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Abstract. Let D′ ⊂ � n−1 be a bounded domain of Lyapunov and f(z′, zn) a holomorphic
function in the cylinder D = D′ × Un and continuous on D. If for each fixed a′ in some
set E ⊂ ∂D′, with positive Lebesgue measure mesE > 0, the function f(a′, zn) of zn can
be continued to a function holomorphic on the whole plane with the exception of some
finite number (polar set) of singularities, then f(z′, zn) can be holomorphically continued
to (D′ × � ) \ S, where S is some analytic (closed pluripolar) subset of D′ × � .
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The first result in this direction was obtained by Hartogs in [3], (also see [11]): let

f(z′, zn) be defined in the cylinder

U ′ × Un =
{
z′ = (z1, . . . , zn−1) ∈ � n−1 : |z′| < 1

}
× {zn ∈ � : |zn| < R}

and holomorphic in the cylinder U ′ × {zn ∈ � : |zn| < r}, 0 < r < R. If for each

fixed z′0 ∈ U ′, f(z′0, zn) is a holomorphic function of zn in the disk |zn| < R then f

is holomorphic in the cylinder U ′ × {|zn| < R}.

This result, which is called the Hartogs lemma, has several generalizations of

distinct character and relates directly to the subject connected with holomorphic

continuation along fixed direction. Subsequent results in this topic are contained in

the papers of Rothstein [7], M.V.Kazaryan [4], A. S. Sadullaev and E.M.Chirka [10],

T. T.Tuychiev [13].

More final result under the minimal conditions on sets of sections, along which such

continuation exists is obtained in the paper [10] by A. S. Sadullaev and E.M.Chirka:
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let f(z′, zn) be holomorphic in the cylinder U = U ′ ×Un in � n , and assume that for

each fixed z′ in some nonpluripolar set E ⊂ U ′ the function f(z′, zn) of zn can be

continued to a function holomorphic on the whole plane with the exception of some

polar set of singularities.

Then f(z′, zn) can be continued holomorphically to (U ′ × � ) \ S, where S is a

closed pluripolar subset of U ′ × � .
The main results of the present paper are the following theorems.

Theorem 1. Let D′ ⊂ � n−1 be a bounded domain of Lyapunov and f(z′, zn)

a holomorphic function in the cylinder D = D′ × Un and continuous on D. If for

each fixed a′ in some set E ⊂ ∂D′, with positive Lebesgue measure mesE > 0, the

function f(a′, zn) of zn can be continued to a function holomorphic on the whole

plane with the exception of some finite number of singularities, then f(z ′, zn) can

be holomorphically continued to (D′ × � ) \ S, where S is some analytic subset of

D′ × � .

Theorem 2. Let D′ ⊂ � n−1 be a bounded domain of Lyapunov and a function

f(z′, zn) be holomorphic in the cylinder D = D′ × Un and continuous on D. If for

each fixed a′ in some set E ⊂ ∂D′, with positive Lebesgue measure mesE > 0, the

function f(a′, zn) of zn can be continued to a function holomorphic on the whole

plane with exception of some polar set of singularities, then the function f(z ′, zn)

can be holomorphically continued to (D′ × � ) \ S, where S is a closed pluripolar

subset of D′ × � .
Throughout the paper we suppose thatD′ ⊂ � n−1 is a bounded Lyapunov domain.

Lemmas in Sect. 3 and in Sect. 4 are also proved for a such domains, though it is not

excepted that they hold for domains with smooth boundary.

Proofs of these theorems are based on the Jacobi-Hartogs series in the variable zn

with coefficients holomorphic on D′. The difficult part of the proof of the theorems

is to show that the set of singularities of the function f is a pseudoconcave set.

That difficulty is overcome by applying the Jacobi-Hartogs series. Properties of

convergence domains of such series, which we use, are described in the paper [10]. In

Sections 1, 2 we discuss boundary behavior of plurisubharmonic functions, N -sets and

some notices of Jacobi-Hartogs, which on the one hand are one of the main methods

for proving the main results, on the other hand independent meanings are presented.

In Sect. 3 and Sect. 4 the class R0 and boundary behavior of pseudoconcave sets are

studied, on which at the end the proofs of the theorem are based.

Theorems 1 and 2 are proved in Sect. 5.

