ON BELATED DIFFERENTIATION AND A CHARACTERIZATION OF HENSTOCK-KURZWEIL-ITO INTEGRABLE PROCESSES

TIN-LAM TOH, TUAN-SENG CHEW, Singapore

(Received March 29, 2004)

Abstract. The Henstock-Kurzweil approach, also known as the generalized Riemann approach, has been successful in giving an alternative definition to the classical Itô integral. The Riemann approach is well-known for its directness in defining integrals. In this note we will prove the Fundamental Theorem for the Henstock-Kurzweil-Itô integral, thereby providing a characterization of Henstock-Kurzweil-Itô integrable stochastic processes in terms of their primitive processes.

Keywords: belated differentiation, Henstock-Kurzweil-Itô integral, integrable processes

MSC 2000: 26A39, 60H05

1. INTRODUCTION

The generalized Riemann approach, more commonly known as the Henstock-Kurzweil approach, has been successful in giving an alternative definition to the classical Itô integral, see [1], [5], [7], [8], [9], [10]. The advantage of using the Henstock-Kurzweil approach has been its explicitness and intuitiveness in giving a direct definition of the integral rather than the classical non-explicit L^2 -procedure.

It is also well-known from the classical non-stochastic integration theory that all integrable functions can be characterized in terms of their primitives, that is, a function f is Lebesgue (Henstock-Kurzweil) integrable on a compact interval [a, b]if and only if there exists a function F which is absolutely continuous (respectively, generalized absolutely continuous) there such that F' = f a.e. on [a, b], where F' is the usual derivative of F, see for example [4].

In this paper, we will define the "belated derivative" of a stochastic process and thereby characterize the class of all Henstock-Kurzweil-Itô integrable processes on [a, b] by its primitive process.

2. Setting

Let Ω denote the set of all real-valued continuous functions on [a, b] and \mathbb{R} the set of all real numbers.

The class of all Borel cylindrical sets B in Ω , denoted by \mathscr{C} , is a collection of all sets B in Ω of the form

$$B = \{ w \colon (w(t_1), w(t_2), \dots, w(t_n)) \in E \}$$

where $0 \leq t_1 < t_2 < \ldots < t_n \leq 1$ and E is any Borel set in \mathbb{R}^n (*n* is not fixed). The Borel σ -field of \mathscr{C} is denoted by \mathscr{F} , i.e., it is the smallest σ -field which contains \mathscr{C} . Let P be the Wiener measure defined on (Ω, \mathscr{F}) . Then (Ω, \mathscr{F}, P) is a probability space, that is, a measure space with $P(\Omega) = 1$.

A stochastic process $\{\varphi(t,\omega): t \in [a,b]\}$ on (Ω, \mathscr{F}, P) is a family of \mathscr{F} -measurable functions (which are called random variables) on (Ω, \mathscr{F}, P) . Very often, $\varphi(t, \omega)$ is denoted by $\varphi_t(\omega)$. Now we shall consider a very special and important process, namely, the Brownian motion denoted by W.

Let $W = \{W_t(\omega)\}_{a \leq t \leq b}$ be a canonical Brownian motion, that is, it possesses the following properties:

- 1. $W_a(\omega) = 0$ for all $\omega \in \Omega$;
- 2. it has Normal Increments, that is, $W_t W_s$ has a normal distribution with mean 0 and variance t s for all t > s (which naturally implies that W_t has a normal distribution with mean 0 and variance t);
- 3. it has *Independent Increments*, that is, $W_t W_s$ is independent of its past, that is, of W_u , $0 \le u < s < t$; and
- 4. its sample paths are continuous, i.e., for each $\omega \in \Omega$, $W_t(\omega)$ as a function of t is continuous on [a, b].

A stochastic process $\{\varphi_t(\omega): t \in [a, b]\}$ is said to be *adapted* to the standard filtering space $(\Omega, \mathscr{F}, \{\mathscr{F}_t\}, P)$ if φ_t is \mathscr{F}_t -measurable for each $t \in [a, b]$. We always assume that $W = \{W_t(\omega)\}$ is adapted to $\{\mathscr{F}_t\}$. For example, if $\{\mathscr{F}_t\}$ is the smallest σ -field generated by $\{W_s(\omega): s \leq t\}$, then $W = \{W_t(\omega)\}$ is adapted to $\{\mathscr{F}_t\}$.

