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Abstract. We consider the functional equation f(xf(x)) = ϕ(f(x)) where ϕ : J → J is a
given homeomorphism of an open interval J ⊂ (0,∞) and f : (0,∞) → J is an unknown
continuous function. A characterization of the class S(J,ϕ) of continuous solutions f is
given in a series of papers by Kahlig and Smítal 1998–2002, and in a recent paper by Reich
et al. 2004, in the case when ϕ is increasing. In the present paper we solve the converse
problem, for which continuous maps f : (0,∞) → J , where J is an interval, there is an
increasing homeomorphism ϕ of J such that f ∈ S(J,ϕ). We also show why the similar
problem for decreasing ϕ is difficult.
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1. Introduction

If not specified, by function we always mean a continuous function. We consider

the functional equation

(1.1) f(xf(x)) = ϕ(f(x)), x ∈ (0,∞)

where ϕ : J → J is a given (surjective) homeomorphism of an interval J ⊂ (0,∞)

onto itself, and f : (0,∞) → J is an unknown function. Denote by S(J, ϕ) the class

of solutions f of (1.1) with the range J .
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This equation is a special case of equations of invariant curves. A survey of general

results can be found in [6] and [7]. Solutions of (1.1) with increasing ϕ have been

studied, e.g., in [1]–[5], where another references can be found. While [4] contains

characterization of the equations which have only monotone solutions, our last paper

[5] contains a characterization of the class of continuous solutions of (1.1). We recall

the main results.

1.1 Theorem (Cf. [3], [4].). Let Rf denote the range of f . Assume ϕ is increas-

ing, and f is a nonconstant solution of (1.1).

(i) If 1 /∈ Rf then Rf = (p, q) is an open interval, ϕ has no fixed point in (p, q),

and the case p > 1 can be reduced to q < 1 by a suitable transformation. Moreover,

if q = 1 then f is monotone.

(ii) If 1 ∈ Rf then f is monotone, 1 is a fixed point of ϕ, and Rf = (p, q),

Rf = (p, 1] or Rf = [1, q). Hence, in either of the last two cases, f must be constant

on an interval (0, a] or [a,∞). Moreover, the case Rf = [1, q) can be reduced to

Rf = (p, 1].

Thus, in view of the previous theorem, the case 1 ∈ Rf = (p, q) splits into two

separate cases Rf = (p, 1] and Rf = [1, q), and f splits into two solutions fp =

min{f, 1} and fq = max{f, 1}. Consequently, the class S(J, ϕ) of solutions of (1.1)

with Rf = J an arbitrary interval is determined by the classes S(J, ϕ) with J , ϕ

satisfying the conditions

(1.2) J = (p, q), 0 6 p < q 6 1, and ϕ(y) 6= y for y ∈ J.

If not specified we assume (1.2) throughout the remainder of the paper.

The main result concerning monotone solutions is the following one.

1.2 Theorem (Cf. [4].). If q < 1 then any continuous solution of (1.1) is mono-

tone if and only if

(1.3) ϕ(y) < y in J and

∞
∏

k=0

ϕk(u)

ϕk(v)
= ∞, for any u > v in J,

or

(1.4) ϕ(y) > y in J and
∞
∏

k=1

ϕ−k(u)

ϕ−k(v)
= ∞, for any u > v in J.

1.3 �������! �" . Assume (1.2). Then neither (1.3) nor (1.4) can be satisfied if
p > 0, cf. [4]. Thus, by the above theorems, non-monotone solutions of (1.1) do exist

if and only if one of the following three conditions is satisfied: (i) 0 < p < q < 1; (ii)

0 = p < q < 1, ϕ(y) < y in J , and (1.3) is not true; (iii) 0 = p < q < 1, ϕ(y) > y in

J , and (1.4) is not true.
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Recall that by a piecewise monotone function defined on an interval we always

mean a function with finite number of monotone pieces.

1.4 Theorem (Cf. [5].). Assume q < 1. Then for any solution f of (1.1) there

is a sequence {fn}∞n=1 of solutions converging uniformly on every compact set to f ,

and such that any fn is piecewise monotone on every compact interval.

1.5 Theorem (Cf. [5].). Assume (1.1) has a solution which is not monotone.

Then there is a solution f of (1.1) and a compact interval I ⊂ (0,∞) such that f is

monotone on no subinterval of I .

1.6 �������! �" . It is easy to see that the space S(J, ϕ) is closed with respect to

the almost uniform convergence, i.e., convergence which is uniform on any compact

subset of (0,∞). Consequently, by Theorem 1.5, the space S(J, ϕ) is the almost

uniform closure of the set of solutions piecewise monotone on every compact interval.