The authors express gratitude to professor A. S. Sadullaev for introducing them to

these problems and for useful suggestions.
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1. N-sets and boundary behavior of (pluri)subharmonic functions

If u1, u2, . . . , uN are plurisubharmonic functions in D ⊂ � n , where N is a finite

number, then sup{u1, u2, . . . , uN} is also plurisubharmonic in D. The situation is

different when we consider u(z) = supuα(z) a supremum of an infinite number of

plurisubharmonic locally uniformly upper-bounded functions uα(z), α ∈ Λ (where

α is an infinite cardinality). In this case u(z) is not necessarily semi-continuous.

However, if we consider the regularization u∗(z) = lim
ξ→z

u(ξ), then u∗ is a plurisub-

harmonic function in D.

The situation is similar for the upper limit

u(z) = lim
j→∞

uj(z)

of locally uniformly upper-bounded sequence {uj}: the regularization u
∗ also will be

a plurisubharmonic function.

It is known that the set N = {z ∈ D : u(z) < u∗(z)} is pluripolar (see [1], [8]).

The following assertion makes transition to boundary properties:

Lemma 1 (I. I. Privalov [6]). Let D be a bounded domain of Lyapunov and a

function u(z) 6≡ −∞ be subharmonic in D and upper-bounded. Then the function

u(z) almost everywhere has normal limit values on ∂D

u(ξ) = lim
ε→0

u(ξ − ενξ),

and u(ξ) is a summable function on ∂D.

A bounded domain D is called a domain of Lyapunov if there exists an external

normal νξ for each boundary point ξ which is a continuous vector function satisfying

Hölder’s condition. This property implies a fairly good boundary behavior of the

Green function G(ξ, z): for each fixed z ∈ D the function G(ξ, z) is continuously

differentiable in D and all its first partial derivatives satisfy Hölder’s condition in D.

Therefore, in this case, every integrable function ϑ(ξ) on ∂D can be harmonically

continued into D and this continuation is obviously given by the integral of Poisson:

ϑ(z) =

∫

∂D

P (ξ, z)ϑ(ξ) dσ(ξ),

where P (ξ, z) = cn · ∂G(ξ, z)/∂νξ is Poisson’s kernel and cn is a constant depending

only on n.
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The function u(z) from lemma 1, even when it is harmonic in D, generally does

not coincide with the Poisson integral of the function u(ξ), it can differ by a singular

part:

u(z) =

∫

∂D

P (ξ, z)u(ξ) dσ +

∫

∂D

P (ξ, z) dλ(ξ).

Here λ is a measure singular with respect to the Lebesgue measure. Therefore, for

studying the boundary behavior of subharmonic functions it is more natural to con-

sider the notion of a boundary measure, which is defined as follows: a subharmonic

and upper-bounded function u(z) in D has the least harmonic majorant in following

form:

ϑ(z) =

∫

∂D

P (ξ, z) dµ(ξ).

The bounded measure µ is concentrated on ∂D and uniquely defined by the function

u(z); it is called boundary measure of the function u(z) and almost everywhere the

following equality holds:

(1) lim
ε→0

u(ξ − ενξ) = lim
ε→0

ϑ(ξ − ενξ) =
dµ(ξ)

dσ

(see [6]), where dµ(ξ)/ dσ is the density of the measure µ with respect to the Lebesgue

measure dσ.

Let D ⊂ � n be a bounded domain of Lyapunov and {uj(z)} a sequence of uni-

formly upper-bounded and subharmonic functions uj(z) in D. We extend the func-

tions uj(z) to the boundary of the domain D, via

uj(ξ) = lim
ε→0

uj(ξ − ενξ), ξ ∈ ∂D.

Then the following lemma is true.

Lemma 2. Let u(z) = lim
j→∞

uj(z), z ∈ D, and let u∗(z) = lim
w→z

u(w), z ∈ D be its

regularization. Then the normal limit of the function u∗(z) on the boundary ∂D is

less than or equal to u(ξ) almost everywhere with respect to the Lebesgue measure.
���������

. First we shall prove the lemma for a monotone sequence, i.e. when

uj(z) 6 uj+1(z) 6 M, j = 1, 2, . . . .

Let ϑj(z) be the least harmonic majorant of the function uj(z). Then ϑj(z) 6

ϑj+1(z) 6 M for each j and according to (1) the identity

(2) uj(ξ) = ϑj(ξ).

is true almost everywhere on ∂D.
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It is easy to check that the function ϑ(z) = lim
j→∞

ϑj(z), z ∈ D is the least harmonic

majorant for the function u(z) = lim
j→∞

uj(z), z ∈ D, consequently ϑ(z) is the least

harmonic majorant for the function u∗(z) too. Hence according to (1) and (2) we

obtain that u∗(ξ) = ϑ(ξ) = u(ξ) for almost all ξ ∈ ∂D.

