MULTIPLIERS OF TEMPERATE DISTRIBUTIONS

JAN KUCERA, Washington, CARLOS BOSCH, Mexico

(Received February 3, 2005)

Abstract. Spaces \mathcal{O}_q , $q \in \mathbb{N}$, of multipliers of temperate distributions introduced in an earlier paper of the first author are expressed as inductive limits of Hilbert spaces.

Keywords: temperate distribution, multiplication operator, inductive limit of locally convex spaces, projective limit of locally convex spaces, generalized derivative, Sobolev derivative

MSC 2000: 46F10, 46A13

We denote by L_{loc} the space of all locally Lebesgue integrable functions $f \colon \mathbb{R}^n \to \mathbb{R}$ and by \mathcal{D} the space of all C^{∞} -functions, defined on \mathbb{R}^n , with a compact support. For $\alpha \in \mathbb{N}^n$, $x \in \mathbb{R}^n$, we write $|\alpha| = \sum_{i=1}^n \alpha_i$, $x^{\alpha} = \prod_{i=1}^n x_i^{\alpha_i}$, and $D^{\alpha} = \partial |\alpha| / \partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_n^{\alpha_n}$. It is convenient to use a weight function $w(x) = (1 + \sum_{i=1}^n x_i^2)^{1/2}$ and a constant $r = 1 + [\frac{1}{2}n]$, where [t] is the greatest integer less or equal to $t, t \in \mathbb{R}$.

A function $f \in L_{\text{loc}}$ has a generalized derivative $g \in L_{\text{loc}}$ of order $\alpha \in \mathbb{N}^n$ if for all $\varphi \in \mathcal{D}$ we have $\int_{\mathbb{R}^n} f D^{\alpha} \varphi \, \mathrm{d}x = (-1)^{|\alpha|} \int_{\mathbb{R}^n} g \varphi \, \mathrm{d}x$. We denote by $\mathcal{S}_k, k \in \mathbb{N}$, the space of all functions $f \colon \mathbb{R}^n \to \mathbb{R}$ which have generalized derivatives of all orders less or equal to k and satisfy $||f||_k = \sum_{|\alpha+\beta| \leq k} (\int_{\mathbb{R}^n} |x^{\alpha} D^{\beta} f(x)|^2 \, \mathrm{d}x)^{1/2} < +\infty$. Each space \mathcal{S}_k with the norm $f \longmapsto ||f||_k$ is Hilbert and the Schwartz space \mathcal{S} of rapidly decreasing

functions is the projective limit proj S_k , see [6]. We denote by S_{-k} , $k \in \mathbb{N}$, the strong dual of S_k . Then the space S' of temperate distributions, defined by Schwartz, is the inductive limit ind S_{-k} , see [5].

Let $\mathcal{L}_{\beta}(\mathcal{S}_p, \mathcal{S}_q)$ be the space of all continuous linear operators from \mathcal{S}_p into \mathcal{S}_q equipped with the bounded topology. For any $p, q \in \mathbb{N}, p \ge q$, we denote by $\mathcal{O}_{p,q}$ the set of all functions $u \colon \mathbb{R}^n \to \mathbb{R}$ for which the mapping $f \mapsto uf \colon \mathcal{S}_p \to \mathcal{S}_q$ is

continuous. Then $\mathcal{O}_{p,q}$ is a closed subspace of the Banach space $\mathcal{L}_{\beta}(\mathcal{S}_p, \mathcal{S}_q)$ and as such it is also Banach. We denote its norm by $\|\cdot\|_{p,q}$. Evidently $\mathcal{O}_{p,q} \subset \mathcal{O}_{p+1,q}$, $p \ge q$, and for every $u \in \mathcal{O}_{p,q}$, we have $\|u\|_{p+1,q} \le \|u\|_{p,q}$. Hence the identity map id: $\mathcal{O}_{p,q} \to \mathcal{O}_{p+1,q}$ is continuous and the inductive limit $\operatorname{ind}\{\mathcal{O}_{p,q}; p \to \infty\}$ makes sense. We denote it by \mathcal{O}_q . It was proved in [6] that \mathcal{O}_q is the set of all functions $u: \mathbb{R}^n \to \mathbb{R}$ for which $f \mapsto uf$ is a continuous mapping from \mathcal{S}_{-q} into \mathcal{S}' .