A stochastic process $X = \{X_t(\omega) : t \in [a, b]\}$ on the standard filtering space $(\Omega, \mathscr{F}, \{\mathscr{F}_t\}, P)$ is called a *martingale* if

- 1. X is adapted to $\{\mathscr{F}_t\}$, that is, X_t is \mathscr{F}_t -measurable for each $t \in [a, b]$;
- 2. $\int_{\Omega} |X_t| dP$ is finite for almost all $t \in [a, b]$; and
- 3. $E(X_t|\mathscr{F}_s) = X_s$ for all $t \ge s$, where $E(X_t|\mathscr{F}_s)$ is the conditional expectation of X_t given \mathscr{F}_s .

If in addition

$$\sup_{t\in[a,b]}\int_{\Omega}|X_t|^2\,\mathrm{d}P$$

is finite, we say that X is an L_2 -martingale.

In the following we define E(f) to be $\int_{\Omega} f \, dP$ for any random variable f.

It is well-known, see for example [6, P239], that the following assertions hold. The details are given for the convenience of readers who are not familiar with stochastic analysis.

(i)

$$E[X_s] = E\left[E[X_t|\mathscr{F}_s]\right] = E[X_t]$$

for any $t \ge s$, that is, $E[X_s]$ is a constant for all $s \in [a, b]$.

(ii) For any $a \leq u < v \leq s < t \leq b$, we have

$$E[(X_t - X_s)(X_v - X_u)] = 0,$$

that is, a martingale has orthogonal increments.

(iii) From (ii) we get

$$E|(D)\sum(X_v - X_u)|^2 = (D)\sum E(X_v - X_u)^2$$

for any partial partition $D = \{[u, v]\}$ of [a, b].

(iv) For any u < v we have

$$E[X_v X_u] = E[E[X_v X_u | \mathscr{F}_u]] = E[X_u E[X_v | \mathscr{F}_u]] = E[X_u^2]$$

and hence

$$E(X_v - X_u)^2 = E(X_v^2 - X_u^2).$$

It is also well-known, see for example [6, P28], that a canonical Brownian motion is a martingale. In fact, it is an L_2 -martingale with $E(W_t^2) = t$, see property 2 of a Brownian motion.

3. DIFFERENTIATION

In this section we define our belated derivative and state its basic properties.

Definition 1. Let $F = \{F_t: t \in [a, b]\}$ be an L^2 -martingale. A stochastic process F is said to be *belated differentiable* at $t \in [a, b)$ if there exists a random variable f_t such that for any $\varepsilon > 0$, there exists a positive number $\delta(t)$ on [a, b] such that whenever $[t, v] \subset [t, t + \delta(t))$, we have

$$E(|f_t(W_v - W_t) - (F_v - F_t)|^2) \leqslant \varepsilon E(W_v - W_t)^2 = \varepsilon |v - t|.$$

The random variable f_t is called the *belated derivative* of F at the point t. We will denote f_t by $D_\beta F_t$ in our subsequent presentation. It is also easily checked that the belated derivative of F is defined uniquely up to a set of probability measure zero. The proof is omitted.

The L^2 -martingale F is said to be belated differentiable at $t \in [a, b)$ if f_t in the above definition exists.

R e m a r k. The word belated is used in the above definition because the point of differentiation t is always the left end point of the interval [t, v]. This is motivated by the use of belated division in the definition of Henstock-Kurzweil-Itô integrals, see [1].

Next we shall state the standard properties of belated differentiation.

Theorem 2. Let X and Y be two L^2 -martingales which are belated differentiable at $t \in [a, b)$ and let $\alpha \in \mathbb{R}$. Then

(a) X + Y is belated differentiable at t and

$$D_{\beta}(X+Y)_t = (D_{\beta}X)_t + (D_{\beta}Y)_t,$$

(b) αX is belated differentiable at t and

$$(D_{\beta}(\alpha X))_t = \alpha (D_{\beta} X)_t.$$

Proof. The proof of Theorem 2 is straightforward and hence omitted. \Box

Example 3. Let $X = \{X_t : t \in [0,1]\}$ be the stochastic process $X_t = \frac{1}{2}W_t^2 - \frac{1}{2}t$, where W is the Brownian motion, over the standard filtering space $(\Omega, \mathscr{F}, \{\mathscr{F}_t\}, P)$. Then it is easy to verify that X is in fact an L^2 -martingale with respect to the standard filtering space. Furthermore, it can be proved that

$$D_{\beta}X_t = W_t$$

for all $t \in [a, b]$.