In the general case, we consider the following sequence of subharmonic functions:

Wj,k(z) = sup
j6m6k

um(z).

It is obvious that

u(z) = lim
j→∞

uj(z) = lim
j→∞

lim
k→∞

Wj,k(z).

Since the sequence Wj,k(z) is monotonously growing and the sequence

Wj(z) = lim
k→∞

Wj,k(z)

is monotonously decreasing, according to the first part of the proof we have

W ∗
j (ξ) = Wj(ξ)

almost everywhere and therefore

u∗(ξ) = lim
ε→∞

u∗(ξ − εvξ) 6 lim
j→∞

W ∗
j (ξ) = lim

j→∞
Wj(ξ) = u(ξ)

for almost all ξ ∈ ∂D. Lemma 2 is proved. �

2. Jacobi-Hartogs series

In this paragraph we shall formulate some results from [10], which the proofs of

the main theorems of this paper are based on.

We consider the rational lemniscate Vr in the plane � , determined as the union of
some connected components of the set |g(z)| < r, where g is a fixed rational function.

If f is holomorphic in a neighborhood of V r, then function

F (z, w) =
1

2πi

∫

∂Vr

f(ξ)

g(ξ) − w
·
g(ξ) − g(z)

ξ − z
dξ

is holomorphic in the domain Vr × {|w| < r}, and according to the Cauchy integral

formula F (z, g(z)) ≡ f(z) in Vr. We expand the function F (z, w) into a Hartogs
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series with respect to w: F (z, w) =
∞∑

k=0

ck(z)wk. Substituting w = g(z), we obtain a

decomposition of the function f into a Jacobi series

(3) f(z) =

+∞∑

k=0

ck(z)gk(z),

with coefficients

(4) ck(z) =
1

2πi

∫

∂Vr

f(ξ) ·
g(ξ) − g(z)

gk+1(ξ)(ξ − z)
dξ.

From this formula it is easy to see that the functions ck(z) are rational functions

with poles at the poles of g, and deg ck 6 deg g 6 m.

Lemma 3 ([10]). The domain of convergence of the series (3) is the interior of the

lemniscate |g(z)| < R(g), where the radius of convergence R(g) is determined from

the formula

(5) lim
k→∞

‖ck‖
1/k
K =

1

R(g)
.

Here K is an arbitrary nonpolar compact set which does not contain the poles of g

and the limit on the left-hand side of the equality does not depend on the choice of

such a compact set.

Let’s return to the function f(z′, zn), which is holomorphic in the domain D′×Un.

Let g(zn) be a rational function of zn with g(0) = 0. Then for sufficiently small

r there exists a connected component Vr of the set {zn : |g(zn)| < r} such that

0 ∈ Vr ⊂ Un. Since f(z′, zn) is a holomorphic function in D′ × Vr , for each fixed

z′ ∈ D′ it can be decomposed into the Jacobi series (3):

(6) f(z′, zn) =

∞∑

k=0

ck(z′, zn)gk(zn),

where

ck(z′, zn) =
1

2πi

∫

∂Vr

f(z′, ξn) ·
g(ξn) − g(zn)

gk+1(ξn)(ξn − zn)
dξn.

Consequently, the ck(z′, zn) are rational functions of zn with coefficients holomorphic

in D′.
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Lemma 4 ([10]). The Jacobi-Hartogs series (6) converges uniformly in the in-

terior of the open set Gg = {(z′, zn) : z′ ∈ D′, |g(zn)| < R
(g)
∗ (z′)} in D′ × � ,

where R
(g)
∗ (z′) = lim

ξ′→z′

R(g)(ξ′) is the lower regularization of R(g)(z′). The func-

tion − logR
(g)
∗ (z′) is plurisubharmonic in D′, R

(g)
∗ (z′) 6 R(g)(z′) in D′ and the set

{z′ ∈ D′ : R
(g)
∗ (z′) < R(g)(z′)} is pluripolar.

We denote by < = {g(zn)} the family of rational functions with coefficients from

Q+ iQ (here Q is the set of all rational numbers), such that every function g(zn) ∈

< has a unique zero on zn = 0. To investigate the domain of convergence of the

corresponding Jacobi-Hartogs series the following lemma on approximation of planar

sets by rational lemniscates will be useful.

