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Abstract. In this paper we give a representation theorem for the orthogonally additive
functionals on the space BV in terms of a non-linear integral of the Henstock-Kurzweil-
Stieltjes type.
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1. Introduction

Orthogonally additive functionals on function spaces have been studied by Orlicz

and other authors; see references in [4]. In particular, Chew [4] proved a repre-

sentation theorem for orthogonally additive functionals on the Denjoy space, the

space of all Henstock-Kurzweil integrable functions on an interval [a, b], in terms of a

nonlinear Henstock-Kurzweil integral. Also, a representation theorem for boundedly

continuous linear functionals defined on BV , the space of all functions of bounded

variation, has been proved by Hildebrandt [3] using the left Cauchy integral. In

this paper we prove a representation theorem for orthogonally additive functionals

defined on BV , making use of the nonlinear integral and hence extending the result

of Hildebrandt.

Let BV denote the space of functions of bounded variation on [a, b], that is,

f ∈ BV if the total variation V (f) of f on [a, b] is finite. A functional F defined

on BV is orthogonally additive if F (f + g) = F (f) + F (g) for all f , g ∈ BV such

that f(x)g(x) = 0 except for finitely many x in [a, b]. A functional F is said to be

boundedly continuous on BV if F (fn) → F (f) as n → ∞ whenever for every x ∈

[a, b], fn(x) → f(x) as n → ∞ and there existsM > 0 such that V (fn) 6 M for every

n. In this paper we shall prove that if F is an orthogonally additive and boundedly
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continuous functional on BV , then F can be represented by a non-linear integral of

the Henstock-Kurzweil-Stieltjes type. The full detail is given in Theorem 3.

2. A non-linear integral

We introduce a non-linear integral of the Henstock-Kurzweil-Stieltjes type [4,

p. 81]. Let h = h(s, I) be a point-interval function defined for s being a real number

and I = [u, v] ⊂ [a, b]. A real-valued function f is said to be h-integrable to A on

a compact interval [a, b] if for every ε > 0 there is a function δ(ξ) > 0 for ξ ∈ [a, b]

such that for any division D of [a, b] given by a = x0 < x1 < . . . < xn = b, with

ξ1, ξ2, . . . , ξn satisfying ξi ∈ [xi−1, xi] ⊂ (ξi − δ(ξi), ξi + δ(ξi)) for i = 1, 2, . . . , n, we

have
∣

∣

∣

∣

n
∑

i=1

h(f(ξi), [xi−1, xi]) − A

∣

∣

∣

∣

< ε.

For brevity, we write D = {(ξ, [u, v])} where (ξ, [u, v]) denotes a typical point-

interval pair (ξi, [xi−1, xi]) in D, and also we write the Riemann sum in the form

(D)
∑

h(f(ξ), [u, v]). Here D is said to be δ-fine if the above condition holds. In

short, f is h-integrable on [a, b] if for every ε > 0, there is a positive function δ such

that for any δ-fine division D = {(ξ, [u, v])} of [a, b] we have

∣

∣

∣
(D)

∑

h(f(ξ), [u, v]) − A
∣

∣

∣
< ε.

For simplicity, we write the h-integral
∫ b

a
h(f(x), dx) = A. For example, when δ is

a constant function and h(f(x), [u, v]) = f(x)[g(v) − g(u)], the h-integral reduces to

the well-known Riemann-Stieltjes integral.

We give a list of conditions on h(s, I) which guarantee that the h-integral becomes

meaningful.

(N1) h(0, I) = 0 for all intervals I ⊂ [a, b].

(N2) h(s, I), as a function of s, is continuous on the real line for all intervals

I ⊂ [a, b].

(N3) h(s, I), as a function of I , is additive, i.e., h(s, I1 ∪ I2) = h(s, I1) + h(s, I2)

whenever I1, I2 are nonoverlapping and adjacent, for all I1, I2 ⊂ [a, b]. That is,

I1 ∪ I2 is again an interval.