Finally, we use two classical Banach spaces of functions, measurable on \mathbb{R}^n , namely L^1 and L^{∞} . The norm in L^{∞} is denoted by $||u||_{\infty} = \text{ess sup}\{|u(x)|; x \in \mathbb{R}^n\}$.

Lemma 1. $S_r \subset L^{\infty}$ and the identity map id: $S_r \to L^{\infty}$ is continuous.

Proof. The Fourier transformation $u \mapsto \hat{u} = \int_{\mathbb{R}^n} u(x) \exp(-2\pi i x, \xi) dx$ is a topological isomorphism on \mathcal{S}_r . Hence the Fourier transformation \hat{u} of a function $u \in \mathcal{S}_r$ is also in \mathcal{S}_r and $\int_{\mathbb{R}^n} |\hat{u}| d\xi = \int_{\mathbb{R}^n} |w^{-r+r}\hat{u}| d\xi \leq ||w^{-r}||_0 \cdot ||w^r\hat{u}||_0 \leq ||w^{-r}||_0 \cdot ||\hat{u}||_r$.

Then the function u, as an inverse Fourier transformation of $\hat{u} \in L^1$, is uniformly continuous on \mathbb{R}^n , hence measurable, and bounded by the constant $||w^{-r}||_0 \cdot ||\hat{u}||_r$.

Finally, id: $S_r \to L^{\infty}$ is the composition of three continuous maps $u \mapsto \hat{u} \mapsto \hat{u} \mapsto u$: $S_r \to S_r \to L^1 \to L^{\infty}$.

Lemma 2. For any $k \in \mathbb{N}$, there exists a constant $C_k > 0$ such that $||w^{k-|\alpha|} D^{\alpha}u||_{\infty} \leq C_k \cdot ||u||_{k+r}$ for any $\alpha \in \mathbb{N}^n$, $|\alpha| \leq k$, and any $u \in \mathcal{S}_{k+r}$.

Proof. Take $k \in \mathbb{N}$, $\alpha \in \mathbb{N}^n$, $|\alpha| \leq k$, and $u \in \mathcal{S}_{k+r}$. Then $u_{\alpha} = w^{k-|\alpha|} D^{\alpha} u \in \mathcal{S}_r$ and, by Lemma 1, there exists a constant $C_{\alpha} > 0$, which does not depend on the choice of u, such that $||u_{\alpha}||_{\infty} \leq C_{\alpha} ||u_{\alpha}||_r \leq C_{\alpha} ||u||_{k+r}$. Lemma 2 holds for $C_k = \max\{C_{\alpha}; \alpha \in \mathbb{N}^n, |\alpha| \leq k\}$.

Definition. For any $p, q \in \mathbb{N}$, let $H_{p,q}$ be the space $\{u \colon \mathbb{R}^n \to \mathbb{R}; \forall \alpha \in \mathbb{N}^n, |\alpha| \leq q, \exists$ generalized derivative $D^{\alpha}u$ and $||w^{-p}D^{\alpha}u||_0 < \infty\}$ with the scalar product $\langle u, v \rangle = \sum_{|\alpha| \leq q} \int_{\mathbb{R}^n} w^{-2p} D^{\alpha}u D^{\alpha}v \, dx$. We denote the corresponding norm by $||| \cdot ||_{p,q}$.

For any $q \in \mathbb{N}$, we have $H_{1,q} \subset H_{2,q} \subset \ldots$ with the inclusions continuous. Hence the inductive limit $\operatorname{ind}\{H_{p,q}; p \to \infty\}$ makes sense. We denote it by H_q .