Lemma 5. Let
∑
be a closed polar subset of � \ {0} and let K be a compact

in � \ Σ. Then there exists a rational function g ∈ <, such that the lemniscate

{w : |g(w)| < 1} is connected, belongs to � \ Σ and contains K.

This lemma is given in a different formulation in [10].���������
. Choose r > 0 such that K ⊂ {w : |w| < r} and the circle {w : |w| = r}

does not intersect
∑
. Then there is δ ∈ (0; r) such that the distances from

∑
to 0,

K and {w : |w| = r} as well as from K to {w : |w| = r} are all greater than δ. Since∑
is polar, for every ε > 0 there exist a1, a2, . . . , ak ∈ Σr = Σ ∩ {w : |w| < r} such

that Σr belongs to the lemniscate |Pk(w)| < εk, where Pk(w) =
k∏

j=1

(w − aj). It is

clear that |Pk(w)| > δk everywhere on K and for |w| > r + δ. Put

g(w) =
(w
r

)m 1

Pk(w)
,

then, obviously,

1. |g(w)| >
(
(r + δ)/r

)m
1/(3r)k for |w| = r + δ,

2. |g(w)| >
(
δ/r

)m
1/εk on Σr, and

3. |g(w)| <
(
(r − δ)/r

)m
1/δk on K.

The right-hand side of 1 is greater than 1 if m > k ln 3/ ln(1 + δ/r), while the right-

hand side of 3 is less than 1, if m > k ln δ/ ln(1 − δ/r). Therefore, there exists a

constant c > 1 depending only on r and δ such that for m = c · k we have |g(w)| > 1

for |w| > r+δ and |g(w)| < 1 on K. If we choose then ε < (δ/r)c, we get from 2 that

|g(w)| > 1 also on Σr. Thus, the lemniscate {w : |g(w)| < 1} contains K, and its

closure belongs to � \Σ. On the boundary of each component of this lemniscate the

function g is constant in modulus, therefore such a component must contain zeros

of g. Since w = 0 is the unique zero of g in � , this implies that the lemniscate
{w : |g(w)| < 1} is connected. �
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Since the set of rational functions with rational coefficients is dense everywhere

in the space of all rational functions, the function g(w) = (w/r)m1/Pk(w) can be

replaced by a function from the class <. Lemma 5 is proved.

3. Some results connected with the class R0

The class R0 was introduced by A.A.Gonchar to investigate the rapid convergence

of sequences of rational functions and the main results about the properties of the

class R0 also belong to him (see [2]).

Let f be a holomorphic function on some neighborhood U of 0 ∈ � n such that

there exists a sequence of rational functions rk(z) with deg rk 6 k, which rapidly

converges to the function f with respect to the Lebesgue measure: lim
k→∞

mes{z ∈ U :

|f − rk|
1/k > ε} = 0 for every ε > 0. Then f is globally single-valued and the

sequence rk rapidly converges to f in measure everywhere on the natural domain of

existence Wf ⊂ � n of the function f . The class of all such functions f is denoted by

R0.

Besides being entire and meromorphic in � n the functions of the class R0 also

contain every function f having a pluripolar set of singularities. Moreover, the class

R0 is much wider than above mentioned classes of functions. In the case of n = 1

a criterion for the function f to belong to the class R0 in the terms of numerical

sequence expressed through the Taylor coefficients of the function f at the origin

was obtained by A. Sadullaev [9]. Recall this criterion: let f(z) =
∞∑

k=0

ak · zk be

holomorphic in a neighborhood of the unit ball U : |z| 6 1 and

Vk = sup
j1,...,jk

mod

∣∣∣∣∣∣∣

aj1aj1+1 . . . aj1+k−1

. . . . . . . . . . . . . . . . . .

ajk
ajk+1 . . . ajk+k−1

∣∣∣∣∣∣∣
, k = 1, 2, . . .

where mod|·| is modulus of the appropriate determinant.

Then

(7) f ∈ R0 ⇐⇒ lim
k→∞

V
1/k2

k = 0.

With the help of this criterion we shall prove the following lemma, which will sup-

ply single-valuedness of the analytical continuation of the function f in one variable

with discrete singularities.
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Lemma 6. If

f(z′, zn) ∈ O(D′ × Un) ∩ C(D′ × Un)

and f(a′, zn) ∈ R0 for all a′ ∈ E ⊂ ∂D′, mesE > 0, then f(z′, zn) ∈ R0 for all

z′ ∈ D′.