Proof. That X is a martingale follows from the fact that

$$E(W_b^2 - W_a^2 | \mathscr{F}_a) = b - a$$

where $0 \leq a \leq b$. Furthermore,

$$E(|X_t|)^2 = \frac{1}{2}t^2 \leqslant \frac{1}{2}b^2$$

for all $t \in [a, b]$, thereby showing that X is in fact an L^2 -martingale. We next show that $D_{\beta}X_t = W_t$ for all $t \in [a, b]$.

Given $\varepsilon > 0$, let $\delta(t) \leq 2\varepsilon$ for all $t \in [a, b)$. Consider a δ -fine interval-point pair ([t, v], t) such that $[t, v] \subset [t, t + \delta(t)]$ so that $|v - t| \leq 2\varepsilon$. Then

$$\begin{split} E(W_t(W_v - W_t) - (X_v - X_t))^2 &= E\left(W_t(W_v - W_t) - \frac{1}{2}(W_v^2 - W_t^2) - \frac{1}{2}(t - v)\right)^2 \\ &= E\left(\frac{1}{2}(W_v - W_t)^2 + \frac{1}{2}(t - v)\right)^2 \\ &= \frac{1}{4}E((W_v - W_t)^2 - (v - t))^2 \\ &= \frac{1}{4}E[(W_v - W_t)^4 - 2(W_v - W_t)^2(v - t) + (v - t)^2] \\ &= \frac{1}{2}(v - t)^2 \leqslant \frac{1}{2} \cdot 2\varepsilon(v - t) = \varepsilon(v - t), \end{split}$$

which completes our proof.

By Definition 1, belated differentiation is defined for L^2 -martingales in our context. If we were to allow the belated differentiation to be defined for more general stochastic processes, we could even have $D_{\beta}(\frac{1}{2}W_t^2) = W_t$. However, in this sense, the antiderivative of W_t would not be uniquely defined. Hence we restrict ourselves to the belated differentiation of L^2 -martingales.

Definition 4. A stochastic process $X = \{X_t : t \in [a, b]\}$ on (Ω, \mathscr{F}, P) is said to be AC^2 on [a, b] if given any $\varepsilon > 0$, there exists $\eta > 0$ such that

$$E\left(\sum_{i=1}^{n} (X_{v_i} - X_{u_i})^2\right) \leqslant \varepsilon$$

for any finite collection $D = \{[u_i, v_i]\}_{i=1}^n$ of non-overlapping intervals for which $\sum_{i=1}^n |v_i - u_i| \leq \eta$.

67

E x a m p l e 5. The stochastic process $X = \{X_t : t \in [a, b]\}$, where

$$X_{t} = \frac{1}{2}W_{t}^{2} - \frac{1}{2}t$$

in Example 3, is AC^2 on [a, b]. The proof is easy and hence omitted.

4. ANTIDERIVATIVE AND HENSTOCK-ITO INTEGRAL

In this section we will characterize the class of all Henstock-Itô adapted processes in terms of their derivatives.

Let δ be a positive function on [a, b]. A finite collection D of interval-point pairs $\{([\xi_i, v_i], \xi_i), i = 1, 2, ..., n\}$ is called a δ -fine belated partial division of [a, b] if

- 1. $\{[\xi_i, v_i], i = 1, 2, ..., n\}$ is a collection of non-overlapping subintervals of [a, b]; and
- 2. $[\xi_i, v_i] \subset [\xi_i, \xi_i + \delta(\xi_i)]$ for each i = 1, 2, 3, ..., n.

In the sequel we will denote $\{([\xi_i, v_i], \xi_i), i = 1, 2, 3, ..., n\}$ by $\{([\xi, v], \xi)\}$.

