
\end{aligned}
$$

The following theorem is an easy consequence of the preceding Remark 3 and of Lemma 1.

Theorem 3. Let Cl_{0} be an additive closure operator on a $G M V$-algebra \mathscr{A}. Then we have for each $k \in \mathbb{N} \cup\{0\}$
a) $\mathrm{Cl}_{2 k}$ and $\mathrm{Cl}_{2 k}^{\sim}$ are additive closure operators on \mathscr{A};
b) $\operatorname{Int}_{2 k+1}^{\sim}$ and Int $_{2 k+1}^{\sim}$ are multiplicative interior operators on \mathscr{A}.

3. Idempotent elements of closure $G M V$-algebras

Now, we can consider the set $B(\mathscr{A})=\{a \in A ; a \oplus a=a\}$ of additively idempotent elements of a $G M V$-algebra \mathscr{A}. One can show that $B(\mathscr{A})$ is just the set of multiplicatively idempotent elements in $\mathscr{A} . B(\mathscr{A})$ is a sublattice of the lattice (A, \vee, \wedge), contains 0 a 1 and is also a Boolean algebra. Analogously as for $M V$-algebras one can show that the operations \oplus, \odot coincide on $B(\mathscr{A})$ with the lattice operations \vee, \wedge-see [10].

Lemma 4. Let \mathscr{A} be a $G M V$-algebra and let a be an idempotent element in \mathscr{A}. Then
a) $y \odot a=a \odot y=a \wedge y$,
b) $a \odot(x \oplus y)=(a \odot x) \oplus(a \odot y)$,
c) $(x \oplus y) \odot a=(x \odot a) \oplus(y \odot a)$
for each $x, y \in A$.
Proof. a) Let $y \leqslant a$. Then $a \leqslant y \oplus a \leqslant a \oplus a=a$, thus $y \oplus a=a$ and hence, by [9], Theorem $7, y \odot a=y=y \wedge a$.

Let now $y \in A$ be arbitrary. Clearly $y \odot a \leqslant y, a$. Let $z \in A, z \leqslant y, a$. Then also $z=z \odot a \leqslant y \odot a$, and consequently $y \odot a=y \wedge a$. Similarly $a \odot y=a \wedge y$.
b) Let $a \in B(\mathscr{A})$. Using distributivity of " \oplus " over " \wedge " we obtain

$$
(a \wedge x) \oplus(a \wedge y)=(a \oplus a) \wedge(x \oplus a) \wedge(a \oplus y) \wedge(x \oplus y),
$$

hence by a), $a \odot(x \oplus y)=(a \odot x) \oplus(a \odot y)$.
c) Analogously to the case b).

Similarly as for closure $M V$-algebras, we can show that every idempotent element a in a closure $G M V$-algebra \mathscr{A} determines a new closure $G M V$-algebra on the interval $[0, a]$.

Theorem 5. Let $\mathscr{A}=(A, \oplus, \neg, \sim, 0,1, \mathrm{Cl})$ be a closure $G M V$-algebra and let a be an idempotent element in \mathscr{A}. We put

- $x \oplus_{a} y=x \oplus y$,
- $\neg_{a} x=\neg(x \oplus \sim a)$,
- $\sim_{a} x=\sim(\neg a \oplus x)$,
- $0_{a}=0$,
- $1_{a}=a$,
- $\mathrm{Cl}_{a}(x)=a \odot \mathrm{Cl}(x)$
for each $x, y \in A$. Then $\mathscr{A}_{a}=\left([0, a], \oplus_{a}, \neg_{a}, \sim_{a}, 0_{a}, 1_{a}, \mathrm{Cl}_{a}\right)$ is a closure $G M V$ algebra and we have
- $x \odot_{a} y=x \odot y$,
- $\operatorname{Int}_{a}^{\neg}(x)=a \odot \operatorname{Int}^{\urcorner}(\neg a \oplus x)$,
- $\operatorname{Int}_{a}^{\sim}(x)=a \odot \operatorname{Int}^{\sim}(x \oplus \sim a)$.

Proof. Availability of axioms (GMV1)-(GMV8) from Definition 1 for the algebra $\left([0, a], \oplus_{a}, \neg_{a}, \sim_{a}, 0, a\right)$ are proved in [9], so \mathscr{A}_{a} is a $G M V$-algebra. In the second part of the proof we need to show that Cl_{a} is an additive closure operator on \mathscr{A}_{a}.