Lemma 3. Let a function $u: \mathbb{R}^n \to \mathbb{R}$ have the generalized derivative $\partial u/\partial x_1$ and $v \in S$. Then the generalized derivative $\partial/\partial x_1(uv)$ also exists and equals to $(\partial u/\partial x_1)v + u(\partial v/\partial x_1)$.

Proof. Take $\varphi \in \mathcal{D}$. Then $\varphi v \in \mathcal{D}$ and

$$\int_{\mathbb{R}^{n}} \left(\frac{\partial u}{\partial x_{1}} v + u \frac{\partial v}{\partial x_{1}} \right) \varphi \, \mathrm{d}x = \int_{\mathbb{R}^{n}} \frac{\partial u}{\partial x_{1}} (v\varphi) \, \mathrm{d}x + \int_{\mathbb{R}^{n}} u \frac{\partial v}{\partial x_{1}} \varphi \, \mathrm{d}x$$
$$= -\int_{\mathbb{R}^{n}} u \frac{\partial}{\partial x_{1}} (v\varphi) \, \mathrm{d}x + \int_{\mathbb{R}^{n}} u \frac{\partial v}{\partial x_{1}} \varphi \, \mathrm{d}x$$
$$= -\int_{\mathbb{R}^{n}} u \left(\frac{\partial}{\partial x_{1}} (v\varphi) - \frac{\partial v}{\partial x_{1}} \varphi \right) \, \mathrm{d}x = -\int_{\mathbb{R}^{n}} (uv) \frac{\partial \varphi}{\partial x_{1}} \, \mathrm{d}x.$$

Lemma 4. Let $u \in \mathcal{O}_{p,q}, p, q \in \mathbb{N}, p \ge q$. Then $\frac{\partial u}{\partial x_1} \in \mathcal{O}_{p+1,q-1}$ and $||u||_{p+1,q-1} \le ||u||_{pq}$.

Proof. Take $v \in S$. Then $\|\frac{\partial u}{\partial x_1}v\|_{q-1} = \|\frac{\partial}{\partial x_1}(uv) - u\frac{\partial v}{\partial x_1}\|_{q-1} \leq \|uv\|_q + \|u\frac{\partial v}{\partial x_1}\|_q \leq \|u\|_{p,q}(\|v\|_p + \|\frac{\partial v}{\partial x_1}\|_p) \leq \|u\|_{p,q} \cdot 2\|v\|_{p+1}$. Since the space S is dense in S_{p+1} , the proof is complete.

Proposition 1. $H_{p,q} \subset \mathcal{O}_{p+q+r,q}$ for any $p,q \in \mathbb{N}$. The identity map id: $H_{p,q} \rightarrow \mathcal{O}_{p+q+r,q}$ is continuous.

Proof. Take $u \in H_{p,q}$ and put, for brevity, s = p + q + r. Since the space S is dense in S_s , it is sufficient to show that there is a constant C > 0, which does not depend on u, such that $\sup\{\|uv\|_q; v \in S, \|v\|_s \leq 1\} \leq C \cdot \|u\|_{p,q}$.

By Lemma 3, for any $v \in S$ and any $\alpha \in \mathbb{N}^n$, $|\alpha| \leq q$, the generalized derivative $D^{\alpha}(uv)$ exists and can be computed by Leibniz's rule. There are constants A, B > 0, independent on u and on $\alpha \in \mathbb{N}^n$, $|\alpha| \leq q$, such that $||w^{q-|\alpha|}D^{\alpha}(uv)||_0 \leq A \sum_{\beta+\gamma=\alpha} ||w^{q-|\alpha|}D^{\beta}uD^{\gamma}v||_0$ and $\sum_{|\alpha|\leq q} \sum_{\beta\leq\alpha} ||w^{-p}D^{\beta}u||_0 \leq B \cdot ||u||_{p,q}$.