Theorems 1.4 and 1.5 imply that, for q < 1, this is a non-trivial statement.

The next section contains solution of the converse problem. Theorem 2.7 char-

acterizes monotone functions which are solutions of (1.1) for a suitable ϕ, while

Theorem 2.8 gives a characterization of the continuous solutions. Theorem 2.9 then

shows that a typical nondecreasing function is a solution of (1.1) while a typical

nonincreasing function and a typical continuous function fail to be solutions. By

“typical” function we mean a function from a residual subset of the space of func-

tions under consideration. Finally, in Section 3 we show that, for decreasing ϕ, the

class S(J, ϕ) can be empty even in the case J = (0, 1); note that for increasing ϕ

there are always nonconstant monotone solutions [3].

2. The converse problem for increasing ϕ

Throughout this section we assume (1.2). For simplicity we shall say that a home-

omorphism ψ of J is regular if it is increasing and has no fixed points in J . For

a function f : (0,∞) → J , we let τf , or simply τ , denote the function given by

τf (x) = xf(x), for x > 0.

The next two results follow immediately from (1.1). Recall that S(J, ϕ) is the set of

continuous solutions f of (1.1) with Rf = J . Obviously, for distinct homeomorphisms

ϕ and ψ of J , S(J, ϕ) ∩ S(J, ψ) = ∅.

2.1 Lemma. Let f ∈ S(J, ϕ), and let ϕ be regular. Then τf is increasing.

#  %$&$(' . Assume that τf (x1) < τf (x2) and τf (x3) < τf (x2), for some x1 < x2 <

x3. Since τf is continuous, there are u in (x1, x2) and v in (x2, x3) such that α :=

τf (u) = τf (v). Then f(u) > f(v) and consequently, f(α) = f(uf(u)) = ϕ(f(u)) >
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ϕ(f(v)) = f(vf(v)) = f(α) which is impossible. Similarly if τf (x1), τf (x3) < τf (x2).

Thus, τf is strictly monotone. To finish the argument assume that τf is decreasing.

Then, for u < v, u/v > f(v)/f(u), and since f < 1, letting u → ∞ we obtain

0 > f(v) > 0. �

The next lemma follows directly from (1.1).

2.2 Lemma. Let f be a continuous increasing map (0,∞), with Rf = J , and

let ϕ(y) := f(yf−1(y)), for y ∈ J . Then ϕ is a regular homeomorphism of J such

that f ∈ S(J, ϕ).

2.3 Lemma. Let f be a decreasing continuous function on (0,∞), with Rf = J .

Then there is a regular homeomorphism ϕ of J such that f ∈ S(J, ϕ) if and only if

τf is strictly increasing.
#  %$&$(' . One implication follows since if τ is strictly increasing then, similarly as

in Lemma 2.2 it suffices to take ϕ(y) := f(yf−1(y)), for y ∈ J . The other implication

follows by Lemma 2.1. �

2.4 Definition. Let L be a family of level sets of a function f : (0,∞) → J .

Thus, L consists of sets f−1({y}), for y in an A ⊂ J . Then L is said to
be τf -consistent if it has a decomposition L =

⋃

t∈T

Lt into τf -orbits Lt =

{τn
f (f−1({y}))}∞n=−∞

, for any t ∈ T .

2.5 Lemma. Let f be a continuous function on (0,∞), with Rf = J . If

f ∈ S(J, ϕ) for a regular homeomorphism ϕ of J then the system L of level sets of
f is τf -consistent.
#  %$&$(' . Assume that f ∈ S(J, ϕ). Since, by Lemma 2.1, τ is increasing, f

is constant on τ(K), for any K ∈ L. Since τ is invertible, (1.1) implies f(z) =

ϕ−1(f(τ−1({z}))) and consequently, f is constant on the τ -preimage of any level set
K. Hence, L is τ -consistent. �

2.6 Lemma. Let f be a continuous function on (0,∞) with Rf = J , and such

that

(2.1) lim
x→0

f(x) ∈ {p, q}.

Assume that τ is strictly increasing, and that the system L of the level sets of f is
τ -consistent. Then there is a regular homeomorphism ϕ of J such that f ∈ S(J, ϕ).
#  %$&$(' . Put B = min{f−1({y}); y ∈ J}. Since f |B is a bijection B → J , it has

the inverse g : J → B, not necessarily continuous. Let

(2.2) ϕ(y) = f(yg(y)), for y ∈ J.
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For any y ∈ J let x = g(y). Then (2.2) can be rewritten to

(2.3) ϕ(f(x)) = f(τ(x)), for x ∈ B.

For an x ∈ B, let K(x) ∈ L be the level set containing x. Since L is τ -consistent
and τ is continuous and increasing, (2.3) implies

(2.4) f(τ(K(x))) = ϕ(f(K(x))), for any x ∈ B.

