SIGNED 2-DOMINATION IN CATERPILLARS

Bohdan Zelinka, Liberec
(Received December 19, 2003)

Abstract

A caterpillar is a tree with the property that after deleting all its vertices of degree 1 a simple path is obtained. The signed 2-domination number $\gamma_{\mathrm{s}}^{2}(G)$ and the signed total 2-domination number $\gamma_{\mathrm{st}}^{2}(G)$ of a graph G are variants of the signed domination number $\gamma_{\mathrm{s}}(G)$ and the signed total domination number $\gamma_{\mathrm{st}}(G)$. Their values for caterpillars are studied.

Keywords: caterpillar, signed 2-domination number, signed total 2-domination number

MSC 2000: 05C69, 05C05

This paper concerns caterpillars. A caterpillar [1] is a tree with the property that after deleting all its vertices of degree 1 a simple path is obtained. According to this definition a caterpillar has at least three vertices. But we need not care about graphs with one or two vertices. For such graphs our considerations are trivial.

Let G be a caterpillar. The mentioned simple path will be denoted by B and called the body of the caterpillar G. Let the number of vertices of B be m. Let a_{1}, \ldots, a_{m} be these vertices and let $a_{i} a_{i+1}$ for $i=1, \ldots, m-1$ be the edges of B. By $[m]$ we shall denote the set of integers i such that $1 \leqslant i \leqslant m$. For each $i \in[m]$ let s_{i} be the degree of a_{i} in G. The vector $\vec{s}=\left(s_{1}, \ldots, s_{m}\right)$ will be called the degree vector of the caterpillar G.

Now we shall define variants of the signed domination number and of the signed total domination number [2] of a graph. For a vertex $u \in V(G)$ the symbol $N(u)$ denotes the open neighbourhood of u in G, i.e. the set of all vertices which are adjacent to u in G. The closed neighbourhood of u is $N[u]=N(u) \cup\{u\}$. Similarly the open 2-neighbourhood $N^{2}(u)$ is the set of all vertices having the distance 2 from u in G. The closed 2-neighbourhood of u is $N^{2}[u]=N[u] \cup N^{2}(u)$. If f is a mapping
of $V(G)$ into some set of numbers and $S \subseteq V(G)$, then $f(S)=\sum_{x \in s} f(x)$ and the weight of f is $w(f)=f(V(G))=\sum_{x \in V(G)} f(x)$.

Let $f: V(G) \rightarrow\{-1,1\}$. If $f\left(N^{2}[u]\right) \geqslant 1\left(\right.$ or $\left.f\left(N^{2}(u)\right) \geqslant 1\right)$ for each $u \in V(G)$, then f is called a signed 2-dominating (or signed total 2-dominating, respectively) function on G. The minimum of weights $w(f)$ taken over all signed 2-dominating (or all signed total 2-dominating) functions f is the signed 2-dominating number $\gamma_{\mathrm{s}}^{2}(G)$ (or the signed total 2-domination number $\gamma_{\mathrm{st}}^{2}(G)$, respectively) of G.

For each $i \in[m]$ let $t_{i} \in\{1,2\}$ and $t_{i} \equiv s_{i}+1(\bmod 2)$.
We shall prove a theorem concerning $\gamma_{\mathrm{s}}^{2}(G)$.
Theorem 1. Let G be a caterpillar with the degree vector $\vec{s}=\left(s_{1}, \ldots, s_{m}\right)$ such that $n \geqslant 2$ and $s_{i} \geqslant 3$ for all $i \in[m]$. Then