(N4) For every M > 0 and for every ε > 0 there exists η > 0 such that

∣

∣

∣

∣

p
∑

i=1

h(si, Ii) −

p
∑

i=1

h(ti, Ii)

∣

∣

∣

∣

< ε
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whenever |si − ti| < η, |si| 6 M , |ti| 6 M for every i and I1, I2, . . . , Ip are pairwise

nonoverlapping.

Here we note that N2 follows from N4. For easy reference, we keep to the same

labelling of conditions as in P.Y. Lee [4, p. 82] for N1 to N4. In our case, N5 in

P.Y. Lee [4, p. 82] is not used. For reference, we state N5 here.

(N5) For every M > 0 and for every ε > 0 there exists η > 0 such that

|
p
∑

i=1

h(si, Ii)| < ε whenever
p
∑

i=1

|Ii| < η, |si| 6 M , for every i and I1, I2, . . . , Ip

are nonoverlapping.

Furthermore, we state one more condition, namely N6, as required for our case.

(N6) For every M > 0 and |s| 6 M , the limit lim
u↑c

h(s, [u, c]) exists for c ∈ (a, b]

and so does lim
v↓c

h(s, [c, v]) for c ∈ [a, b).

We remark that N5 is an essential condition in [4]. Here it is N6 that we need.

Note that N5 implies N6 but not conversely. In what follows and throughout the

paper, we assume that h(s, I) is fixed and satisfies N1–N4 and N6. For other papers

on the nonlinear integral, see references in [4], [5].

A function g∗ defined on [a, b] is said to be a normalized function of g if g∗(x) =
1
2 [g(x+) + g(x−)] for every x ∈ (a, b) and g∗(a) = g(a+), g∗(b) = g(b−).

Lemma 1. If h(s, I) satisfies N1–N4 and N6, then
∫ b

a
h(ϕ(x), dx) exists for any

step function ϕ.

���������
. It is sufficient to prove the lemma for ϕ = χ[c,d], for some [c, d] ⊆ [a, b].

In view of N6, we can prove that

∫ b

a

h(ϕ(x), dx) = lim
u→c−

h(s, [u, c]) + h(s, [c, d]) + lim
v→d+

h(s, [d, v]).

�

Theorem 1. Let {fn} be a sequence of h-integrable functions uniformly bounded

on [a, b]. If {fn} is uniformly convergent to f on [a, b], then f is h-integrable on [a, b]

and lim
n→∞

∫ b

a
h(fn(x), dx) =

∫ b

a
h(f(x), dx).

The proof is standard and therefore omitted [5].

A function f defined on [a, b] is said to be a regulated function [1] if f is the limit

of a uniformly convergent sequence of step functions on [a, b].

Corollary 1. If f is a regulated function, then it is h-integrable on [a, b].
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3. Continuous functionals

We introduce two more continuity concepts of functionals on BV. A sequence {fn}

is bounded in BV if there is M > 0 such that V (fn) 6 M for all n. Also we write

‖f‖ = sup{|f(x)| : a 6 x 6 b}. A functional F is said to be uniformly continuous on

BV if F (fn) − F (gn) → 0 as n → ∞ whenever ‖fn − gn‖ → 0 as n → ∞ with {fn}

and {gn} bounded in BV. Further, a functional F is said to be two-norm continuous

on BV if it is uniformly continuous with gn replaced by f. It is obvious that if F is

uniformly continuous on BV , then F is two-norm continuous on BV. It is well-known

that functions of bounded variation satisfy Helly’s choice property [2], [8]. It states

that if a sequence {gn} is bounded in BV , then there is a subsequence {fk} of {gn}

and a function f ∈ BV such that for every x ∈ [a, b], fk(x) → f(x) as n → ∞.

Lemma 2. If F is boundedly continuous on BV , then F is uniformly continuous

on BV.

���������
. Suppose F is boundedly continuous on BV. Take two sequences {fn}

and {gn} in BV such that ‖fn − gn‖ → 0 as n → ∞ and {fn}, {gn} are bounded

in BV. Since BV satisfies Helly’s choice property, we obtain a subsequence of {fn},

denoted by {fni
}, such that fni

is boundedly convergent to f on [a, b]. Further, take a

subsequence of {gn}, denoted by {gni
}, such that for every x ∈ [a, b], gni

(x) → g(x).

