MULTIPLIERS OF TEMPERATE DISTRIBUTIONS

Jan Kucera, Washington, Carlos Bosch, Mexico

(Received February 3, 2005)

Abstract. Spaces $\mathcal{O}_{q}, q \in \mathbb{N}$, of multipliers of temperate distributions introduced in an earlier paper of the first author are expressed as inductive limits of Hilbert spaces.

Keywords: temperate distribution, multiplication operator, inductive limit of locally convex spaces, projective limit of locally convex spaces, generalized derivative, Sobolev derivative

MSC 2000: 46F10, 46A13

We denote by $L_{\text {loc }}$ the space of all locally Lebesgue integrable functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and by \mathcal{D} the space of all C^{∞}-functions, defined on \mathbb{R}^{n}, with a compact support. For $\alpha \in \mathbb{N}^{n}, x \in \mathbb{R}^{n}$, we write $|\alpha|=\sum_{i=1}^{n} \alpha_{i}, x^{\alpha}=\prod_{i=1}^{n} x_{i}^{\alpha_{i}}$, and $D^{\alpha}=$ $\partial|\alpha| / \partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \ldots \partial x_{n}^{\alpha_{n}}$. It is convenient to use a weight function $w(x)=(1+$ $\left.\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}$ and a constant $r=1+\left[\frac{1}{2} n\right]$, where $[t]$ is the greatest integer less or equal to $t, t \in \mathbb{R}$.

A function $f \in L_{\text {loc }}$ has a generalized derivative $g \in L_{\text {loc }}$ of order $\alpha \in \mathbb{N}^{n}$ if for all $\varphi \in \mathcal{D}$ we have $\int_{\mathbb{R}^{n}} f D^{\alpha} \varphi \mathrm{d} x=(-1)^{|\alpha|} \int_{\mathbb{R}^{n}} g \varphi \mathrm{~d} x$. We denote by $\mathcal{S}_{k}, k \in \mathbb{N}$, the space of all functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ which have generalized derivatives of all orders less or equal to k and satisfy $\|f\|_{k}=\sum_{|\alpha+\beta| \leqslant k}\left(\int_{\mathbb{R}^{n}}\left|x^{\alpha} D^{\beta} f(x)\right|^{2} \mathrm{~d} x\right)^{1 / 2}<+\infty$. Each space \mathcal{S}_{k} with the norm $f \longmapsto\|f\|_{k}$ is Hilbert and the Schwartz space \mathcal{S} of rapidly decreasing functions is the projective limit proj \mathcal{S}_{k}, see [6]. We denote by $\mathcal{S}_{-k}, k \in \mathbb{N}$, the strong dual of \mathcal{S}_{k}. Then the space \mathcal{S}^{\prime} of temperate distributions, defined by Schwartz, is the inductive limit ind \mathcal{S}_{-k}, see [5].
Let $\mathcal{L}_{\beta}\left(\mathcal{S}_{p}, \mathcal{S}_{q}\right)$ be the space of all continuous linear operators from \mathcal{S}_{p} into \mathcal{S}_{q} equipped with the bounded topology. For any $p, q \in \mathbb{N}, p \geqslant q$, we denote by $\mathcal{O}_{p, q}$ the set of all functions $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ for which the mapping $f \mapsto u f: \mathcal{S}_{p} \rightarrow \mathcal{S}_{q}$ is
continuous. Then $\mathcal{O}_{p, q}$ is a closed subspace of the Banach space $\mathcal{L}_{\beta}\left(\mathcal{S}_{p}, \mathcal{S}_{q}\right)$ and as such it is also Banach. We denote its norm by $\|\cdot\|_{p, q}$. Evidently $\mathcal{O}_{p, q} \subset \mathcal{O}_{p+1, q}$, $p \geqslant q$, and for every $u \in \mathcal{O}_{p, q}$, we have $\|u\|_{p+1, q} \leqslant\|u\|_{p, q}$. Hence the identity map id: $\mathcal{O}_{p, q} \rightarrow \mathcal{O}_{p+1, q}$ is continuous and the inductive limit $\operatorname{ind}\left\{\mathcal{O}_{p, q} ; p \rightarrow \infty\right\}$ makes sense. We denote it by \mathcal{O}_{q}. It was proved in [6] that \mathcal{O}_{q} is the set of all functions $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ for which $f \mapsto u f$ is a continuous mapping from \mathcal{S}_{-q} into \mathcal{S}^{\prime}.

