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Abstract. A weak form of the Henstock Lemma for the PoU-integrable functions is given.
This allows to prove the existence of a scalar Volterra derivative for the PoU-integral.
Also the PoU-integrable functions are characterized by means of Pettis integrability and a
condition involving finite pseudopartitions.
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1. Introduction

In [8] and [9] J. Jarník and J.Kurzweil introduced an integration process (called

PU-integral) for real valued functions on an interval of 
 n with the use of suitably

regularC1-partitions of unity, instead of the usual partitions. The PU-integral is non-

absolutely convergent and in dimension one falls properly in between the Lebesgue

and the Kurzweil-Henstock integrals.

In [4], without assuming any regularity condition for the applied partition of unity,

there is studied an integral (called the PoU-integral) for Banach valued functions

defined on a σ-finite quasi-Radon measure space. In particular it is proved that it is

equivalent to the generalized McShane integral as defined by Fremlin in [6].

Here we continue the investigation of the vector valued PoU-integrable functions

started in [4]. In Section 3, using a form of the Henstock Lemma (see Proposition 1),

we characterize the Pettis integrable functions which are also PoU-integrable by

means of finite pseudopartitions (Theorem 1).

In Section 4, using a suitable derivation base satisfying the strong Vitali covering

condition, we prove the existence of a scalar form of the Volterra derivative of the
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PoU-integral (Theorem 2). We observe that a stronger form of Volterra derivative

for an operator associated to a PoU-integrable function cannot exist (see Remark 4).

2. Notations and definitions

Let (Ω, T , F , µ) be a non-empty σ-finite outer regular quasi-Radonmeasure space,

where T is the family of the open sets in Ω, and F is the family of all µ-measurable

sets. Unless specified otherwise, the terms “measure”, “measurable” and “almost

everywhere” (briefly “a.e.”) are referred to the measure µ. For a set E, we denote

by χE the characteristic function of E. A set E ⊂ Ω is called negligible if µ(E) = 0.

Given a function θ ∈ L1(Ω, 
 ), we set Sθ = {ω ∈ Ω: θ(ω) 6= 0}. A generalized

McShane partition (or simply an Mc-partition) (see [6] Definitions 1A) in Ω is a

countable (eventually finite) set of pairs P = {(Ei, ωi) : i = 1, 2, . . .} where (Ei)i

is a disjoint family of measurable sets of finite measure and ωi ∈ Ω for each i =

1, 2 . . .. If µ
(

Ω \
⋃

i

Ei

)

= 0, we say that P is an Mc-partition of Ω. A generalized

pseudopartition (or simply a pseudopartition) in Ω is a countable (eventually finite)

set of pairs Q = {(θi, ωi) : i = 1, 2, . . .} where, for each i = 1, 2, . . ., ωi ∈ Ω and

θi : Ω → 
 are nonnegative measurable functions such that the sets Sθi
are of positive

finite measure and
∑

i

θi 6 1 a.e. in Ω. If
∑

i

θi = 1 a.e. in Ω, we say that Q is a

pseudopartition of Ω.

Note that if P = {(Ei, ωi) : i = 1, 2, . . .} is an Mc-partition in Ω, then P∗ =

{(χEi
, ωi) : i = 1, 2, . . .} is a pseudopartition in Ω, called the pseudopartition induced

by P . A gauge on Ω is a function ∆: Ω → T such that ω ∈ ∆(ω) for each ω ∈ Ω.

We say that an Mc-partition {(Ei, ωi) : i = 1, 2, . . .} (respectively a pseudopartition

{(θi, ωi) : i = 1, 2, . . .}) is subordinate to a gauge ∆ if Ei ⊂ ∆(ωi) (resp.Sθi
⊂ ∆(ωi))

for i = 1, 2, . . ..

�
���������
1. If P = {(Ei, ωi) : i = 1, 2, . . .} is an Mc-partition subordinate to a

gauge ∆, then the pseudopartition P ∗ induced by P is also subordinate to ∆.

�
���������
2. It has been proved by Fremlin (see [6], Remark 1B (d)) that corre-

sponding to each gauge ∆ there is an Mc-partition of Ω subordinate to ∆. Therefore

by Remark 1 the set of pseudopartitions subordinate to any gauge ∆ is not empty.