In view of ‖fn − gn‖ → 0, we have for every x ∈ [a, b], gni
(x) → f(x) as ni → ∞.

Since F is boundedly continuous, F (fni
) − F (f) → 0 and F (gni

) − F (f) → 0 as

ni → ∞. Therefore, F (fni
) − F (gni

) → 0 as ni → ∞. Consequently, F is uniformly

continuous on BV. �

Theorem 2. Suppose h(s, I) satisfies N1–N4 and N6. If a functional F defined

on BV is given by F (f) =
∫ b

a
h(f(x), dx) for every f ∈ BV , then F is orthogonally

additive and uniformly continuous on BV. Furthermore, F is two-norm continuous

on BV.

���������
. The orthogonal additivity follows from N1. Next, take fn, gn ∈ BV

such that ‖fn − gn‖ → 0 as n → ∞ and {fn}, {gn} are bounded in BV. Since fn

and gn are h-integrable on [a, b], for every ε > 0 and every n there exists a function

δn(ξ) > 0 such that for every δn-fine division D = {(ξ, [u, v])} of [a, b] we have

∣

∣

∣
F (fn) − (D)

∑

h(fn(ξ), [u, v])
∣

∣

∣
<

ε

3
and

∣

∣

∣
F (gn) − (D)

∑

h(gn(ξ), [u, v])
∣

∣

∣
<

ε

3
.

Since ‖fn − gn‖ → 0 as n → ∞ and N4 holds with si = fn(ξi) and ti = gn(ξi),

we can show that |(D)
∑

h(fn(ξ), [u, v]) − (D)
∑

h(gn(ξ), [u, v])| < ε
3 for large n.
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Consequently, F (fn)−F (gn) → 0 as n → ∞. Therefore F is a uniformly continuous

functional on BV.

Finally, the two-norm continuity follows from the definition. �

We remark that, as shown in [4], if h(s, I) satisfies N1–N5, then the functional

F defined by the h-integral is boundedly continuous. Since we have not had N5 in

Theorem 2, bounded continuity does not follow.

4. Representation theorem on BV

In this section we give a series of lemmas leading to the main theorem which is the

representation theorem for boundedly continuous orthogonally additive functionals

on BV.

Lemma 3. If f ∈ BV , then there exists a sequence of step functions fn such that

‖fn − f‖ → 0 as n → ∞ and {fn} is bounded in BV.

The proof is standard and therefore omitted.

Lemma 4. If F is an orthogonally additive and boundedly continuous functional

on BV , then h(s, I) satisfies N1–N4 and N6, where h(s, I) = F (sχ∗
I) and χ∗

I is the

normalized function of the characteristic function χI of I = [u, v].
���������

. The proofs of N1 and N3 follow from the orthogonal additivity and the

proof of N2 from the fact that F is a boundedly continuous functional on BV.

We now proveN4. Suppose it is false. Then we shall deduce that F is not uniformly

continuous on BV. In view of Lemma 2, this contradicts the fact that F is boundedly

continuous on BV.

If N4 does not hold, then there exist M > 0 and ε > 0 for every η > 0 such that

there exist xi, yi and Ii, 1 6 i 6 k, pairwise nonoverlapping, satisfying |xi| 6 M ,

|yi| 6 M , |xi − yi| < η for every i and |
k
∑

i=1

h(xi, Ii) −
k
∑

i=1

h(yi, Ii)| > ε. Take η = 1
n
.

Then there exist xn,i, yn,i and In,i, 1 6 i 6 kn, such that |xn,i − yn,i| < 1
n
for every

i, |xn,i| 6 M , |yn,i| 6 M and

∣

∣

∣

∣

kn
∑

i=1

h(xn,i, In,i) −

kn
∑

i=1

h(yn,i, In,i)

∣

∣

∣

∣

> ε.