Since any K ∈ L is of the form K = K(x), for some x ∈ B, (2.3) and (2.4) imply

that (1.1) is satisfied for any x > 0.

Since L is τ -consistent we have τ(B) = B whence, by (2.3), Rϕ = J . Hence to

show that ϕ is a homeomorphism it suffices to show that it is increasing. For, f |B
being strictly monotone on B, it is increasing if the limit in (2.1) equals p, and it is

decreasing if the limit equals q. Since τ is increasing, (2.3) implies that ϕ in either

case is increasing. The regularity of ϕ (or rather, the fact that ϕ has no fixed point)

now follows by Theorem 1.1 since f ∈ S(J, ϕ). �

2.7 Theorem. Let f be a continuous monotone function on (0,∞), with Rf = J .

Then f ∈ S(J, ϕ), for a regular homeomorphism ϕ of J if and only if one of the

following conditions is satisfied:

(i) f is increasing;

(ii) f is decreasing and τ is increasing;

(iii) f is nondecreasing and the system of maximal intervals of constancy of f is

τ -consistent;

(iv) f is nonincreasing, τ is increasing, and the system of intervals of constancy

of f is τ -consistent.
#  %$&$(' . The first two conditions are given in Lemmas 2.2 and 2.3. Condition

(iii) follows by Lemmas 2.5 and 2.6 since, for a monotone function, the level sets

are τ -consistent if and only if the maximal intervals of constancy are consistent.

Similarly, (iv) follows by Lemmas 2.1, 2.5 and 2.6. �

The condition (iv) of Theorem 2.7 can be easily modified to an arbitrary continuous

function f satisfying the necessary condition that lim
x→0

f(x) and lim
x→∞

f(x) are distinct

points in {p, q}.

2.8 Theorem. Let f be a continuous function on (0,∞), with Rf = J . Then

f ∈ S(J, ϕ), for a regular homeomorphism ϕ of J if and only if lim
x→∞

f(x) ∈ {p, q}, τ
is increasing, and the system of level sets of f is τ -consistent.
#  %$&$(' . Condition lim

x→∞

f(x) ∈ {p, q} is necessary whenever ϕ is a regular
homeomorphism; this can be easily verified (see also [3]). The necessity of the other
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two conditions follows by Lemmas 2.1 and 2.5. Finally, Lemma 2.6 gives the sufficient

condition. �

In the sequel let, for an open interval J , M+(J) andM−(J) denote the class of

continuous nondecreasing, resp. nonincreasing functions from (0,∞) onto the closure

of J . Let G(J) be the class of continuous functions f from (0,∞) onto the closure

of J such that lim
x→∞

f(x) ∈ {p, q}. Let S(J) =
⋃

ϕ

S(J, ϕ), where the union is taken

over all regular homeomorphisms ϕ of J . Finally, let S+(J) = S(J) ∩ M+(J),

and similarly define S−(J). Obviously, M+(J) and M−(J) are complete metric

spaces with respect to the uniform metric. The following result states that, roughly

speaking, a typical nondecreasing function is a solution of (1.1) for some ϕ, but a

typical nonincreasing function as well as a typical continuous “globally” monotone

function is not a solution.

2.9 Theorem.

(i) S+(J) is residual inM+(J);

(ii) S−(J) is nowhere dense inM−(J);

(iii) S(J) is nowhere dense in G(J).
#  %$&$(' . It is well-known that the class of strictly increasing functions from

(0,∞) onto J is residual in M+(J). This follows by the fact that the set Mn
+(J)

consisting of f in M+(J) which have no interval of constancy K ⊂ (0, n] of length

greater than 1/n, is nowhere dense inM+(J). This proves (i), by Lemma 2.2.

To prove (ii), let G be an open (in the uniform topology) neighborhood of an

f ∈ M−(J). It is easy to see that there is a function g ∈ M−(J) ∩ G such that

ug(u) > vg(v), for some u < v. But then τg is not increasing and, by the continuity,

the same is true for any h belonging to an open neighborhood H ⊂ G of g inM−(J).

Consequently, by Lemma 2.1, H ∩ S(J) = ∅.
Proof of (iii) is similar and we omit it. �

3. The converse problem for decreasing ϕ

While the solutions of (1.1) in the regular case (i.e., with ϕ an increasing home-

omorphism) are completely characterized, it seems to be difficult to obtain similar

results as, e.g., in Theorems 1.1, 1.2, 1.4 and 1.5 for ϕ decreasing. On the other

hand, we conjecture that the converse problem for ϕ decreasing is solvable and char-

acterization as in Theorems 2.7 and 2.8 would be possible.