From now on X is a real Banach space with dual X∗ and B(X∗) is the closed unit

ball of X∗.

Definition 1. We recall the following definitions.

a) A function f : Ω → X is said to be Pettis integrable if x∗f is Lebesgue integrable

on Ω for each x∗ ∈ X∗, and for every measurable set E ⊂ Ω there is a vector
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ν(E) =
∫

E
f ∈ X such that x∗(ν(E)) =

∫

E
x∗f(ω) dµ for all x∗ ∈ X∗. The set

function ν : F → X is called the indefinite Pettis integral of f .

As it is known (cf. [1]) ν is a countably additive vector measure, continuous with

respect to µ (in the sense that for each ε > 0 there is η > 0 such that if µ(E) < η

then ‖ν(E)‖ < ε).

b) A function f : Ω → X is said to be McShane integrable (see [6] Definitions 1A)

(briefly Mc-integrable), with McShane integral z ∈ X if for each ε > 0 there exists a

gauge ∆: Ω → T such that

lim sup
n

∥

∥

∥

∥

z −
∑

i6n

µ(Ei)f(ωi)

∥

∥

∥

∥

< ε

for each Mc-partition {(Ei, ωi) : i = 1, 2 . . .} of Ω subordinate to ∆.

If f is an Mc-integrable function on Ω we set z = (Mc)
∫

Ω f .

Definition 2 (see [4] Definition 2). A function f : Ω → X is said to be PoU-

integrable with PoU-integral z ∈ X if for each ε > 0 there exists a gauge ∆: Ω → T

such that

lim sup
n

∥

∥

∥

∥

z −
∑

i6n

f(ωi)

∫

Ω

θi

∥

∥

∥

∥

< ε

for each pseudopartition {(θi, ωi) : i = 1, 2, . . .} of Ω subordinate to ∆.

If f is a PoU-integrable function on Ω we set z = (PoU)
∫

Ω f .

�
���������
3. It has been proved that the family of Mc-integrable functions coin-

cides with the family of PoU-integrable ones (see [4] Corollary 1).

3. PoU-integral

The following proposition is a form of the Henstock Lemma for PoU-integrable

functions.

Proposition 1. Let f : Ω → X be a PoU-integrable function. Then for each

ε > 0 there exists a gauge ∆: Ω → T such that

∥

∥

∥

∥

n
∑

i=1

(

f(ωi)

∫

Ω

θi − (PoU)

∫

Ω

θif

) ∥

∥

∥

∥

< ε

for each finite pseudopartition {(θi, ωi) : i = 1, . . . , n} in Ω subordinate to ∆.
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���������
. By [4] Corollary 2 for each measurable, nonnegative real valued bounded

function θ, also the function θf is PoU-integrable and
∫

Ω θf is well defined. Fix ε > 0

and find a gauge ∆1 : Ω → T such that

(1) lim sup
n

∥

∥

∥

∥

(PoU)

∫

Ω

f −
∑

i6n

f(ωi)

∫

Ω

θi

∥

∥

∥

∥

<
ε

4

for each pseudopartition {(θi, ωi) : i = 1, 2, . . .} of Ω subordinate to ∆. By Remark 3

the function f is Mc-integrable, thus according to [6] Lemma 2B we can find a gauge

∆2 such that

(2)

∥

∥

∥

∥

(Mc)

∫

E

f −
∑

i6n

f(ωi)µ(Ei)

∥

∥

∥

∥

<
ε

4

whenever {(Ei, ωi) : i = 1, . . . , n} is a finite Mc-partition in Ω subordinate to ∆2

and
n
⋃

i=1

Ei = E. Set ∆(ω) = ∆1(ω) ∩ ∆2(ω). Let {(θi, ωi) : i = 1, . . . , p} be a

finite pseudopartition in Ω subordinate to ∆. If S =
p
⋃

i=1

Sθi
then

p
∑

i=1

θi 6 χS . Set

S1 = Sθ1
, S2 = Sθ2

\ S1, . . . , Sp = Sθp
\

p−1
⋃

i=1

Si. Without loss of generality, we can

assume that
(

1 −
p
∑

i=1

θi

)

> 0. Define

θp+i =

(

1 −

p
∑

j=i

θj

)

χSi
.