Finally, we use two classical Banach spaces of functions, measurable on \mathbb{R}^{n}, namely L^{1} and L^{∞}. The norm in L^{∞} is denoted by $\|u\|_{\infty}=\operatorname{ess} \sup \left\{|u(x)| ; x \in \mathbb{R}^{n}\right\}$.

Lemma 1. $\mathcal{S}_{r} \subset L^{\infty}$ and the identity map id: $\mathcal{S}_{r} \rightarrow L^{\infty}$ is continuous.
Proof. The Fourier transformation $u \mapsto \hat{u}=\int_{\mathbb{R}^{n}} u(x) \exp (-2 \pi \mathrm{i} x, \xi) \mathrm{d} x$ is a topological isomorphism on \mathcal{S}_{r}. Hence the Fourier transformation \hat{u} of a function $u \in$ \mathcal{S}_{r} is also in \mathcal{S}_{r} and $\int_{\mathbb{R}^{n}}|\hat{u}| \mathrm{d} \xi=\int_{\mathbb{R}^{n}}\left|w^{-r+r} \hat{u}\right| \mathrm{d} \xi \leqslant\left\|w^{-r}\right\|_{0} \cdot\left\|w^{r} \hat{u}\right\|_{0} \leqslant\left\|w^{-r}\right\|_{0} \cdot\|\hat{u}\|_{r}$.

Then the function u, as an inverse Fourier transformation of $\hat{u} \in L^{1}$, is uniformly continuous on \mathbb{R}^{n}, hence measurable, and bounded by the constant $\left\|w^{-r}\right\|_{0} \cdot\|\hat{u}\|_{r}$.

Finally, id: $\mathcal{S}_{r} \rightarrow L^{\infty}$ is the composition of three continuous maps $u \mapsto \hat{u} \mapsto \hat{u} \mapsto$ $u: \mathcal{S}_{r} \rightarrow \mathcal{S}_{r} \rightarrow L^{1} \rightarrow L^{\infty}$.

Lemma 2. For any $k \in \mathbb{N}$, there exists a constant $C_{k}>0$ such that $\| w^{k-|\alpha|}$ $D^{\alpha} u\left\|_{\infty} \leqslant C_{k} \cdot\right\| u \|_{k+r}$ for any $\alpha \in \mathbb{N}^{n},|\alpha| \leqslant k$, and any $u \in \mathcal{S}_{k+r}$.

Proof. Take $k \in \mathbb{N}, \alpha \in \mathbb{N}^{n},|\alpha| \leqslant k$, and $u \in \mathcal{S}_{k+r}$. Then $u_{\alpha}=w^{k-|\alpha|} D^{\alpha} u \in$ \mathcal{S}_{r} and, by Lemma 1, there exists a constant $C_{\alpha}>0$, which does not depend on the choice of u, such that $\left\|u_{\alpha}\right\|_{\infty} \leqslant C_{\alpha}\left\|u_{\alpha}\right\|_{r} \leqslant C_{\alpha}\|u\|_{k+r}$. Lemma 2 holds for $C_{k}=\max \left\{C_{\alpha} ; \alpha \in \mathbb{N}^{n},|\alpha| \leqslant k\right\}$.

Definition. For any $p, q \in \mathbb{N}$, let $H_{p, q}$ be the space $\left\{u: \mathbb{R}^{n} \rightarrow \mathbb{R} ; \forall \alpha \in \mathbb{N}^{n}\right.$, $|\alpha| \leqslant q, \exists$ generalized derivative $D^{\alpha} u$ and $\left.\left\|w^{-p} D^{\alpha} u\right\|_{0}<\infty\right\}$ with the scalar product $\langle u, v\rangle=\sum_{|\alpha| \leqslant q} \int_{\mathbb{R}^{n}} w^{-2 p} D^{\alpha} u D^{\alpha} v \mathrm{~d} x$. We denote the correponding norm by $\|\cdot\|_{p, q}$.

For any $q \in \mathbb{N}$, we have $H_{1, q} \subset H_{2, q} \subset \ldots$ with the inclusions continuous. Hence the inductive limit ind $\left\{H_{p, q} ; p \rightarrow \infty\right\}$ makes sense. We denote it by H_{q}.