Now for the constant C_k from Lemma 2, where k = p + q, and for $v \in S$, $||u||_s \leq 1$, we have

$$\begin{aligned} \|uv\|_{q} &\leq \sum_{|\alpha| \leq q} \|w^{q-|\alpha|} D^{\alpha}(uv)\|_{0} \leq A \sum_{|\alpha| \leq q} \sum_{\beta+\gamma=\alpha} \|w^{q-|\alpha|} D^{\beta} u D^{\gamma} v\|_{0} \\ &\leq A \sum_{|\alpha| \leq q} \sum_{\beta+\gamma=\alpha} \|w^{-p} D^{\beta} u\|_{0} \cdot \|w^{p+q-|\alpha|} D^{\gamma} v\|_{\infty} \\ &\leq A \sum_{|\alpha| \leq q} \sum_{\beta+\gamma=\alpha} \|w^{-p} D^{\beta} u\|_{0} \cdot \|w^{p+q-|\gamma|} D^{\gamma} v\|_{\infty} \\ &\leq AB \cdot \|\|u\|_{p,q} \cdot \sum_{|\gamma| \leq q} \|w^{p+q-|\gamma|} D^{\gamma} v\|_{\infty} \leq AB \cdot \|\|u\|_{p,q} \cdot C_{p+q} \left(\sum_{|\gamma| \leq q} 1\right) \|v\|_{s}. \end{aligned}$$

This implies $||u||_{p+q+r,q} \leq ABC_{p+q} \left(\sum_{|\gamma| \leq q} 1\right) \cdot |||u||_{p,q}.$

Lemma 5. Let a function $\varphi \in \mathcal{D}(\mathbb{R})$ be even with $\operatorname{supp} \varphi \subset [-2, 2], 0 \leq \varphi(t) \leq 1$ for $t \in \mathbb{R}$, and $\varphi(t) = 1$ for $t \in [-1, 1]$. For $\lambda \ge 0$ put

$$\varphi_{\lambda}(t) = \begin{cases} 1 & \text{if } |t| \leq \lambda + 1, \\ \varphi(t - \lambda \operatorname{sgn} t) & \text{if } |t| \geqslant \lambda + 1 \end{cases}$$

and $\psi_{\lambda}(x) = \prod_{i=1}^{n} \varphi_{\lambda}(x_i)$ for $x \in \mathbb{R}^n$. Then $\sup\{\|w^{-k-r}\psi_{\lambda}\|_k; \lambda \ge 0\} < \infty$ for any $k \in \mathbb{N}$.

Proof. It holds

$$\begin{split} \|w^{-k-r}\psi_{\lambda}\|_{k} &= \sum_{|\alpha+\beta| \leqslant k} \|x^{\alpha}D^{\beta}(w^{-k-r}\psi_{\lambda})\|_{0} \\ &\leqslant \sum_{|\alpha+\beta| \leqslant k} \|x^{\alpha}\sum_{\gamma+\delta=\beta} [\frac{\beta}{\gamma,\delta}]D^{\gamma}w^{-k-r} \cdot D^{\delta}\psi_{\lambda}\Big\|_{0} \end{split}$$

Each function $D^{\delta}\psi_{\lambda}$ is bounded by a constant independent on λ , hence it is sufficient to show that $\int_{\mathbb{R}^n} |x^{\alpha}D^{\gamma}w^{-k-r}|^2 dx < +\infty$ for any $\alpha, \gamma \in \mathbb{N}^n, |\alpha + \gamma| \leq k$. Since $|D^{\gamma}w^{-k-r}(x)| \leq (k+r)^{|\gamma|}w^{-k-r}(x)$ for any $x \in \mathbb{R}^n$, we have $\int_{\mathbb{R}^n} |x^{\alpha}D^{\gamma}w^{-k-r}|^2 dx \leq (k+r)^{2k} \int_{\mathbb{R}^n} w^{-2r} < +\infty$.