Let Q = {(θ1, ω1), . . . , (θp, ωp), (θp+1, ω1), . . . , (θ2p, ωp)}. Then Q is a finite pseu-

dopartition subordinate to ∆, indeed for i = 1, . . . , p

Sθp+i
= Si ⊂ ∆(ωi).

Moreover

(3)

2p
∑

i=1

θi = χS .

As S is a measurable subset of Ω, according to [6] Theorem 1N, for each partition

{(Fj , uj) : j = 1, 2, . . .} of Ω \ S subordinate to ∆, we have

(4) lim sup
m

∥

∥

∥

∥

(Mc)

∫

Ω\S

f −
∑

j6m

µ(Fj)f(uj)

∥

∥

∥

∥

<
ε

4
.
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Now let {(Fj , uj) : j = 1, 2, . . .} be a fixed partition satisfying (4). For j = 1, 2, . . .,

set θ2p+j = χFj
and ω2p+j = uj , then R = {(θi, ωi) : i = 1, 2, . . .} is a pseudopartition

of Ω subordinate to ∆, therefore

(5) lim sup
n

∥

∥

∥

∥

(PoU)

∫

Ω

f −
∑

i6n

f(ωi)

∫

Ω

θi

∥

∥

∥

∥

<
ε

4
.

Let x∗ ∈ B(X∗). For n > 2p, by (3), we get

∣

∣

∣

∣

p
∑

i=1

x∗

[

f(ωi)

∫

Ω

θi − (PoU)

∫

Ω

fθi

]∣

∣

∣

∣

(6)

6

∣

∣

∣

∣

p
∑

i=1

x∗

[

f(ωi)

∫

Ω

θi − (PoU)

∫

Ω

fθi

]

+

2p
∑

i=p+1

x∗

[

f(ωi)

∫

Ω

θi − (PoU)

∫

Ω

fθi

]

+

n
∑

i=2p+1

x∗f(ωi)

∫

Ω

θi −

∫

Ω\S

x∗f

∣

∣

∣

∣

+

∣

∣

∣

∣

2p
∑

i=p+1

x∗

[

f(ωi)

∫

Ω

θi − (PoU)

∫

Ω

fθi

]∣

∣

∣

∣

+

∣

∣

∣

∣

n
∑

i=2p+1

x∗f(ωi)

∫

Ω

θi −

∫

Ω\S

x∗f

∣

∣

∣

∣

=

∣

∣

∣

∣

2p
∑

i=1

x∗f(ωi)

∫

Ω

θi −

∫

Ω

x∗f

2p
∑

i=1

θi +

n
∑

i=2p+1

x∗f(ωi)

∫

Ω

θi −

∫

Ω\S

x∗f

∣

∣

∣

∣

+

∣

∣

∣

∣

2p
∑

i=p+1

x∗

[

f(ωi)

∫

Ω

θi − (PoU)

∫

Ω

fθi

]
∣

∣

∣

∣

+

∣

∣

∣

∣

x∗

( n
∑

i=2p+1

µ(Fi)f(ωi) − (Mc)

∫

Ω\S

f

)
∣

∣

∣

∣

6

∣

∣

∣

∣

n
∑

i=1

x∗f(ωi)

∫

Ω

θi −

∫

S

x∗f −

∫

Ω\S

x∗f

∣

∣

∣

∣

+

∣

∣

∣

∣

2p
∑

i=p+1

x∗

[

f(ωi)

∫

Ω

θi − (PoU)

∫

Ω

fθi

]∣

∣

∣

∣

+

∥

∥

∥

∥

n
∑

i=2p+1

µ(Fi)f(ωi) − (Mc)

∫

Ω\S

f

∥

∥

∥

∥

=

∣

∣

∣

∣

x∗

[ n
∑

i=1

f(ωi)

∫

Ω

θi − (PoU)

∫

Ω

f

]
∣

∣

∣

∣

+

∣

∣

∣

∣

2p
∑

i=p+1

x∗

[

f(ωi)

∫

Si

θi − (PoU)

∫

Ω

fθi

]∣

∣

∣

∣

+

∥

∥

∥

∥

n
∑

i=2p+1

µ(Fi)f(ωi) − (Mc)

∫

Ω\S

f

∥

∥

∥

∥

.