Put fn =
kn
∑

i=1

xn,iχ
∗
In,i
and gn =

kn
∑

i=1

yn,iχ
∗
In,i

. Then we have ‖fn‖ 6 M , ‖gn‖ 6 M

for every n and ‖fn − gn‖ 6 1
n
→ 0 as n → ∞, but |F (fn) − F (gn)| > ε. That is, F

is not uniformly continuous on BV.
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We now prove N6. Take un ↑ c as n → ∞. Then sχ∗
[un,c] is pointwise convergent to

sχ∗
[c,c] and ‖sχ∗

[un,c]‖ 6 |s| for every n. Put fn = sχ∗
[un,c] and f = sχ∗

[c,c]. Obviously,

fn is boundedly convergent to f in BV. Since F is a boundedly continuous functional

on BV , we have |F (fn) − F (f)| → 0 as n → ∞. That is, lim
un↑c

h(s, [un, c]) exists and

similarly, we can prove that lim
vn↓c

h(s, [c, vn]) exists. �

Note that we require χ∗
I in the definition of h(s, I) in order to prove N3. Replacing

χ∗
I by χI would not be sufficient.

Lemma 5. Suppose F is an orthogonally additive and boundedly continuous

functional on BV and h(s, I) satisfies N1–N4 and N6 where h(s, I) = F (sχ∗
I). Then

the h-integral exists and F (f) =
∫ b

a
h(f(x), dx) for every normalized f ∈ BV.

���������
. In view of Lemma 3, it is sufficient to prove the assertion for every

normalized step function ϕ. Let ϕ be the step function which we have defined in

Lemma 1. Then by Lemma 1,
∫ b

a
h(ϕ(x), dx) exists and

∫ b

a
h(ϕ(x), dx) = A. Then

there exist δn(ξ) > 0 for ξ ∈ [a, b] and a δn-fine division Dn = {(ξ, [un, vn])} of [a, b]

such that
∣

∣

∣
(Dn)

∑

h(ϕ(ξ), [un, vn]) − A
∣

∣

∣
<

1

n
.

Denote ϕn = (Dn)
∑

ϕ(ξ)χ∗
[un,vn]. We may choose Dn so that for every x ∈ [a, b],

ϕn(x) → ϕ(x) as n → ∞. Then ϕn is boundedly convergent to ϕ in BV. Since F

is a boundedly continuous functional on BV , we have F (ϕn) → F (ϕ) as n → ∞.

Since h(s, I) = F (sχ∗
I), we have (Dn)

∑

h(ϕ(ξ), [un, vn]) = F ((Dn)
∑

ϕ(ξ)χ∗
[un,vn])

and therefore F (ϕ) = lim
n→∞

F (ϕn) = A =
∫ b

a
h(ϕ(x), dx). �

We state the main theorem of this paper as follows:

Theorem 3. If F is an orthogonally additive and boundedly continuous functional

on BV , then there exists h(s, I) satisfying N1–N4 and N6 such that

F (f) =

∫ b

a

h(f∗(x), dx) +

∞
∑

i=1

F ([f(ti) − f∗(ti)]δti
)

for every f ∈ BV , where δt(x) = 1 when x = t and 0 otherwise, ti, i = 1, 2, . . ., are

the discontinuity points of f , and f∗ is the normalized function of f.

���������
. Let f∗ be the normalized function of f. Then F (f) = F (f ∗)+F (f−f∗).

It follows from Lemma 5 that F (f∗) =
∫ b

a
h(f∗(x), dx) and it remains to prove

F (f − f∗) =
∞
∑

i=1

F ([f(ti) − f∗(ti)]δti
).
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Let ti, i = 1, 2, . . ., be the discontinuity points of f. Then we have (f − f ∗)(x) =
∞
∑

i=1

[f(ti)− f∗(ti)]δti
(x). Since

∞
∑

i=1

[f(ti)− f∗(ti)]δti
(x) converges for every x, we have

∞
∑

i=n

[f(ti) − f∗(ti)]δti
(x) → 0 as n → ∞. Also, {

∞
∑

i=n

[f(ti) − f∗(ti)]δti
} is bounded

in BV. By Lemma 2 and Helly’s choice property, F is two-norm continuous on BV

and therefore lim
n→∞

F (
∞
∑

i=n

[f(ti) − f∗(ti)]δti
) = 0. That is,

∞
∑

i=n

F ([f(ti) − f∗(ti)]δti
)

converges and

F (f − f∗) =

∞
∑

i=1

F ([f(ti) − f∗(ti)]δti
).