Definition 6 (See [1, Definition 2]). Let $f = \{f_t : t \in [a, b]\}$ be an adapted process on the standard filtering space $(\Omega, \mathscr{F}, \{\mathscr{F}\}_t, P)$. Then f is said to be Henstock-Kurzweil-Itô integrable on [a, b] if there exists a process $F = \{F_t : t \in [a, b]\}$ which is an L^2 -martingale and AC^2 on [a, b] such that for any $\varepsilon > 0$ there exists a positive function δ on [a, b] such that

$$E\Big((D)\sum\{f_{\xi}(W_v-W_u)-(F_v-F_u)\}^2\Big)\leqslant\varepsilon$$

whenever $D = \{([\xi, v], \xi)\}$ is a δ -fine belated partial division of [a, b].

It follows from Vitali's Covering Lemma that given any positive function δ there exists a belated partial division of [a, b] covering this interval up to a set of arbitrarily small positive measure, hence the uniqueness of the integral process F follows.

It was also proved in [1] that the standard properties of integrals (such as uniqueness of the integral, additivity of the integral, integrability over subintervals) hold true for the Henstock-Kurzweil-Itô integral. The proofs are similar to the classical integration theory, see [2], [3], [4]. In fact, it has been proved in Theorem 9 of [1] that the integral defined by this new approach is equivalent to the classical Itô integral.

We have a class of stochastic processes which are Henstock-Kurzweil-Itô integrable on [a, b].

Example 7. Let \mathscr{L}_2 denote the class of all adapted stochastic processes $\varphi = \{\varphi_t : t \in [a, b]\}$ on the standard filtering space $(\Omega, \mathscr{F}, \{\mathscr{F}_t\}, P)$ such that

$$\int_{a}^{b} E|\varphi(t,\omega)|^2 \,\mathrm{d}t$$

is finite. Then any adapted process from \mathscr{L}_2 is Henstock-Kurzweil-Itô integrable on [a, b].

In fact, \mathscr{L}_2 is the class of all classical Itô integrable functions. We have proved in [1] that if f is classical Itô integrable, then f is also Henstock-Kurzweil-Itô integrable and the two integrals coincide.

Theorem 8. Let an adapted process f be Henstock-Kurzweil-Itô integrable on [a, b] and let $F_t = \int_a^t f_s \, \mathrm{d}W_s$. Then $D_\beta F_t = f_t$ a.e. on [a, b).

Proof. The idea of this proof is motivated by that of the Henstock integration theory. We need to show that the set of points B of [a, b) for which $D_{\beta}F_t$ does not exist or is unequal to f is of Lebesgue measure zero. Let $t \in B$. By definition, there exists $\gamma(t) > 0$ such that for any positive number $\delta(t)$, there exists $[t, v] \subset [t, t + \delta(t))$ such that

(1)
$$E(|f_t(W_v - W_t) - (F_v - F_t)|^2) > \gamma(t)(v - t).$$

From the definition of the Henstock-Kurzweil-Itô integral (see Definition 6), given $\varepsilon > 0$, there exists a positive function β on [a, b] such that whenever $D = \{((\xi_i, v_i], \xi_i)\}_{i=1}^n$ is a β -fine belated partial division of [a, b], we have

(2)
$$E\left((D)\sum |f_{\xi}[W_v - W_{\xi}] - (F_v - F_{\xi})|^2\right) \leqslant \varepsilon.$$

Now we consider a special D such that each $[\xi_i, v_i]$ satisfies (1) and (2). Let us denote $B_m = \{t \in [a,b]: \gamma(t) \ge \frac{1}{m}\}, m = 1, 2, 3, \ldots$, and fix B_m . Suppose each $\xi_i \in B_m$. Then by (1) and (2), we have

$$\sum_{i=1}^{n} (v_i - \xi_i) \leqslant m\varepsilon$$

Let \mathscr{G} be the family of collections of intervals $[\xi, v]$ induced from all β -fine belated partial divisions with $\xi \in B_m$ satisfying (1). Then \mathscr{G} covers B_m in Vitali's sense. Applying the Vitali Covering Theorem, there exists a finite collection of intervals $\{[\xi_i, v_i], i = 1, 2, 3, \ldots, q\}$ such that

$$\mu(B_m) \leqslant \sum_{i=1}^{q} |v_i - \xi_i| + \varepsilon \leqslant (m+1)\varepsilon.$$

Hence $\mu(B_m) = 0$ and so $\mu(B) = 0$. Thus our proof is completed.