Lemma 3. Let a function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ have the generalized derivative $\partial u / \partial x_{1}$ and $v \in \mathcal{S}$. Then the generalized derivative $\partial / \partial x_{1}(u v)$ also exists and equals to $\left(\partial u / \partial x_{1}\right) v+u\left(\partial v / \partial x_{1}\right)$.

Proof. Take $\varphi \in \mathcal{D}$. Then $\varphi v \in \mathcal{D}$ and

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left(\frac{\partial u}{\partial x_{1}} v+u \frac{\partial v}{\partial x_{1}}\right) \varphi \mathrm{d} x & =\int_{\mathbb{R}^{n}} \frac{\partial u}{\partial x_{1}}(v \varphi) \mathrm{d} x+\int_{\mathbb{R}^{n}} u \frac{\partial v}{\partial x_{1}} \varphi \mathrm{~d} x \\
& =-\int_{\mathbb{R}^{n}} u \frac{\partial}{\partial x_{1}}(v \varphi) \mathrm{d} x+\int_{\mathbb{R}^{n}} u \frac{\partial v}{\partial x_{1}} \varphi \mathrm{~d} x \\
& =-\int_{\mathbb{R}^{n}} u\left(\frac{\partial}{\partial x_{1}}(v \varphi)-\frac{\partial v}{\partial x_{1}} \varphi\right) \mathrm{d} x=-\int_{\mathbb{R}^{n}}(u v) \frac{\partial \varphi}{\partial x_{1}} \mathrm{~d} x .
\end{aligned}
$$

Lemma 4. Let $u \in \mathcal{O}_{p, q}, p, q \in \mathbb{N}, p \geqslant q$. Then $\frac{\partial u}{\partial x_{1}} \in \mathcal{O}_{p+1, q-1}$ and $\|u\|_{p+1, q-1} \leqslant$ $\|u\|_{p q}$.

Proof. Take $v \in \mathcal{S}$. Then $\left\|\frac{\partial u}{\partial x_{1}} v\right\|_{q-1}=\left\|\frac{\partial}{\partial x_{1}}(u v)-u \frac{\partial v}{\partial x_{1}}\right\|_{q-1} \leqslant\|u v\|_{q}+$ $\left\|u \frac{\partial v}{\partial x_{1}}\right\|_{q} \leqslant\|u\|_{p, q}\left(\|v\|_{p}+\left\|\frac{\partial v}{\partial x_{1}}\right\|_{p}\right) \leqslant\|u\|_{p, q} \cdot 2\|v\|_{p+1}$. Since the space \mathcal{S} is dense in \mathcal{S}_{p+1}, the proof is complete.

Proposition 1. $H_{p, q} \subset \mathcal{O}_{p+q+r, q}$ for any $p, q \in \mathbb{N}$. The identity map id: $H_{p, q} \rightarrow$ $\mathcal{O}_{p+q+r, q}$ is continuous.

Proof. Take $u \in H_{p, q}$ and put, for brevity, $s=p+q+r$. Since the space \mathcal{S} is dense in \mathcal{S}_{s}, it is sufficient to show that there is a constant $C>0$, which does not depend on u, such that $\sup \left\{\|u v\|_{q} ; v \in \mathcal{S},\|v\|_{s} \leqslant 1\right\} \leqslant C \cdot\|u\|_{p, q}$.

By Lemma 3, for any $v \in \mathcal{S}$ and any $\alpha \in \mathbb{N}^{n},|\alpha| \leqslant q$, the generalized derivative $D^{\alpha}(u v)$ exists and can be computed by Leibniz's rule. There are constants $A, B>0$, independent on u and on $\alpha \in \mathbb{N}^{n},|\alpha| \leqslant q$, such that $\left\|w^{q-|\alpha|} D^{\alpha}(u v)\right\|_{0} \leqslant$ $A \sum_{\beta+\gamma=\alpha}\left\|w^{q-|\alpha|} D^{\beta} u D^{\gamma} v\right\|_{0}$ and $\sum_{|\alpha| \leqslant q} \sum_{\beta \leqslant \alpha}\left\|w^{-p} D^{\beta} u\right\|_{0} \leqslant B \cdot\|u\|_{p, q}$.