$$
\gamma_{\mathrm{s}}^{2}(G)=\sum_{i=1}^{m} t_{i}-2 m+2
$$

Proof. Consider a vertex a_{i} with $i \in[m]$. As $s_{i} \geqslant 3$, there exists at least one vertex $u \in N\left(a_{i}\right)$ which does not belong to B and has degree 1. Then $N^{2}[u]=N\left[a_{i}\right]$. Let f be a signed 2-dominating function on G. Then $f\left(N^{2}[u]\right)=f\left(N\left[a_{i}\right]\right) \geqslant 1$. The set $N\left[a_{i}\right]$ has $s_{i}+1$ vertices. If s_{i} is even, then $s_{i}+1$ is odd. At least $\frac{1}{2}\left(s_{i}+2\right)=\frac{1}{2} s_{i}+1$ vertices of $N\left[a_{i}\right]$ must have the value 1 in f and at most $\frac{1}{2} s_{i}$ of them may have the value -1 . Then $f\left(N^{2}[u]\right) \geqslant\left(\frac{1}{2} s_{i}+1\right)-\frac{1}{2} s_{i}=1=t_{i}$. If s_{i} is odd, then s_{i+1} is even and at least $\frac{1}{2}\left(s_{i}+1\right)+1$ vertices of $N\left[a_{i}\right]$ must have the value 1 in f and at most $\frac{1}{2}\left(s_{i}+1\right)-1$ of them may have the value -1 . Then $f\left(N^{2}[u]\right) \geqslant 2=t_{i}$. We may easily construct the function f such that it has the value -1 in exactly $\frac{1}{2} s_{i}$ vertices of degree 1 in $N\left[a_{i}\right]$ with i even and in exactly $\frac{1}{2}\left(s_{i}+1\right)-1=\frac{1}{2}\left(s_{i}-1\right)$ vertices of degree 1 in $N\left[a_{i}\right]$ with i odd. In all other vertices (including all vertices of the body) the function f has the value 1 .

We have $\bigcup_{i=1}^{m} N\left[a_{i}\right]=V(G)$. The vertex a_{1} is contained in exactly two sets $N\left[a_{i}\right]$, namely in $N\left[a_{1}\right]$ and $N\left[a_{2}\right]$. Similarly a_{m} is contained in exactly two sets $N\left[a_{m-1}\right]$, $N\left[a_{m}\right]$. For $i \in[m]-\{1, m\}$ the vertex a_{i} is contained in exactly three sets $N\left[a_{i-1}\right]$, $N\left[a_{i}\right], N\left[a_{i+1}\right]$. Each vertex outside the body is contained in exactly one of these sets. By the Inclusion-Exclusion Principle we have

$$
\begin{aligned}
w(f) & =f(V(G))=\sum_{i=1}^{m} f\left(N\left[a_{i}\right]\right)-2 \sum_{i=2}^{m-1} f\left(a_{i}\right)-f\left(a_{1}\right)-f\left(a_{m}\right) \\
& =\sum_{i=1}^{m} t_{i}-2(m-2)-1-1=\sum_{i=1}^{m} t_{i}-2 m+2 .
\end{aligned}
$$

As f is the minimum function satisfying the requirements, we have

$$
\gamma_{\mathrm{s}}^{2}(G)=w(f)=\sum_{i=1}^{m} t_{i}-2 m+2
$$

An analogous theorem concerns $\gamma_{\mathrm{st}}^{2}(G)$.
Theorem 2. Let G be a caterpillar with the degree vector $\vec{s}=\left(s_{1}, \ldots, s_{m}\right)$ such that $m \geqslant 2$ and $s_{i} \geqslant 4$ for all $i \in[m]$. Then