Now, evaluating the three terms separately, if n is sufficiently large, by (5), we have

(7)

∣

∣

∣

∣

x∗

[ n
∑

i=1

f(ωi)

∫

Ω

θi − (PoU)

∫

Ω

f

]
∣

∣

∣

∣

6

∥

∥

∥

∥

n
∑

i=1

f(ωi)

∫

Ω

θi − (PoU)

∫

Ω

f

∥

∥

∥

∥

<
ε

4

and by (4)

(8)

∥

∥

∥

∥

n
∑

i=2p+1

µ(Fi)f(ωi) − (Mc)

∫

Ω\S

f

∥

∥

∥

∥

<
ε

4
.
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By [4] Lemma 1 we obtain

∣

∣

∣

∣

2p
∑

i=p+1

x∗

[

f(ωi)

∫

Si

θi − (PoU)

∫

Ω

fθi

]
∣

∣

∣

∣

(9)

6

∣

∣

∣

∣

2p
∑

i=p+1

∫

L′

i

(x∗f(ωi) − x∗f) dµ

∣

∣

∣

∣

+

∣

∣

∣

∣

2p
∑

i=p+1

∫

L′′

i

(x∗f(ωi) − x∗f) dµ

∣

∣

∣

∣

,

where L′
i, i = p + 1, . . . , 2p, are pairwise disjoint measurable sets with L′

i ⊂ {t ∈

Si : x∗f(t) − x∗f(ωi) > 0}, L′′
i , i = p + 1, . . . , 2p, are pairwise disjoint measurable

sets with L′′
i ⊂ {t ∈ Si : x∗f(t)−x∗f(ωi) < 0}, and

2p
⋃

i=p+1

Si =
2p
⋃

i=p+1

(L′
i ∪L′′

i ). Since

{(L′
i, ωi) : i = p + 1, . . . 2p} and {(L′′

i , ωi) : i = p + 1, . . . 2p} are two finite partitions

in Ω subordinate to ∆, from (2) we get

∣

∣

∣

∣

2p
∑

i=p+1

∫

L′

i

(x∗f(ωi) − x∗f) dµ

∣

∣

∣

∣

+

∣

∣

∣

∣

2p
∑

i=p+1

∫

L′′

i

(x∗f(ωi) − x∗f) dµ

∣

∣

∣

∣

(10)

=

∣

∣

∣

∣

2p
∑

i=p+1

∫

L′

i

x∗f dµ − |L′
i|x

∗f(ωi)

∣

∣

∣

∣

+

∣

∣

∣

∣

2p
∑

i=p+1

∫

L′′

i

x∗f dµ − |L′′
i |x

∗f(ωi)

∣

∣

∣

∣

<
ε

4
+

ε

4
=

ε

2
.

By (6), (7), (8), (9) and (10) we get

∣

∣

∣

∣

p
∑

i=1

x∗

[

f(ωi)

∫

Ω

θi − (PoU)

∫

Ω

fθi

]
∣

∣

∣

∣

< ε.

Since this is true for each x∗ ∈ B(X∗) we get

∥

∥

∥

∥

p
∑

i=1

[

f(ωi)

∫

Ω

θi − (PoU)

∫

Ω

fθi

]∥

∥

∥

∥

6 ε,

and the assertion follows. �

Proposition 2. Let f : Ω → X be a PoU-integrable function. Then for each

ε > 0 there exists a gauge ∆: Ω → T such that

sup
x∗∈B(X∗)

n
∑

i=1

∣

∣

∣

∣

x∗

[

f(ωi)

∫

Ω

θi − (PoU)

∫

Ω

θif

]∣

∣

∣

∣

< ε

for each finite pseudopartition {(θi, ωi) : i = 1, . . . , n} in Ω subordinate to ∆.