Now for the constant C_{k} from Lemma 2 , where $k=p+q$, and for $v \in \mathcal{S},\|u\|_{s} \leqslant 1$, we have

$$
\begin{aligned}
\|u v\|_{q} & \leqslant \sum_{|\alpha| \leqslant q}\left\|w^{q-|\alpha|} D^{\alpha}(u v)\right\|_{0} \leqslant A \sum_{|\alpha| \leqslant q} \sum_{\beta+\gamma=\alpha}\left\|w^{q-|\alpha|} D^{\beta} u D^{\gamma} v\right\|_{0} \\
& \leqslant A \sum_{|\alpha| \leqslant q} \sum_{\beta+\gamma=\alpha}\left\|w^{-p} D^{\beta} u\right\|_{0} \cdot\left\|w^{p+q-|\alpha|} D^{\gamma} v\right\|_{\infty} \\
& \leqslant A \sum_{|\alpha| \leqslant q} \sum_{\beta+\gamma=\alpha}\left\|w^{-p} D^{\beta} u\right\|_{0} \cdot\left\|w^{p+q-|\gamma|} D^{\gamma} v\right\|_{\infty} \\
& \leqslant A B \cdot\|u\|_{p, q} \cdot \sum_{|\gamma| \leqslant q}\left\|w^{p+q-|\gamma|} D^{\gamma} v\right\|_{\infty} \leqslant A B \cdot\|u\|_{p, q} \cdot C_{p+q}\left(\sum_{|\gamma| \leqslant q} 1\right)\|v\|_{s} .
\end{aligned}
$$

This implies $\|u\|_{p+q+r, q} \leqslant A B C_{p+q}\left(\sum_{|\gamma| \leqslant q} 1\right) \cdot\|u\|_{p, q}$.

Lemma 5. Let a function $\varphi \in \mathcal{D}(\mathbb{R})$ be even with $\operatorname{supp} \varphi \subset[-2,2], 0 \leqslant \varphi(t) \leqslant 1$ for $t \in \mathbb{R}$, and $\varphi(t)=1$ for $t \in[-1,1]$. For $\lambda \geqslant 0$ put

$$
\varphi_{\lambda}(t)= \begin{cases}1 & \text { if }|t| \leqslant \lambda+1 \\ \varphi(t-\lambda \operatorname{sgn} t) & \text { if }|t| \geqslant \lambda+1\end{cases}
$$

and $\psi_{\lambda}(x)=\prod_{i=1}^{n} \varphi_{\lambda}\left(x_{i}\right)$ for $x \in \mathbb{R}^{n}$. Then $\sup \left\{\left\|w^{-k-r} \psi_{\lambda}\right\|_{k} ; \lambda \geqslant 0\right\}<\infty$ for any $k \in \mathbb{N}$.

Proof. It holds

$$
\begin{aligned}
\left\|w^{-k-r} \psi_{\lambda}\right\|_{k} & =\sum_{|\alpha+\beta| \leqslant k}\left\|x^{\alpha} D^{\beta}\left(w^{-k-r} \psi_{\lambda}\right)\right\|_{0} \\
& \leqslant \sum_{|\alpha+\beta| \leqslant k}\left\|x^{\alpha} \sum_{\gamma+\delta=\beta}\left[\begin{array}{c}
\beta \\
\gamma, \delta
\end{array}\right] D^{\gamma} w^{-k-r} \cdot D^{\delta} \psi_{\lambda}\right\|_{0}
\end{aligned}
$$

Each function $D^{\delta} \psi_{\lambda}$ is bounded by a constant independent on λ, hence it is sufficient to show that $\int_{\mathbb{R}^{n}}\left|x^{\alpha} D^{\gamma} w^{-k-r}\right|^{2} \mathrm{~d} x<+\infty$ for any $\alpha, \gamma \in \mathbb{N}^{n},|\alpha+\gamma| \leqslant k$. Since $\left|D^{\gamma} w^{-k-r}(x)\right| \leqslant(k+r)^{|\gamma|} w^{-k-r}(x)$ for any $x \in \mathbb{R}^{n}$, we have $\int_{\mathbb{R}^{n}}\left|x^{\alpha} D^{\gamma} w^{-k-r}\right|^{2} \mathrm{~d} x \leqslant$ $(k+r)^{2 k} \int_{\mathbb{R}^{n}}\left|x^{\alpha} w^{-k-r}\right|^{2} \mathrm{~d} x \leqslant(k+r)^{2 k} \int_{\mathbb{R}^{n}} w^{-2 r}<+\infty$.