Theorem 9. Let f be an adapted process on [a, b] such that

(i) F is an L^2 -martingale with $F_a = 0$ a.e.;

- (ii) F has the AC^2 property;
- (iii) $D_{\beta}F_t = f_t$ a.e. on [a, b]; then f is Henstock-Kurzweil-Itô integrable on [a, b]with $F_t = \int_a^t f_s \, \mathrm{d}W_s$.

The reader is reminded that (iii) means that $D_{\beta}F_t(\omega) = f_t(\omega)$ for almost all $\omega \in \Omega$ for a.e. $t \in [a, b)$.

Proof. Let $D_{\beta}F_t = f_t$ for all $t \in [a, b)$ except possibly for a set B which has Lebesgue measure zero. Let $\xi \in [a, b) \setminus B$. Given $\varepsilon > 0$, there exists a positive function δ on [a, b] such that whenever $(\xi, v]$ is δ -fine, we have

$$E(|f_{\xi}(W_v - W_{\xi}) - (F_v - F_{\xi})|^2) \leqslant \varepsilon |v - \xi|.$$

Let $D = \{((\xi_i, v_i], \xi_i), i = 1, 2, 3, ..., n\}$ be a δ -fine belated partial division of [a, b]with all $\xi_i \in [a, b] \setminus B$. Then

$$E\left(\left|\sum_{i=1}^{n} f_{\xi_{i}}(W_{v_{i}} - W_{\xi_{i}}) - (F_{v_{i}} - F_{\xi_{i}})\right|^{2}\right)$$

= $E\left(\sum_{i=1}^{n} |f_{\xi_{i}}(W_{v_{i}} - W_{\xi_{i}}) - (F_{v_{i}} - F_{\xi_{i}})|^{2}\right)$ by (i)
 $\leqslant \varepsilon \sum_{i=1}^{n} |v_{i} - \xi_{i}| \leqslant \varepsilon (b - a).$

Thus if $B = \varphi$, it is clear from the above that f is Itô integrable with $F_t = \int_a^t f_t \, \mathrm{d}W_t$. In general, B is nonempty with $\mu(B) = 0$.

Now let

$$B_m = \{t \in [a, b): m - 1 < E[f_t^2] \leq m\},\$$

where $\mu(B_m) = 0$ and $B = \bigcup_{m=1}^{\infty} B_m$. Since F has the AC^2 property, given any positive integer m, there exists $\eta_m > 0$ with $\eta_m \leq (\varepsilon/2^m)^2 \cdot m^{-2}$ such that whenever $\{(u_i, v_i]\}$ is a finite collection of disjoint left-open subintervals of [a, b] with $\sum |v_i - u_i| \leq \eta_m$, we have

$$E\left(\left|\sum [F_{v_i} - F_{u_i}]\right|^2\right) \leqslant \left(\frac{\varepsilon}{2^m}\right)^2.$$

Take an open set $G_m \supset B_m$ such that $\mu(G_m) \leq \eta_m$.

Fix a positive integer m. Let $D = \{((\xi_i, v_i], \xi_i)\}$ be a β -fine belated partial division of [a, b) such that $\xi_i \in B_m$ for all i. Then we have

$$E\left(\left|\sum_{i} f_{\xi_{i}}[W_{v_{i}} - W_{\xi_{i}}] - (F_{v_{i}} - F_{\xi_{i}})\right|^{2}\right)$$

$$\leq 2E\left(\left|\sum_{i} f_{\xi_{i}}(W_{v_{i}} - W_{u_{i}})\right|^{2}\right) + 2E\left(\left|\sum_{i} (F_{v_{i}} - F_{\xi_{i}})\right|^{2}\right)$$

$$\leq 2\sum_{i} E[f_{\xi_{i}}^{2}](v_{i} - u_{i}) + 2\left(\frac{\varepsilon}{2^{m}}\right)^{2} \leq 4\left(\frac{\varepsilon}{2^{m}}\right)^{2}.$$