In the case of E ⊂ D′ a nonpluripolar set in D′ this lemma is proved in [9].
���������

. We expand the function f(z′, zn) into the Hartogs series

f(z′, zn) =

∞∑

j=0

aj(z
′)zj

n,

where

aj(z
′) =

1

2πi

∫

∂Un

f(z′, ξ)

ξj+1
dξ.

It is clear that aj(z
′) ∈ O(D′) ∩ C(D′).

Now we define Vk(z′) as the following

Vk(z′) = sup
j1,...,jk

mod

∣∣∣∣∣∣∣

aj1(z
′) aj1+1(z

′) . . . aj1+k−1(z
′)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ajk
(z′) ajk+1(z

′) . . . ajk+k−1(z
′)

∣∣∣∣∣∣∣
, k = 1, 2, . . . .

Obviously (see [9]), that functions ϕk(z′) = 1
k2 lnVk(z′) are plurisubharmonic and

upper bounded in D′ uniformly in k.

Let

ϕ(z′) = lim
k→∞

ϕk(z′), z′ ∈ D′.

According to the criterion (7) ϕ(ξ′) ≡ −∞, for each ξ′ ∈ E, and according to

Lemma 2 ϕ∗(ξ′) = lim
ε→0

ϕ∗(ξ′−ε·νξ′) 6 ϕ(ξ′) for almost all ξ′ ∈ ∂D′, i.e. the boundary

function ϕ∗(ξ′) is not integrable. Hence we have that plurisubharmonic function

ϕ∗(z′) ≡ −∞ in D′. Indeed, if we suppose that ϕ∗(z′) 6= −∞, then according to

Lemma 1 the boundary function ϕ∗(ξ′) must be integrable. Since ϕ(z′) 6 ϕ∗(z′),

then ϕ(z′) = −∞ for each z′ ∈ D′. Consequently,

lim
k→∞

V
1/k2

k (z′) = 0, z′ ∈ D′.

Hence, using the criterion (7) we find that f(z′, zn) ∈ R0 for every z′ ∈ D′. Lemma 6

is proved. �
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4. Boundary properties of pseudoconcave sets

In the papers of Oka [5], Slodkowski [12] and Sadullaev [8], [9] some properties of

pseudoconcave sets have been established. Let S be a pseudoconcave subset of the

domain U ′ × Un and let

Sa′ = S ∩ {z′ = a′}.

Assume that the closure of S does not intersect U ′ × ∂Un. Then

1. (Slodkowski). The function log(capSz′), where “cap” denotes the capacity

(transfinite diameter) of a planar set, is plurisubharmonic in U ′.

2. (Oka). If Sz′ are finite for all z′ in some nonpluripolar set E ⊂ U ′, then S is an

analytic set.

3. (Sadullaev). If the sets Sz′ are polar for all z′ in some nonpluripolar set E ⊂ U ′,

then S is pluripolar set.

By la′ and S∗
a′ , a′ ∈ ∂D′, we denote respectively a line in the space � n−1 passing

through a point a′ on the direction of the normal νa′ , and the normal boundary fiber

of a pseudoconcave set S ⊂ D′ × � at a point a′ ∈ ∂D′, which is defined as follows:

S∗
a′ = (la′ × � ) ∩ S ∩ {z′ = a′}.

It is easy to check that in general S∗
a′ 6= S ∩ {z′ = a′}.

Lemma 7. Let S be a pseudoconcave and bounded subset of the domain D′× � ⊂

� n . If for every a′ from a set E ⊂ ∂D′, with positive Lebesgue measure mesE > 0,

the normal boundary fiber of S∗
a′ consists of a finite number of points, then S is an

analytic set.

���������
. Consider the plurisubharmonic function

ln
∏

|wi − wj | =
∑

ln |wi − wj |, w = (w1, w2, . . . , wk) ∈ � k ,

where the product and the sum are taken over all 1 6 i < j 6 k. According to

Slodkowski’s Lemma (see [11, p. 460]) the function

δk(z′) =
2

k(k − 1)
max
w∈Sk

z′

Σ ln |wi − wj |

is plurisubharmonic in D′ for arbitrary k, where Sk
z′ = Sz′ ×Sz′ × . . .×Sz′ (k-times).