The fact that h(s, I) satisfies N1–N4 and N6 follows from Lemma 4. �

When F is boundedly continuous and linear in Theorem 3, we have h(s, I) = sg1(I)

where g1(I) = F (sχI ). Here F (sχ∗
I) = sF (χI). In view of N6 and the fact that f

is a regulated function if and only if it has one-sided limits, we obtain that g1 is

a regulated function. Further, write g2(t) = F (δt) for t ∈ [a, b]. We can prove by

contradiction to the bounded continuity of F that g2 is bounded on [a, b]. Hence we

obtain a corollary of Theorem 3 as follows:

Corollary 2. If F is a linear and boundedly continuous functional on BV , then

there exist a regulated function g1 and a bounded function g2 such that

F (f) =

∫ b

a

f∗ dg1 +

∞
∑

i=1

[f(ti) − f∗(ti)]g2(ti)

for every f ∈ BV , where ti, i = 1, 2, . . ., are the discontinuity points of f and f ∗ is

the normalized function of f.

This is equivalent to a result by Hildebrandt [3]. In his version, he expressed it in

terms of the left or right Cauchy integral.

5. The space of regulated functions

A corresponding result of Theorem 3 holds true for the space RF of all regulated

functions. We shall sketch a proof in this section. We shall define the boundedness

of a sequence in RF and the bounded continuity of a functional on RF.

It is known [2, p. 48] that f ∈ RF if and only if for every ε > 0 the bounded

ε-variation Vε(f) of f on [a, b] is finite, where

Vε(f) = inf{V (g) : g ∈ BV and |f(x) − g(x)| 6 ε for every x ∈ [a, b]},
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where ε is given and fixed. A sequence {fn} is said to be bounded in RF if for every

ε > 0 there exists Mε > 0 such that ‖fn‖ 6 Mε and Vε(fn) 6 Mε for all n. Then a

functional F on RF is said to be boundedly continuous if F (fn) → F (f) as n → ∞

whenever for every x ∈ [a, b], fn(x) → f(x) as n → ∞ and {fn} is bounded in RF.

Furthermore, Helly’s choice theorem for RF was proved by Dana Franková in [2,

Theorem 3.8, p. 51].

Theorem 4. Suppose {gn} is bounded in RF. Then there is a subsequence {fk}

of {gn} and a function f ∈ RF such that for every x ∈ [a, b], fk(x) → f(x) as

n → ∞.

Then following the same argument as above, we obtain results analogous to The-

orem 3 and Corollary 2 with BV replaced by RF.

Theorem 5. If F is an orthogonally additive and boundedly continuous functional

on RF , then there exists h(s, I) satisfying N1–N4 and N6 such that

F (f) =

∫ b

a

h(f∗(x), dx) +

∞
∑

i=1

F ([f(ti) − f∗(ti)]δti
)

for every f ∈ RF , where δt(x) = 1 when x = t and 0 otherwise, ti, i = 1, 2, . . ., are

the discontinuity points of f , and f∗ is the normalized function of f.

Corollary 3. If F is a linear and boundedly continuous functional on RF , then

there exist a function g1 ∈ BV and a function g2 such that the infinite series below

converges and

F (f) =

∫ b

a

f∗ dg1 +

∞
∑

i=1

[f(ti) − f∗(ti)]g2(ti)

for every f ∈ RF , where ti, i = 1, 2, . . ., are the discontinuity points of f , and f ∗ is

the normalized function of f.

A special case of Corollary 3 has been proved by Tvrdý [7], where every function

in RF is assumed to be normalized.
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