1. $\mathrm{Cl}_{a}(x \oplus y)=a \odot \mathrm{Cl}(x \oplus y)=a \odot(\mathrm{Cl}(x) \oplus \mathrm{Cl}(y))=(a \odot \mathrm{Cl}(x)) \oplus(a \odot \mathrm{Cl}(y))=$ $\mathrm{Cl}_{a}(x) \oplus \mathrm{Cl}_{a}(y) ;$
2. $\mathrm{Cl}_{a}(x)=a \odot \mathrm{Cl}(x) \geqslant a \odot x=a \wedge x=x$;
3. $\mathrm{Cl}_{a}\left(\mathrm{Cl}_{a}(x)\right)=a \odot \mathrm{Cl}(a \odot \mathrm{Cl}(x)) \leqslant a \odot \mathrm{Cl}(\mathrm{Cl}(x))=a \odot \mathrm{Cl}(x)=\mathrm{Cl}_{a}(x)$; on the other hand, according to 2 we get $\mathrm{Cl}_{a}(x)=a \odot \mathrm{Cl}(x) \leqslant \mathrm{Cl}_{a}(a \odot \mathrm{Cl}(x))=$ $\mathrm{Cl}_{a}\left(\mathrm{Cl}_{a}(x)\right)$, so, together we have $\mathrm{Cl}_{a}\left(\mathrm{Cl}_{a}(x)\right)=\mathrm{Cl}_{a}(x)$;
4. $\mathrm{Cl}_{a}(0)=a \odot \mathrm{Cl}(0)=a \odot 0=a \wedge 0=0$.

Further, $\operatorname{Int}_{a}^{\neg}(x)=\neg_{a} \mathrm{Cl}_{a}\left(\sim_{a} x\right)=\neg((a \odot \mathrm{Cl}(\sim(\neg a \oplus x))) \oplus \sim a)=(\neg a \oplus$ $\neg \mathrm{Cl}(\sim(\neg a \oplus x))) \odot a=(\neg a \oplus \operatorname{Int}\urcorner(\neg a \oplus x)) \odot a=\operatorname{Int}\urcorner(\neg a \oplus x) \wedge a=a \odot \operatorname{Int}\urcorner(\neg a \oplus x)$.
Analogously for Int ${ }_{a}^{\sim}$.

Corollary 6. Let \mathscr{A} be a $G M V$-algebra and $a \in A$ an idempotent element. Then a mapping h given by the formula $h(x)=a \odot x$ for each $x \in A$ is a homomorphism from \mathscr{A} onto \mathscr{A}_{a}.

Proof. Let $x, y \in A$. Then

$$
h(x \odot y)=a \odot(x \odot y)=a \odot a \odot(x \odot y)=a \odot(a \odot x) \odot y
$$

By Lemma 4a) we have

$$
a \odot(a \odot x) \odot y=a \odot(x \odot a) \odot y=(a \odot x) \odot(a \odot y)=h(x) \odot_{a} h(y)
$$

Further,

- $h\left(\sim_{a} x\right)=a \odot \sim x=a \wedge \sim x=\sim x \wedge a=a \odot(\sim x \oplus \sim a)=a \odot \sim(x \odot a)=$ $a \odot \sim(a \odot x)=a \odot \sim h(x)=\sim(\neg a \oplus h(x))=\sim_{a} h(x)$,
- $h(\neg a x)=a \odot \neg x=a \wedge \neg x=\neg x \wedge a=(\neg a \oplus \neg x) \odot a=\neg(a \odot x) \odot a=\neg h(x) \odot a=$ $\neg(h(x) \oplus \sim a)=\neg_{a} h(x)$,
- $h(0)=0=0_{a}$
and finally
- $h(x \oplus y)=h(\sim(\neg x \oplus \neg y))=\sim_{a} h(\neg x \odot \neg y)=\sim_{a}\left(h(\neg x) \odot_{a} h(\neg y)\right)=$ $\sim_{a}\left(\neg_{a} h(x) \odot_{a} \neg_{a} h(y)\right)=h(x) \oplus_{a} h(y)$.
So h is a homomorphism from the $G M V$-algebra \mathscr{A} into the $G M V$-algebra \mathscr{A}_{a} and since $x=a \odot x=h(x)$ for each $x \in[0, a], h$ is surjective.