The essential difference between this and the regular case is that for certain de-

creasing homeomorphisms ϕ there are no nonconstant continuous solutions at all.

This can be indicated by the following two examples. They exhibit decreasing home-

omorphisms of an open interval J such that any point is periodic with period 1 or 2.
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In the first case there is a ϕ and an uncountable nested family of compact subin-

tervals of J , each being the range of a continuous solution of (1.1); note that by

Theorem 1.1, this is impossible if ϕ is increasing. In the second case, (1.1) has only

a constant solution.

3.1 ) *+�,�.-+/0� . Let α ∈ (0, 1), and let ϕ(y) = α/y, for y ∈ J = (0,∞). Thus,√
α is a fixed point and any y 6= α in J is a periodic point of ϕ of period 2. However,

for any β such that 0 < β < α/β < 1 there is a continuous solution f of (1.1) with

Rf = [β, α/β].

#  %$&$(' . It is easy to see that both mappings

(3.1) Φ(x, y) =
(

xy,
α

y

)

and Φ−1(x, y) =
(xy

α
,
α

y

)

are continuous bijections of the strip Hβ = (0,∞) × [β, α/β] onto itself. Thus, Φ is

a homeomorphism of Hβ . It is easy to see that a not necessarily surjective function

f : (0,∞) → J is a solution of (1.1) if Φ(f) ⊂ f (cf. also [3]); here we identify a

function with its graph. Moreover, the second iterates of the functions (3.1) are

given by

(3.2) Φ2(x, y) = (xα, y), and Φ−2(x, y) = (x/α, y).

To prove the theorem it suffices to find a continuous map f with range [β, α/β]

such that Φ(f) = f . Fix an x0 > 0, put y0 = α/β, and let {(xn, yn)}∞n=−∞
be the full

orbit of (x0, y0), i.e., the sequence such that Φ(xn, yn) = (xn+1, yn+1), for any integer

n. Then {yn}∞n=−∞
is an alternating sequence with terms β and α/β, and {xn}∞n=0

is a decreasing sequence tending to 0. Let f0 be any increasing continuous function

on [x1, x0], with values y1 = f0(x1), and y0 = f0(x0) at the endpoints. For any

integer n define fn as Φn(f0). Since x 7→ xy is increasing on [x1, x0] and maps this

interval onto [x2, x1], f1 : [x2, x1] → [β, α/β] is continuous and decreasing. Similarly,

f−1 : [x0, x−1] → [β, α/β] is continuous and decreasing. By (3.2), f2 and f−2 are

increasing, etc. An induction argument yields that for any integer n, fn = Φn(f0)

is a continuous strictly monotone map [xn+1, xn] → [β, α/β], attaining the values β,

α/β only at the endpoints xn+1 and xn. To finish the construction put f =
∞
⋃

n=−∞

fn.

It is easy to see that Φ(f) = f . �

3.2 ) *+�!�1-2/0� . Let ϕ(y) = 1 − y in J = (0, 1). Then 1

2
is a fixed point and any

y 6= 1

2
in J is a periodic point of ϕ of period 2, but (1.1) has no continuous solution

different from f ≡ 1

2
.

#  %$&$(' . Assume there is a nonconstant solution f . Then there is an α > 1

2

in J such that f(x0) = α, for some x0. Since the range Rf of f is an interval,
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and ϕ(Rf ) ⊂ Rf , we have
1

2
∈ Rf (note that α = ϕ2(α) is a periodic point of ϕ).

Let Φ be a homeomorphism of the strip H = (0,∞) × (0, 1) onto itself, given by

Φ(x, y) = (xy, 1 − y). Then Φ2(x, y) = (xy(1 − y), y), and since f is a solution,

Φ(f) ⊂ f whence, Φ2(f) ⊂ f . By induction,

(3.3) Φ2k(x, y) = (x[y(1 − y)]k, y) and Φ2k(f) ⊂ f.

Let {xn, yn}∞n=−∞
be the Φ-orbit of (x0, y0), with y0 = α. Let z0 < x0 be the

maximal point such that f(z0) = 1

2
. By (3.3), z2k = z04

−k and x2k = x0[α(1−α)]k ,

and since α(1 − α) < 1

4
, we have lim

k→∞

z2k/x2k = +∞. Thus, there is an n such that
x2n < x2n−2 < z2n. Then the range of f2n = f |(x2n, z2n) contains the fixed point
1

2
, while the range ( 1

2
, α) of Φ2n(f |(z0, x0)) does not (note that X = ( 1

2
, α)). But

Φ2n(f |(z0, x0)) is a (graph of) function g2n : (x2n, z2n) → J . This contradicts the

fact that Φ2n(f) ⊂ f since f2n and g2n are continuous. �
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