$$
\gamma_{\mathrm{st}}^{2}(G)=\sum_{i=1}^{m} t_{i}+2
$$

Proof. Consider a vertex a_{i} with $i \in[m]$. As $s_{i} \geqslant 5$, there exists at least one vertex $u \in N\left(a_{i}\right)$ which does not belong to B and has degree 1. Then $N^{2}(u)=$ $N\left(a_{i}\right)-\{u\}$. Let f be a signed total 2-dominating function on G. Then $f\left(N^{2}(u)\right)=$ $f\left(N\left(a_{i}\right)-\{u\}\right) \geqslant 1$. The set $N\left(a_{i}\right)-\{u\}$ has $s_{i}-1$ vertices. If s_{i} is even, then $s_{i}-1$ is odd. At least $\frac{1}{2} s_{i}$ vertices of $N\left(a_{i}\right)-\{u\}$ must have the value 1 in f and at most $\frac{1}{2}\left(s_{i}-2\right)=\frac{1}{2} s_{i}-1$ of them may have the value -1 . Then $f\left(N^{2}(u)\right) \geqslant$ $\frac{1}{2} s_{i}-\left(\frac{1}{2} s_{i}-1\right)=1=t_{i}$. If s_{i} is odd, then $s_{i}-1$ is even and at least $\frac{1}{2}\left(s_{i}-1\right)+1$ vertices of $N\left(a_{i}\right)-\{u\}$ must have the value 1 in f and at most $\frac{1}{2}\left(s_{i}-1\right)-1$ of them may have the value -1 . Then $f\left(N^{2}(u)\right) \geqslant 2=t_{i}$. As $s_{i} \geqslant 5$ for $i \in[m]$, in both these cases we must admit the possibility $f(u)=1$. Then in the case of s_{i} even we have $f\left(N\left(a_{i}\right)\right) \geqslant 2=t_{i}+1$ and in the case of s_{i} odd we have $f\left(N\left(a_{i}\right)\right) \geqslant 3=t_{i}+1$. We may easily construct the function f such that it has the value -1 in $\frac{1}{2} s_{i}-1$ vertices of degree 1 in $N\left(a_{i}\right)$ for s_{i} even, in $\frac{1}{2}\left(s_{i}-1\right)-1=\frac{1}{2}\left(s_{i}-3\right)$ vertices of degree 1 in $S\left(a_{i}\right)$ for s_{i} odd and the value 1 for all other vertices (including all vertices of B). Each vertex a_{j} for $j \in[m]-\{1, m\}$ is contained in two sets $N\left(a_{i}\right)$, namely in $N\left(a_{j-1}\right)$ and $N\left(a_{j+1}\right)$. Each other vertex is contained in exactly one set $N\left(a_{i}\right)$. Again by the Inclusion-Exclusion Principle we have

$$
\begin{aligned}
w(f) & =f(V(G))=\sum_{i=1}^{m} f\left(N\left(a_{i}\right)\right)-\sum_{i=2}^{m-1} f\left(a_{i}\right) \\
& =\sum_{i=1}^{m}\left(t_{i}+1\right)-(m-2)=\sum_{i=1}^{m} t_{i}+m-(m-2)=\sum_{i=1}^{m} t_{i}+2
\end{aligned}
$$

As f is the minimum function satisfying the requirements, we have

$$
\gamma_{\mathrm{st}}^{2}(G)=w(f)=\sum_{i=1}^{m} t_{i}+2
$$

In Figs. 1 and 2 a caterpillar G with the degree vector $(5,6,7)$ is depicted. We have $t_{1}=t_{3}=2, t_{2}=1$ and therefore $\gamma_{\mathrm{st}}^{2}(G)=7$ and $\gamma_{\mathrm{s}}^{2}(G)=1$. In Fig. 1 the values of the corresponding signed total 2-dominating function are illustrated; in the vertices denoted by + the value is 1 and in the vertices denoted by - it is -1 . Similarly in Fig. 2 the corresponding signed 2-dominating function is illustrated.

Fig. 1.

Fig. 2.

In Theorems 1 and 2 we had the assumption $m \geqslant 2$. The following proposition concerns the singular case $m=1$.

Proposition 1. Let G be a caterpillar with the body consisting of one vertex, i.e. a star with the central vertex a_{1} and with $s_{1} \geqslant 2$ vertices of degree 1. Then $\gamma_{\mathrm{st}}^{2}(G)$ is undefined and $\gamma_{\mathrm{s}}^{2}(G)=t_{1}$.