54



���������
. The result follows from Proposition 1 and by the standard argument

of splitting the sum of real numbers into the sum of nonnegative and negative parts

to obtain the absolute value inside the summation sign (see for instance [3] Proposi-

tion 1). �

Lemma 1. Let f : Ω → X be a Pettis integrable function and let θi, i = 1, 2, . . .

be nonnegative functions in L1(Ω, 
 ) such that ∑

i

θi = 1 a.e. in Ω. Then for each

ε > 0, there exists a natural number M such that for each n > M ,

∥

∥

∥

∥

∫

Ω

∞
∑

i=n+1

θif

∥

∥

∥

∥

< ε.

���������
. According to the σ-finiteness of µ, Ω =

⋃

j

Ωj , where Ωj are disjoint

measurable sets of finite measure. Since f is Pettis integrable, ν is a strongly additive

measure on F . Then (see [2] Corollary 12, p. 105) the set of variations {|x∗ν| : x∗ ∈

B(X∗)} is uniformly strongly additive. So there exists a natural number K such

that

(11) |x∗ν|

( ∞
⋃

k=K+1

Ωk

)

=

∫

∞�
k=K+1

Ωk

|x∗f | dµ <
ε

5

for all x∗ ∈ B(X∗). Moreover, for each i = 1, 2, . . ., θi is a nonnegative real valued

essentially bounded function, so by [5] Theorem 1.1.2, θif is Pettis integrable. Set

fn =
n
∑

i=1

θif . Since
∞
∑

i=1

θi = 1 a.e., lim
n

fn(ω) = lim
n

n
∑

i=1

θif(ω) =
∞
∑

i=1

θif(ω) = f(ω)

a.e. in Ω.

If T =
K
⋃

k=1

Ωk, then T is a set of finite measure. According to the continuity of ν

with respect to µ over the set T , there exists η > 0 such that if F ⊂ T , F ∈ F , and

µ(F ) < η, then

(12) ‖ν(F )‖ 6
ε

5
.

Set now Tm = {ω ∈ T : ‖fp(ω) − f(ω)‖ 6 1
5ε(1 + µ(T ))−1 for all p > m}. Then

µ(T \
⋃

m Tm) = 0, and there exists a natural numberM such that µ∗(TM ) > µ(T )−η.

Let C ∈ F be such that TM ⊆ C ⊆ T and µ(C) = µ∗(TM ). For all n > M we have

(13)

∥

∥

∥

∥

∫

C

f −

∫

C

fn

∥

∥

∥

∥

=

∥

∥

∥

∥

∫

TM

f −

∫

TM

fn

∥

∥

∥

∥

6

∫

TM

‖f − fn‖ 6
ε

5(1 + µ(T ))
µ∗(TM ) <

ε

5
.
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Moreover for all x∗ ∈ X∗ and for all n ∈ � , |x∗(fn)| 6 |x∗(f)|, so if F is any

measurable subset of T with µ(F ) < η, by (12) we deduce

(14)

∥

∥

∥

∥

∫

F

fn

∥

∥

∥

∥

6 sup
x∗∈B(X∗)

∫

F

|x∗fn| 6 sup
x∗∈B(X∗)

∫

F

|x∗f | 6
2ε

5
,

for each n ∈ � . Let n > M ; since µ(T \C) < η, by (11), (12), (13) and (14) we infer

∥

∥

∥

∥

∫

Ω

f −

∫

Ω

fn

∥

∥

∥

∥

6

∥

∥

∥

∥

∫

C

f −

∫

C

fn

∥

∥

∥

∥

+

∥

∥

∥

∥

∫

T\C

f

∥

∥

∥

∥

(15)

+

∥

∥

∥

∥

∫

T\C

fn

∥

∥

∥

∥

+

∥

∥

∥

∥

∫

∞�
k=K+1

Ωk

( ∞
∑

n+1

θi

)

f

∥

∥

∥

∥

6
ε

5
+

ε

5
+

2ε

5
+ sup

x∗∈B(X∗)

∫

∞�
k=K+1

Ωk

|x∗f | dµ < ε.

Thus
∫

Ω
fn converges to

∫

Ω
f strongly. Since

∥

∥

∥

∥

∫

Ω

fn −

∫

Ω

f

∥

∥

∥

∥

=

∥

∥

∥

∥

∫

Ω

∞
∑

i=n+1

θif

∥

∥

∥

∥

,

for all n > M , by (15) we deduce that

(16)

∥

∥

∥

∥

∫

Ω

∞
∑

i=n+1

θif

∥

∥

∥

∥

< ε,

and the assertion follows. �

The following characterization of the PoU-integral involving only finite pseudopar-

titions holds.