Definition 5. Let $\mathscr{A}_{1}=\left(A_{1}, \oplus_{1}, \neg_{1}, \sim_{1}, 0_{1}, 1_{1}, \mathrm{Cl}_{1}\right)$ and $\mathscr{A}_{2}=\left(A_{2}, \oplus_{2}, \neg_{2}, \sim_{2}\right.$, $0_{2}, 1_{2}, \mathrm{Cl}_{2}$) be closure $G M V$-algebras and let $h: A_{1} \rightarrow A_{2}$ be a homomorphism from \mathscr{A}_{1} into \mathscr{A}_{2}. Then h is said to be a c-homomorphism from \mathscr{A}_{1} into \mathscr{A}_{2} iff (C1) $h\left(\mathrm{Cl}_{1}(x)\right)=\mathrm{Cl}_{2}(h(x))$ for each $x \in A_{1}$.

Lemma 7. Let us consider closure GMV-algebras \mathscr{A}_{1} and \mathscr{A}_{2}. A homomorphism h from the $G M V$-algebra \mathscr{A}_{1} into the $G M V$-algebra \mathscr{A}_{2} is a c-homomorphism from \mathscr{A}_{1} into \mathscr{A}_{2} if and only if one of the following two equivalent conditions is satisfied:
(C2) $h\left(\operatorname{Int}_{1}^{ᄀ}(x)\right)=\operatorname{Int}_{2}^{ᄀ}(h(x))$,
(C3) $h\left(\operatorname{Int}_{1}^{\sim}(x)\right)=\operatorname{Int}_{2}^{\sim}(h(x))$
for each $x \in A_{1}$.
Proof. A homomorphism h from \mathscr{A}_{1} into \mathscr{A}_{2} is a c-homomorphism iff

$$
h\left(\mathrm{Cl}_{1}(x)\right)=\mathrm{Cl}_{2}(h(x))
$$

for each $x \in A_{1}$, so for $\neg_{1} x$, too. From the last equation we get

$$
\sim_{2} h\left(\mathrm{Cl}_{1}\left(\neg_{1} x\right)\right)=\sim_{2} \mathrm{Cl}_{2}\left(h\left(\neg_{1} x\right)\right) .
$$

Since h is a homomorphism from \mathscr{A}_{1} into \mathscr{A}_{2}, we have got $h\left(\neg_{1} x\right)=\neg_{2} h(x)$ and also $h\left(\sim_{1} x\right)=\sim_{2} h(x)$ for each $x \in A_{1}$. Therefore we can write instead of the last equation

$$
h\left(\sim_{1} \mathrm{Cl}_{1}\left(\neg_{1} x\right)\right)=\sim_{2} \mathrm{Cl}_{2}\left(\neg_{2} h(x)\right),
$$

which is equivalent to the axiom (C3), thus

$$
h\left(\operatorname{Int}_{1}^{\sim}(x)\right)=\operatorname{Int}_{2}^{\sim}(h(x)) .
$$

The equivalence of the conditions (C1), (C2) we can be proved analogously.
The following theorem refers to Theorem 5 and Corollary 6 and completes our description of the relation of closure $G M V$-algebras $\mathscr{A}=(A, \oplus, \neg, \sim, 0,1, \mathrm{Cl})$ and $\mathscr{A}_{a}=\left([0, a], \oplus_{a}, \neg_{a}, \sim_{a}, 0_{a}, 1_{a}, \mathrm{Cl}_{a}\right)$.

Theorem 8. Let \mathscr{A} be a closure $G M V$-algebra and let a be its idempotent element, which is open to at least one of multiplicative interior operators Int ${ }^{\urcorner}$and Int \sim on \mathscr{A}. Finally, let $h: A \rightarrow[0, a]$ be a mapping such that $h(x)=a \odot x$ for each $x \in A$. Then h is a surjective c-homomorphism \mathscr{A} onto \mathscr{A}_{a}.

Proof. Let us consider a mapping $h: A \rightarrow[0, a]$ such that $h(x)=a \odot x$ for each $x \in A$. We know from Lemma 6 that h is a surjective homomorphism of $G M V$-algebras \mathscr{A} and \mathscr{A}_{a}.