Proposition 2. $\mathcal{O}_{p,q} \subset H_{p+q+r,q}$ for any $p,q \in \mathbb{N}$, $p \ge q$. The identity map id: $\mathcal{O}_{p,q} \to H_{p+q+r,q}$ is continuous.

Proof. Put, for brevity, s = p + q + r, $B(\lambda) = \{x \in \mathbb{R}^n ; \|x\| \leq \lambda\}$ for $\lambda > 0$, and take $u \in \mathcal{O}_{p,q}$. Let the functions $\psi_{\lambda}, \lambda \ge 0$ be the same as in Lemma 5. \Box

By Lemma 4, we have $D^{\alpha}u \in \mathcal{O}_{p+|\alpha|,q-|\alpha|}$ and $\|D^{\alpha}u\|_{p+|\alpha|,q-|\alpha|} \leqslant \|u\|_{p,q}$ for any $\alpha \in \mathbb{N}^n$, $|\alpha| \leqslant q$. Put $C = \sup\{\|w^{-s}\psi_\lambda\|_{p+|\alpha|}; \lambda \ge 0\}$. By Lemma 5, C is a finite constant. Take $\lambda \ge 0$. Then $(\int_{B(\lambda)} |w^{-s}D^{\alpha}u|^2 dx)^{1/2} \leqslant \|\psi_\lambda w^{-s}D^{\alpha}u\|_0 \leqslant \|D^{\alpha}u\|_{p+|\alpha|,q-|\alpha|} \cdot \|\psi_\lambda w^{-s}\|_{p+|\alpha|} \leqslant \|u\|_{p,q} \cdot \|\psi_\lambda w^{-s}\|_{p+|\alpha|} \leqslant C \cdot \|u\|_{p,q}$.

Since this inequality holds for all $\lambda \ge 0$, we have $||w^{-s}D^{\alpha}u||_0 \le C \cdot ||u||_{p,q}$ for any $\alpha \in \mathbb{N}^n$, $|\alpha| \le q$, which implies $|||u||_{p,q} \le C \cdot \sum_{|\alpha| \le q} ||u||_{p,q} \le qn^q C \cdot ||u||_{p,q}$.

Theorem. For any $q \in \mathbb{N}$, the spaces \mathcal{O}_q and H_q are the same. Their inductive topologies are the same, too.

Proof. Take $q \in \mathbb{N}$. By Propositions 1 and 2, for any $p, q \in \mathbb{N}$, $p \ge q$, we have $H_{p,q} \subset \mathcal{O}_{p+q+r,q} \subset \mathcal{O}_q$ and $\mathcal{O}_{p,q} \subset H_{p+q+r,q} \subset H_q$ with all four inclusions continuous. Hence the identity map id: $H_q \to \mathcal{O}_q$ is a topological isomorphism. \Box

References

- [1] Schwartz, L.: Théorie des Distributions. Hermann, Paris, 1966.
- [2] Horváth, J.: Topological Vector Spaces and Distributions, Vol. 1. Addison-Wisley, Reading, 1966.
- [3] Kučera, J.: Fourier L₂-transform of distributions. Czechoslovak Math. J. 19 (1969), 143–153.
- [4] Kučera, J.: On multipliers of temperate distributions. Czechoslovak Math. J. 21 (1971), 610–618.
- [5] Kučera, J., McKennon, K.: Certain topologies on the space of temperate distributions and its multipliers. Indiana Univ. Math. 24 (1975), 773–775.
- [6] Kučera, J.: Extension of the L. Schwartz space O_M of multipliers of temperate distributions. J. Math. Anal. Appl. 56 (1976), 368–372.

Authors' addresses: Jan Kucera, Department of Mathematics, Washington State University, Pullman, Washington 99164-3113, U.S.A., e-mail: kucera@math.wsu.edu; Carlos Bosch, Departamento de Matematicas, ITAM, Mexico D.F., MEXICO, e-mail: bosch @itam.mx.