Theorem 1. Let f : Ω → X . The function f is PoU-integrable if and only if f

is Pettis integrable and for each ε > 0 there exists a gauge ∆: Ω → T such that

for each finite pseudopartition Q = {(θi, ωi) : i = 1, . . . , p} in Ω subordinate to ∆,

satisfying the inequality ‖
∫

Ω(1 −
p
∑

i=1

θi)f‖ < ε, we have

∥

∥

∥

∥

∑

i6p

f(ωi)

∫

Ω

θi −

∫

Ω

f

∥

∥

∥

∥

< ε.

���������
. Assume first that f is PoU-integrable, then it is Pettis integrable. Let

ε > 0 be fixed. By the previous lemma, if θi, i = 1, 2, . . . are nonnegative functions
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in L1(Ω, 
 ) such that
∞
∑

i=1

θi = 1 a.e. in Ω, then there exists a natural numberM such

that for each n > M ,

(17)

∥

∥

∥

∥

∫

Ω

∞
∑

i=n+1

θif

∥

∥

∥

∥

<
ε

2
.

Moreover by Proposition 1 there is a gauge ∆: Ω → T such that

(18)

∥

∥

∥

∥

n
∑

i=1

(

f(ωi)

∫

Ω

θi − (PoU)

∫

Ω

θif

)∥

∥

∥

∥

<
ε

2

for each finite pseudopartition {(θi, ωi) : i = 1, . . . , n} in Ω subordinate to ∆. Let

now Q = {(θi, ωi) : i = 1, . . . , p} be a finite pseudopartition in Ω subordinate to ∆

and such that ‖
∫

Ω
(1 −

p
∑

i=1

θi)f‖ < ε
2 . Then, by (17) and (18), it follows that

∥

∥

∥

∥

p
∑

i=1

f(ωi)

∫

Ω

θi −

∫

Ω

f

∥

∥

∥

∥

6

∥

∥

∥

∥

p
∑

i=1

(

f(ωi)

∫

Ω

θi − (PoU)

∫

Ω

θif

)∥

∥

∥

∥

+

∥

∥

∥

∥

∫

Ω

(

1−

p
∑

i=1

θi

)

f

∥

∥

∥

∥

<
ε

2
+

ε

2
= ε.

Conversely, let f be a Pettis integrable function and let ε > 0 be fixed. By hypothesis

there is ∆ such that
∥

∥

∥

∥

p
∑

i=1

f(ωi)

∫

Ω

θi −

∫

Ω

f

∥

∥

∥

∥

< ε,

for each finite pseudopartition Q = {(θi, ωi) : i = 1, . . . , p} of Ω subordinate to

∆ and satisfying
∥

∥

∥

∫

Ω

(

1 −
p
∑

i=1

θi

)

f
∥

∥

∥
< ε. Let R = {(ϑi, ωi) : i = 1, 2, . . .} be a

pseudopartition of Ω subordinate to ∆. By Lemma 1 there is a natural number M

such that for each n > M ,

(19)

∥

∥

∥

∥

∫

Ω

∞
∑

i=n+1

ϑif

∥

∥

∥

∥

< ε.

Now for each n > M , R′ = {(ϑi, ωi) : i = 1, . . . , n} is a finite pseudopartition

subordinate to ∆ and satisfying (19). Therefore

∥

∥

∥

∥

n
∑

i=1

f(ωi)

∫

Ω

ϑi −

∫

Ω

f

∥

∥

∥

∥

< ε.

Since n is large enough it follows that the function f is PoU-integrable. �
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4. Scalar Volterra derivative for the PoU-integral

In this section we will define a scalar form of the Volterra derivative for the PoU-

integral of Banach valued functions f .

We recall that a derivation base on Ω (see for example [13], Chapter 8) is a

nonempty subset B of F × Ω. For a set E ⊂ Ω we write

B(E) = {(A, ω) ∈ B : A ⊂ E} and B[E] = {(A, ω) ∈ B : ω ∈ E}.