We need to show now that h is a c-homomorphism. Let a be open for example with respect to Int^{\sim}. Then it is enough to check availability of the condition (C3) from Lemma 7. For each $x \in A$ we have

$$
h\left(\operatorname{Int}^{\sim}(x)\right)=a \odot \operatorname{Int}^{\sim}(x)=\operatorname{Int}^{\sim}(a) \odot \operatorname{Int}^{\sim}(x)=\operatorname{Int}^{\sim}(a \odot x)=\operatorname{Int}^{\sim}(h(x))
$$

Let $y \leqslant a$. Then

$$
\operatorname{Int}^{\sim}(y)=\operatorname{Int}^{\sim}(a \wedge y)=\operatorname{Int}^{\sim}(a \odot(y \oplus \sim a))=a \odot \operatorname{Int}^{\sim}(y \oplus \sim a)=\operatorname{Int}_{a}^{\sim}(y)
$$

Altogether we have

$$
h\left(\operatorname{Int}^{\sim}(x)\right)=\operatorname{Int}^{\sim}(h(x))=\operatorname{Int}_{a}^{\sim}(h(x))
$$

for each $x \in A$.
Note. If a is open with respect to Int \urcorner, then we check availability of the condition (C2) from Lemma 7.

4. Factorization on closure $G M V$-algebras

Definition 6. Let us consider a $G M V$-algebra \mathscr{A}. Then a set $I \subset A, \emptyset \neq I$ is called an ideal of the $G M V$-algebra \mathscr{A} iff
(I1) $0 \in I$;
(I2) if $x, y \in I$, then $x \oplus y \in I$;
(I3) if $x \in I, y \in A$ a $y \leqslant x$, then $y \in I$.
An ideal I of a $G M V$-algebra \mathscr{A} is called a normal ideal iff for each $x, y \in A$
(I4) $\neg x \odot y \in I \Leftrightarrow y \odot \sim x \in I$.
Definition 7. A normal ideal I of a closure $G M V$-algebra \mathscr{A} is called a normal c-ideal iff $\mathrm{Cl}(a) \in I$ for each $a \in I$.

Remark 4. Normal ideals of $G M V$-algebra \mathscr{A} are in a one-to-one correspondence with congruences on \mathscr{A}.
a) If \equiv is a congruence on \mathscr{A}, then $0 / \equiv=\{x \in A ; x \equiv 0\}$ is a normal ideal of \mathscr{A}.
b) Let H be a normal ideal of \mathscr{A}. The relation \equiv_{H}, where

$$
x \equiv_{H} y \Longleftrightarrow(\neg y \odot x) \oplus(\neg x \odot y) \in H
$$

or equivalently

$$
x \equiv_{H} y \Longleftrightarrow(y \odot \sim x) \oplus(x \odot \sim y) \in H,
$$

is a congruence on \mathscr{A} and $H=\left\{x \in A ; x \equiv_{H} 0\right\}=0 / \equiv_{H}$ holds.
More detail is found in [5].
Note.
a) We denote by $\mathscr{A} / I=\mathscr{A} / \equiv_{I}$ the factor $G M V$-algebra of a $G M V$-algebra \mathscr{A} according to a congruence \equiv_{I} on \mathscr{A} and by \bar{x} the class of A / I which contains the element x.
b) Let \mathscr{A} be a closure $G M V$-algebra and let I be its normal c-ideal. Let us put $\mathrm{Cl}_{I}(\bar{x}):=\overline{\mathrm{Cl}(x)}$ for each $x \in A$. This definition of the operator Cl_{I} is correct as we will show in the proof of Theorem 9 .

Remark 5. A $D R l$-monoid is an algebraic structure $\mathscr{A}=(A,+, 0, \vee, \wedge, \rightharpoonup, \leftharpoondown)$ of signature $\langle 2,0,2,2,2,2\rangle$, where $(A,+, 0)$ is a monoid, (A, \vee, \wedge) is a lattice, $(A,+, \vee, \wedge, 0)$ is a lattice ordered monoid and the operations \rightharpoonup and \leftharpoondown are left and right dual residuations - see e.g. [6].
There are mutual relations between $G M V$-algebras and $D R l$-monoids which are described in [9], Theorems 12, 13.

Theorem 9. Let \mathscr{A} be a closure $G M V$-algebra and let I be its normal cideal. Then the factor $G M V$-algebra \mathscr{A} / I endowed with the operator Cl_{I} from the preceding Note b) is a closure $G M V$-algebra.