Proof. The open 2-neighbourhood $N^{2}\left(a_{1}\right)=\emptyset$ and thus $f\left(N^{2}\left(a_{1}\right)\right)=0$ for any function $f: V(G) \rightarrow\{-1,1\}$, hence none of such functions might be signed total 2-dominating in G. On the other hand, $N^{2}\left[a_{1}\right]=V(G)$ and $|V(G)|=s_{1}+1$. Analogously as in the proofs of Theorems 1 and 2 we prove that for s_{1} even we have $\gamma_{\mathrm{s}}^{2}(G)=1=t_{1}$ and for s_{1} odd we have $\gamma_{\mathrm{s}}^{2}(G)=2=t_{1}$.

Proposition 2. Let G be a caterpillar with $m \equiv 2(\bmod 5), m \geqslant 5, s_{i}=3$ for all $i \in[m]$. Then $\gamma_{\mathrm{st}}^{2}(G) \leqslant \frac{4}{3}(m+3)+2$, while $\sum_{i=1}^{m} t_{i}+2=2(m+1)$.

Proof. As $s_{i}=3$ for each $i \in[m]$, we have $t_{i}=2$ for each $i \in[m]$. Each vertex a_{i} for $i \in[m]-\{1, m\}$ is adjacent to exactly one vertex v_{i} of degree 1 . The vertex a_{1} is adjacent to two such vertices v_{1}, w_{1} and similarly a_{m} to v_{m}, w_{m}. Let $f: V(G) \rightarrow\{-1,1\}$ be defined so that $f\left(v_{i}\right)=-1$ for $i \equiv 0(\bmod 3)$ and $f(u)=1$ for all other vertices u. This is a signed total 2-dominating function on G (this can be easily verified by the reader) and $w(f)=\frac{1}{3}(4 m+10)$. Therefore $\gamma_{\mathrm{st}}^{2}(G) \leqslant \frac{1}{3}(4 m+10)$, while $\sum_{i=1}^{m} t_{i}+2=2(m+1)$. For $m \geqslant 3$ we have $\frac{1}{3}(4 m+10)<2(m+1)$.

In Fig. 3 we see such a caterpillar for $m=8$ with the corresponding function f. In this case $\gamma_{\mathrm{st}}^{2}(G)=14, \sum_{i=1}^{m} t_{i}+2=18$. For the signed 2-domination number

Fig. 3.
here Theorem 1 holds. In Fig. 4 the same caterpillar is depicted with the function f realizing the signed domination number $\gamma_{\mathrm{s}}^{2}(G)=\sum_{i=1}^{m} t_{i}-2 m+2=2$.

Fig. 4.
Proposition 3. Let G be a caterpillar with $m \geqslant 2$ and $s_{i}=2$ for each $i \in[m]$. Then $\sum_{i=1}^{m} t_{i}-2 m+2<\gamma_{\mathrm{s}}^{2}(G)$, but $\sum_{i=1}^{m} t_{i}+2=\gamma_{\mathrm{st}}^{2}(G)$.

Proof. The caterpillar thus described is a simple path of length $m+1$. It has $m+2$ vertices. The inequality $\gamma_{\mathrm{s}}^{2}(G) \leqslant \sum_{i=1}^{m} t_{i}-2 m+2$ would imply that there exists a signed 2 -dominating function f which has the value -1 in m vertices, while the value 1 only in two vertices. This is evidently impossible. On the other hand the open 2-neighbourhood of any vertex consists of at most two vertices and therefore the unique signed total 2-dominating function is the constant function equal to 1 in the whole set $V(G)$. Then

$$
\gamma_{\mathrm{st}}^{2}(G)=w(f)=\sum_{i=1}^{m} t_{i}+2=m+2
$$

Now we shall study the signed 2-domination number of a simple path P_{n} with n vertices (i.e. of length $n-1$). We shall not use the notation for caterpillars used above, but we shall denoted the vertices by u_{1}, \ldots, u_{n} and edges by $u_{i} u_{i+1}$ for $i=$ $1, \ldots, n-1$.

Theorem 3. Let P_{n} be a path with n vertices. If $n \equiv 0(\bmod 5)$, then $\gamma_{\mathrm{s}}^{2}\left(P_{n}\right)=$ $\frac{1}{5} n$. In general, asymptotically $\gamma_{\mathrm{s}}^{2}\left(P_{n}\right) \approx\left\lfloor\frac{1}{5} n\right\rfloor$.