If ∆ is a gauge defined on Ω we denote by

B∆ = {(A, ω) ∈ B : A ⊂ ∆(ω)}.

We say that a base B is

• a fine base on a set E ⊂ Ω if for any ω ∈ E and for any gauge∆ the setB∆[{ω}]

is nonempty;

• a filtering base if for each ω ∈ Ω, the set B[{ω}] is a directed set.

It is known that the Vitali covering Theorem is an important tool for classical

derivation theorems on functions defined on subsets of 
 n . It is perhaps worth

recalling at this point that a derivation base B with the strong Vitali property

differentiates all L1-integrals.

Definition 3. A derivation base B satisfies the strong Vitali property if, for

every B∗ ⊂ B, fine on a set E, and every ε > 0, there exist finitely many couples

(A1, ω1), (A2, ω2), . . . , (An, ωn) in B∗ such that the sets A1, A2, . . . , An are pairwise

disjoint and

µ

(

E∇

n
⋃

i=1

Ai

)

< ε,

where the symbol ∇ denotes the symmetric difference.

As usual the symbol L∞ denotes the family of all essentially bounded functions

θ : Ω → 
 . If f is a PoU-integrable function we associate to f the operator F : L∞ →

X , setting

(20) F (θ) = (PoU)

∫

Ω

fθ.

Observe that since by [4] Corollary 2, essentially bounded functions are multipliers

for the PoU-integrable functions, the operator F is well defined.

In the following the symbol L will denote the family of all measurable functions

θ : Ω → 
 such that 0 6 θ 6 1 a.e. and the set Sθ is of positive finite measure. From
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now on we will consider the base B = {(Sθ, ω)}, where θ ∈ L . Since by Remark 2

the set of pseudopartitions subordinate to any gauge ∆ is not empty, the family B∆

is a fine base. For (Sθ1
, ω) and (Sθ2

, ω) ∈ B, define (Sθ1
, ω) � (Sθ2

, ω) if there exist

two open sets Ω1 and Ω2 such that Sθ1
⊂ Ω1, Sθ2

⊂ Ω2 and ω ∈ Ω2 ⊂ Ω1. Moreover,

as the family of gauges on Ω is directed downward (see [6] Remark 1D), the base B

is filtering if we consider the induced order.

In [11], considering functions of bounded variation, a type of Volterra derivative

of the integral of a scalar valued L1-integrable function f is defined, and it is proved

that it coincides with the function f .

We recall that a functional J : L∞ → 
 is Volterra B-differentiable at ω ∈ Ω (see

[11]) if there is a real number α such that

lim
J(θ)
∫

Ω θ
= α

where the limit is taken in the directed set B[{ω}].

We extend the definition of scalar derivative of a function F given by Pettis in

[10] to the scalar Volterra derivative of an operator J : L∞ → X .

Definition 4. We say that a function g : Ω → X is a scalar VolterraB-derivative

of the operator J : L∞ → X , if for each x∗ ∈ X∗, the real valued functional x∗J is

Volterra B-differentiable at almost all ω ∈ Ω and

(21) lim x∗
(J(θ)

∫

Ω θ

)

= x∗g(ω)

where the limit is taken in the directed set B[{ω}].

Theorem 2. Let f : Ω → X be a PoU-integrable function and let F be the

associated operator defined in (20). Assume that the derivation base B satisfies the

strong Vitali property. Then the function f is a scalar Volterra B-derivative of F .
���������

. Fix x∗ ∈ X∗ and let Nx∗ be the set of all ω ∈ Ω for which (21) fails.

Given ω ∈ Nx∗ there is η(ω) > 0 such that for each gauge ∆ we can find a function

θ ∈ L subordinate to ∆, with
∫

Ω θ < 1/η(ω) for which

∣

∣

∣

∣

x∗

(

f(ω)

∫

Ω

θ − (PoU)

∫

Ω

fθ

)∣

∣

∣

∣

> η(ω)

∫

Ω

θ.