Proof. Let us consider $x \equiv_{I} y$. Then $(\neg x \odot y) \oplus(\neg y \odot x) \in I$, therefore $\neg x \odot y, \neg y \odot x \in I$ and $\mathrm{Cl}(\neg x \odot y), \mathrm{Cl}(\neg y \odot x) \in I$. Further we have

$$
\mathrm{Cl}(\neg y \odot x) \oplus \mathrm{Cl}(y)=\mathrm{Cl}((\neg y \odot x) \oplus y)=\mathrm{Cl}(x \vee y) \geqslant \mathrm{Cl}(x) .
$$

Since \mathscr{A} is actually a $D R l$-monoid, we get

$$
\mathrm{Cl}(\neg y \odot x) \geqslant \mathrm{Cl}(x) \rightharpoonup \mathrm{Cl}(y)=\neg \mathrm{Cl}(y) \odot \mathrm{Cl}(x) .
$$

So we have $\neg \mathrm{Cl}(y) \odot \mathrm{Cl}(x) \in I$, since $\mathrm{Cl}(\neg y \odot x) \in I$. We can show analogously that $\neg \mathrm{Cl}(x) \odot \mathrm{Cl}(y) \in I$. Therefore we can see that $(\neg \mathrm{Cl}(x) \odot \mathrm{Cl}(y)) \oplus(\neg \mathrm{Cl}(y) \odot \mathrm{Cl}(x)) \in I$, so $\mathrm{Cl}(x) \equiv{ }_{I} \mathrm{Cl}(y)$, and the operation Cl_{I} is therefore correctly defined on A / I. Moreover, $\mathrm{Cl}_{I}: A / I \rightarrow A / I$ satisfies axioms 1-4 from Definition 3, because

1. $\mathrm{Cl}_{I}(\bar{a} \oplus \bar{b})=\mathrm{Cl}_{I}(\overline{a \oplus b})=\overline{\mathrm{Cl}(a \oplus b)}=\overline{\mathrm{Cl}(a) \oplus \mathrm{Cl}(b)}=\overline{\mathrm{Cl}(a)} \oplus \overline{\mathrm{Cl}(b)}=\mathrm{Cl}_{I}(\bar{a}) \oplus$ $\mathrm{Cl}_{I}(\bar{b})$,
2. $\mathrm{Cl}_{I}(\bar{a})=\overline{\mathrm{Cl}(a)} \geqslant \bar{a}$,
3. $\mathrm{Cl}_{I}\left(\mathrm{Cl}_{I}(\bar{a})\right)=\mathrm{Cl}_{I}(\overline{\mathrm{Cl}(a)})=\overline{\mathrm{Cl}(\mathrm{Cl}(a))}=\overline{\mathrm{Cl}(a)}=\mathrm{Cl}_{I}(\bar{a})$,
4. $\mathrm{Cl}_{I}(\overline{0})=\overline{\mathrm{Cl}(0)}=\overline{0}$.

Corollary 10. There is a one-to-one correspondence between the normal c-ideals and the congruences of the closure GMV-algebras.

References

[1] Chang, C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467-490
[2] Chang, C. C.: A new proof of the completeness of the Łukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74-80.
[3] Cignoli, R. O. L., D’Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many -Valued Reasoning. Kluwer Acad. Publ., Dordrecht, 2000.
[4] Dvurečenskij, A., Pulmannová, S:: New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht, 2000.
[5] Georgescu, G., Iorgulescu, A.: Pseudo-MV-algebras. Multiple Valued Logic 6 (2001), 95-135.
[6] Kovář, T.: A General Theory of Dually Residuated Lattice Ordered Monoids. Ph.D. Thesis Palacký University, Olomouc, 1996.
[7] Rachůnek, J.: DRl-semigroups and MV-algebras. Czechoslovak Math. J. 48 (1998), 365-372.
[8] Rachuinek, $J .: M V$-algebras are categorically equivalent to a class of $D R l_{1(i)}$-semigroups. Math. Bohem. 123 (1998), 437-441.
[9] Rachuinek, J.: A non-commutative generalization of $M V$-algebras. Czechoslovak Math. J. 52 (2002), 255-273.
[10] Rachưnek, J.: Prime spectra of non-commutative generalizations of $M V$-algebras. Algebra Univers. 48 (2002), 151-169.
[11] Rachůnek, J., Šurček, F.: MV-algebras with additive closure operators. Acta Univ. Palacki., Mathematica 39 (2000), 183-189.
[12] Rasiowa, H., Sikorski, R.: The Mathematics of Metamathematics. Panstw. Wyd. Nauk., Warszawa, 1963.
[13] Swamy, K. L. N.: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105-114.

Author's address: Filip Šurček, Department of Algebra and Geometry, Faculty of Science, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic, e-mail: svrcekf @seznam.cz.