So, considering any β -fine belated partial division over [a, b], denoted by $D_1 = \{((\xi_i, v_i], \xi_i)\}$, we have

$$E\left(\left|\sum_{i} f_{\xi_{i}}(W_{v_{i}} - W_{\xi_{i}}) - (F_{v_{i}} - F_{\xi_{i}})\right|^{2}\right)$$

$$\leq 2E\left(\left|\sum_{\xi \in [a,b] \setminus B} f_{\xi_{i}}(W_{v_{i}} - W_{\xi_{i}}) - (F_{v_{i}} - F_{\xi_{i}})\right|^{2}\right)$$

$$+ 2E\left(\left|\sum_{m=1}^{\infty} \sum_{\xi_{i} \in B_{m}} f_{\xi_{i}}(W_{v_{i}} - W_{\xi_{i}}) - (F_{v_{i}} - F_{\xi_{i}})\right|^{2}\right)$$

$$\leq 2\varepsilon(b-a) + 2\varepsilon,$$

thereby showing that f is Itô integrable with $F_t = \int_a^t f_t \, \mathrm{d}W_t$.

Combining Theorems 8 and 9, we have the following characterization of all Henstock-Kurzweil-Itô integrable stochastic processes:

Theorem 10. Let f be an adapted process on [a, b]. Then f is Henstock-Kurzweil-Itô integrable on [a, b] if and only if there exists an L^2 -martingle F on [a, b] with $F_a = 0$ a.s. and AC^2 on [a, b] such that $D_\beta F_t = f_t$ almost everywhere on [a, b).

Example 11. From Example 3, $X_t = \frac{1}{2}W_t^2 - \frac{1}{2}t$ is an L^2 -martingale on [a, b]. Hence the process

$$F_t = \frac{1}{2}W_t^2 - \frac{1}{2}W_a^2 - \frac{1}{2}(t-a),$$

where $F_a = 0$, is an L^2 -martingale on [a, b]. It can be also easily verified that F is AC^2 on [a, b]. Furthermore, it was shown that

$$D_{\beta}X_t = W_t$$

on [a, b], hence

$$D_{\beta}F_t = W_t$$

on [a, b]. By Theorem 10, we have

$$\int_{a}^{b} W_{t} \, \mathrm{d}W_{t} = F_{b} = \frac{1}{2} \left(W_{b}^{2} - W_{a}^{2} \right) - \frac{1}{2} (b - a)$$

Example 12. Let $f \in \mathscr{L}_2$, the class of all classical Itô integrable adapted processes on the standard filtering space. Then there exists an L^2 -martingale F on [a,b] which is also AC^2 on [a,b], such that $D_\beta F_t = f_t$ a.e. on [a,b].

References

- Chew T. S., Tay, J. Y., Toh, T. L.: The non-uniform Riemann approach to Itô's integral. Real Anal. Exch. 27 (2001/2002), 495–514.
- [2] Henstock, R.: The efficiency of convergence factors for functions of a continuous real variable. J. London Math. Soc. 30 (1955), 273–286.
- [3] Henstock, R.: Lectures on the Theory of Integration. World Scientific, Singapore, 1988.
- [4] Lee, P. Y.: Lanzhou Lectures on Henstock Integration. World Scientific, Singapore, 1989.
- [5] McShane, E. J.: Stochastic Calculus and Stochastic Models. Academic Press, New York, 1974.
- [6] Oksendal, B.: Stochastic Differential Equation: An Introduction with Applications. 4th edition. Springer, 1996.
- [7] Pop-Stojanovic, Z. R.: On McShane's belated stochastic integral. SIAM J. Appl. Math. 22 (1972), 89–92.
- [8] Toh, T. L., Chew, T. S.: A variational approach to Itô's integral. Proceedings of SAP's 98, Taiwan, World Scientific, Singapore, 1999, pp. 291–299.
- [9] Toh, T.L., Chew, T.S.: The Riemann approach to stochastic integration using non-uniform meshes. J. Math. Anal. Appl. 280 (2003), 133–147.
- [10] Xu, J. G., Lee, P. Y.: Stochastic integrals of Itô and Henstock. Real Anal. Exch. 18 (1992/3), 352–366.

Author's address: Tin-Lam Toh, National Institute of Education, 1, Nanyang Walk, Singapore 637616, Republic of Singapore, e-mail: tltoh@nie.edu.sg.