Proposition 2. $\mathcal{O}_{p, q} \subset H_{p+q+r, q}$ for any $p, q \in \mathbb{N}, p \geqslant q$. The identity map id: $\mathcal{O}_{p, q} \rightarrow H_{p+q+r, q}$ is continuous.

Proof. Put, for brevity, $s=p+q+r, B(\lambda)=\left\{x \in \mathbb{R}^{n} ;\|x\| \leqslant \lambda\right\}$ for $\lambda>0$, and take $u \in \mathcal{O}_{p, q}$. Let the functions $\psi_{\lambda}, \lambda \geqslant 0$ be the same as in Lemma 5.

By Lemma 4, we have $D^{\alpha} u \in \mathcal{O}_{p+|\alpha|, q-|\alpha|}$ and $\left\|D^{\alpha} u\right\|_{p+|\alpha|, q-|\alpha|} \leqslant\|u\|_{p, q}$ for any $\alpha \in \mathbb{N}^{n},|\alpha| \leqslant q$. Put $C=\sup \left\{\left\|w^{-s} \psi_{\lambda}\right\|_{p+|\alpha|} ; \lambda \geqslant 0\right\}$. By Lemma $5, C$ is a finite constant. Take $\lambda \geqslant 0$. Then $\left(\int_{B(\lambda)}\left|w^{-s} D^{\alpha} u\right|^{2} \mathrm{~d} x\right)^{1 / 2} \leqslant\left\|\psi_{\lambda} w^{-s} D^{\alpha} u\right\|_{0} \leqslant$ $\left\|D^{\alpha} u\right\|_{p+|\alpha|, q-|\alpha|} \cdot\left\|\psi_{\lambda} w^{-s}\right\|_{p+|\alpha|} \leqslant\|u\|_{p, q} \cdot\left\|\psi_{\lambda} w^{-s}\right\|_{p+|\alpha|} \leqslant C \cdot\|u\|_{p, q}$.

Since this inequality holds for all $\lambda \geqslant 0$, we have $\left\|w^{-s} D^{\alpha} u\right\|_{0} \leqslant C \cdot\|u\|_{p, q}$ for any $\alpha \in \mathbb{N}^{n},|\alpha| \leqslant q$, which implies $\|u\|_{p, q} \leqslant C \cdot \sum_{|\alpha| \leqslant q}\|u\|_{p, q} \leqslant q n^{q} C \cdot\|u\|_{p, q}$.

Theorem. For any $q \in \mathbb{N}$, the spaces \mathcal{O}_{q} and H_{q} are the same. Their inductive topologies are the same, too.

Proof. Take $q \in \mathbb{N}$. By Propositions 1 and 2, for any $p, q \in \mathbb{N}, p \geqslant q$, we have $H_{p, q} \subset \mathcal{O}_{p+q+r, q} \subset \mathcal{O}_{q}$ and $\mathcal{O}_{p, q} \subset H_{p+q+r, q} \subset H_{q}$ with all four inclusions continuous. Hence the identity map id: $H_{q} \rightarrow \mathcal{O}_{q}$ is a topological isomorphism.

References

[1] Schwartz, L.: Théorie des Distributions. Hermann, Paris, 1966.
[2] Horváth, J.: Topological Vector Spaces and Distributions, Vol. 1. Addison-Wisley, Reading, 1966.
[3] Kučera, J.: Fourier L_{2}-transform of distributions. Czechoslovak Math. J. 19 (1969), 143-153.
[4] Kučera, J.: On multipliers of temperate distributions. Czechoslovak Math. J. 21 (1971), 610-618.
[5] Kučera, J., McKennon, K.: Certain topologies on the space of temperate distributions and its multipliers. Indiana Univ. Math. 24 (1975), 773-775.
[6] Kučera, J.: Extension of the L. Schwartz space \mathcal{O}_{M} of multipliers of temperate distributions. J. Math. Anal. Appl. 56 (1976), 368-372.

Authors' addresses: Jan Kucera, Department of Mathematics, Washington State University, Pullman, Washington 99164-3113, U.S.A., e-mail: kucera@math.wsu.edu; Carlos Bosch, Departamento de Matematicas, ITAM, Mexico D.F., MEXICO, e-mail: bosch @itam.mx.