Fix an integer n > 1 and set Nn = {ω ∈ Nx∗ : η(ω) > 1/n}. If ε > 0, according to

Proposition 2 we find ∆1 so that

(22) sup
x∗∈B(X∗)

∞
∑

i=1

∣

∣

∣

∣

x∗

[

f(ωi)

∫

Ω

θi − (PoU)

∫

Ω

θif

]∣

∣

∣

∣

<
ε

2n
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for each pseudopartition {(θi, ωi) : i = 1, 2, . . .} in Ω subordinate to ∆1. Let S be

the family of all functions θ ∈ L such that Sθ ⊂ ∆(ω) for a ω ∈ Nn and for some

gauge ∆, with ∆(ω) ⊂ ∆1(ω) and

∣

∣

∣

∣

x∗

(

f(ω)

∫

Ω

θ − (PoU)

∫

Ω

fθ

)
∣

∣

∣

∣

>
1

n

∫

Ω

θ.

Then the family S ∗ = {(Sθ, ωθ)} is a fine base of Nn. Indeed for any ω ∈ Nn and

for any gauge ∆ with ∆(ωθ) ⊂ ∆1(ωθ), the set S ∗
∆[{ω}] is not empty. Moreover

we may assume that
∫

Ω
θ > 1

2µ(Sθ). Since the strong Vitali property holds, there

are couples (S1, ω1), (S2, ω2), . . . ∈ S ∗ such that S1, S2, . . . are pairwise disjoint and

µ
(

Nn∇
∞
⋃

i=1

Si

)

= 0. If θi = θSi
and ωi = ωSi

, then Q = {(θ1, ω1), (θ2, ω2), . . .} is a

pseudopartition in Ω subordinate to ∆1. For each p, by (22), we get

p
∑

i=1

µ(Si) 6 2

p
∑

i=1

∫

Ω

θi 6 2n

p
∑

i=1

∣

∣

∣

∣

x∗

[
∫

Ω

θif(ωi) − (PoU)

∫

Ω

θif

]∣

∣

∣

∣

< ε.

By the arbitrariness of ε, it follows that µ(Nn) = 0 and as Nx∗ =
∞
⋃

n=1
Nn we see that

µ(Nx∗) = 0, and the assertion follows. �

�
���������
4. In the previous theorem we prove that a scalar derivative of the

operator F defined in (20) exists, that is for each x∗ ∈ X∗ and for all ω /∈ Nx∗ ,

where Nx∗ is a negligible set,

lim x∗
(F (θ)

∫

Ω
θ

)

= x∗f(ω).

If the previous equality holds for all ω ∈ N , where the negligible set N is independent

of x∗, we say that the function f(ω) is the weak Volterra B-derivative of F . Observe

that the condition concerning the existence of a scalar derivative of the operator F

cannot be improved to the existence of the weak derivative as the following example

shows.

� � ���"!$#%�
. Let {xij} be the unit vector base in `2 arranged in a double sequence.

For each i ∈ � , define fi : [0, 1] → `2 by

fi(t) =

{

2ixij if t ∈ [j − 1/2i, j − 1/2i + 1/4i], j = 1, 2, . . .2i,

ϕ otherwise,

where ϕ denotes the null vector in `2. Let f(t) =
∞
∑

i=1

fi(t), then f : [0, 1] → `2

is Pettis integrable (see [12] Example 10.9). Since f is measurable, it is McShane
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integrable (see [7] Theorem 17) and also PoU-integrable (see [4] Theorem 1). Let

F (θ) = (PoU)

∫ 1

0

fθ

be the operator associated to f .

We recall that a function h : [0, 1] → X is the weak derivative of an operator H

defined on the family of all subintervals of [0, 1] to X , if for each x∗ ∈ X∗, and for

all ω outside a negligible set N ,

lim
|I|→0

x∗
(H(I)

|I |

)

= x∗h(ω)

where I is an arbitrary interval containing ω.

As showed in [12], the weak derivative of the Pettis primitive F of the function

f does not exist. Now we observe that, when θ = χ[a,b] with 0 6 a < b 6 1, in the

subnet {[a, b], ω} where ω ∈ [a, b], the scalar B-Volterra derivative of the operator

F coincides with the scalar derivative, with respect to the Lebesgue measure, of the

indefinite Pettis integral of the function f . Therefore the weak B-Volterra derivative

of F cannot exist.

&(' ��)$�+*,#%�+-�.��"��)�/
. The author thanks Professor L.Di Piazza for helpful dis-

cussions and comments.
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