Proof. If $n \equiv 0(\bmod 5)$, then the closed neighbourhood $N^{2}\left[u_{i}\right]=\left\{u_{i-2}, u_{i-1}\right.$, $\left.u_{i}, u_{i+1}, u_{i+2}\right\}$ for $i \equiv 3(\bmod 5), 3 \leqslant i \leqslant n-2$, form a partition of $V\left(P_{n}\right)$. Let f
be a signed 2-dominating function on P_{n}. Then f must have the value 1 in at least three vertices and may have the value -1 in at most two vertices of each class of this partition. Then $w(f) \geqslant \frac{3}{5} n=\frac{1}{5} n$. A function f for which the equality occurs may be defined so that $f\left(u_{i}\right)=-1$ for $i \equiv 0(\bmod 5)$ and $i \equiv 1(\bmod 5)$ and $f\left(u_{1}\right)=1$ for $i \equiv 2(\bmod 5), i \equiv 3(\bmod 5)$ and $i \equiv 4(\bmod 5)$. Therefore $\gamma_{\mathrm{s}}^{2}\left(P_{n}\right)=w(f)=\frac{1}{5} n$.

Now let $m \equiv r(\bmod 5), r \leqslant 4$. Let $q=n-r$. We have $q \equiv 0(\bmod 5)$ and thus $\gamma_{\mathrm{s}}^{2}\left(P_{q}\right)=\frac{1}{5} q$. The path P_{n} is obtained from P_{q} by adding a path with r vertices. Let g be a minimum signed 2-dominating function on P_{n}, let g_{0} be its restriction to P_{q}. We have $w\left(g_{0}\right)=\frac{1}{5} q$. Now the vertices of P_{n} not in P_{q} may have values 1 or -1 in g and thus $\frac{1}{5} q-r \leqslant w(g) \leqslant \frac{1}{5} q+r$. In general, $\frac{1}{5} q-4 \leqslant \gamma_{\mathrm{s}}^{2}\left(P_{n}\right) \leqslant \frac{1}{5} q+4$. This implies

$$
\frac{9}{5 n}-\frac{4}{n} \leqslant \frac{\gamma_{\mathrm{s}}^{2}\left(P_{n}\right)}{n} \leqslant \frac{9}{5 n}+\frac{4}{n}
$$

Therefore $\lim _{n \rightarrow \infty} \frac{\gamma_{\mathrm{s}}^{2}\left(P_{n}\right)}{n}=\frac{9}{5 m}$ and thus $\gamma_{\mathrm{s}}^{2}\left(P_{n}\right) \approx \frac{9}{5}=\left\lfloor\frac{n}{5}\right\rfloor$.
In Fig. 5 we see a path P_{15} (with $\left.\gamma_{\mathrm{s}}^{2}\left(P_{15}\right)=3\right)$ in which the corresponding signed 2-dominating function is illustrated.

Fig. 5.
As has already been mentioned, $\gamma_{\mathrm{st}}^{2}\left(P_{n}\right)=n$ for each positive integer n.
Without a proof we shall state the values of $\gamma_{\mathrm{s}}^{2}\left(P_{n}\right)$ for $n \leqslant 4$. We have $\gamma_{\mathrm{s}}^{2}\left(P_{1}\right)=1$, $\gamma_{\mathrm{s}}^{2}\left(P_{2}\right)=2, \gamma_{\mathrm{s}}^{2}\left(P_{3}\right)=1, \gamma_{\mathrm{s}}^{2}\left(P_{4}\right)=2$.

References

[1] A. Recski: Maximal results and polynomial algorithms in VLSI routing. Combinatorics, Graphs, Complexity. Proc. Symp. Prachatice, 1990. JČMF Praha, 1990.
[2] T. W. Haynes, S. T. Hedetniemi, P. J. Slater: Fundamentals of Domination in Graphs. Marcel Dekker, New York, 1998.