Denote Ej = {a′ ∈ E, cardS∗
a′ 6 j}, j = 1, 2, . . ., where “card” stands for the

number of points. Then Ej is a growing sequence of sets such that E =
∞⋃

j=1

Ej .
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Since E has positive Lebesgue measure, at least one of these sets (let it be Ek) also

has positive Lebesgue measure. It is clear that the set S∗
a′ , a′ ∈ ∂D′, is the set of

limit points of the set S, thus for any sequence z′p ∈ D′∩ la′ , converging to the point

a′, the following inclusion is true:

∞⋂

m=1

∞⋃

p=m

Sz′p ⊆ S∗
a′ .

Thus the plurisubharmonic function δk+1(z
′) is upper bounded and lim

ε→0
δk+1(a

′ −

ενa′) = −∞ for each a′ ∈ Ek . Hence, we see that the boundary function δk+1(ξ
′) =

lim
ε→0

δk+1(ξ
′ − ε · νξ′)ξ′ ∈ ∂D′, is not integrable. Thus by Lemma 1 the plurisubhar-

monic function δk+1(z
′) has a finite value in no point, i.e. δk+1(z

′) ≡ −∞ in D′. This

means that card Sz′ 6 k, for all z′ ∈ D′. By applying here the theorem of Oka [5]

we obtain the analyticity of the set S. Lemma 7 is proved. �

Lemma 8. Let S be a pseudoconcave, bounded subset of the domainD′× � ⊂ � n .

If for every a′ from a set E ⊂ ∂D′, with positive Lebesgue measure, mesE > 0, the

normal boundary fibers S∗
a′ are polar, then S is a pluripolar set.

���������
. First note that the cardinality

capSz′ = lim
k→∞

(
max

∏

16i6j6k

|wi − wj |

)2/k(k−1)

is called the capacity of the set Sz′ ⊂ � , where the maximum is taken over all
possible arrangements of points w1, w2, . . . , wk ∈ Sz′ . Here the limit exists, because

the sequence in question decreases. Since the sequence

δk(z′) =
2

k(k − 1)
max
w∈Sk

z′

∑

16i6j6k

ln |wi − wj |

of plurisubharmonic functions in D′ is decreasing, it converges to a function ψ(z′) =

ln capSz′ , where ψ(z′) is an upper-bounded plurisubharmonic function in D′ and

ψ(a) = ln capS∗
a′ = −∞, for any a′ ∈ E, because capS∗

a′ = 0. Hence we have

ψ(z′) = ln capSz′ ≡ −∞ in D′. Consequently capSz′ ≡ 0, i.e. the layers of Sz′ are

polar sets for all z′ ∈ D′. Then by the theorem of Sadullaev (see [9], Proposition 1)

it follows that S is pluripolar in D′ × � . Lemma 8 is proved.
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5. Proof of the theorems

1. Let f(z′, zn) satisfy the conditions of Theorem 1 (Theorem 2). Then according

to Lemma 6 for every fixed z′ ∈ D′ ∪ E the function as a function of zn belongs to

the class R0.

We expand f(z′, zn) into the Jacobi-Hartogs series of powers of a rational function

g(zn) ∈ <:

f(z′, zn) =
∞∑

k=0

ck(z′, zn)gk(zn),

where ck(z′, zn) ∈ O(D′ × Un) ∩ C(D′ × Un). This can be done since f(z′, zn) is

holomorphic in D = D′ × Un, continuous on D′ × Un, and for small δ > 0 the

lemniscate {zn : |g(zn)| < δ} belongs to Un. By Lemma 4 the series converges

uniformly in the interior of the open set Gg = {(z′, zn) : z′ ∈ D′, |g(zn)| < R
(g)
∗ (z′)}

and hence its sum is holomorphic there. (We recall that

R(g)(z′) =
1

lim
k→∞

k
√
‖ck(z′, zn)‖|zn|6δ

,

for all z′ ∈ D′ and R
(g)
∗ (z′) = lim

ζ′→z′

R(g)(ζ ′), z′ ∈ D′). According to the definition of

the family < of rational functions (see Sect. 2) the lemniscate

{zn : |g(zn)| < R
(g)
∗ (z′)}

is connected and contains some neighborhood of zn = 0. Therefore the set Gg is a

domain, which contains D′ × {0}. The sum of the constructed series coincides with

f(z′, zn) in neighborhood D′×{0} and, thus, this sum is a holomorphic continuation

of f(z′, zn) in Gg .

2. Let g1 and g2 be arbitrary rational functions from the class < and let f1(z
′, zn)

and f2(z
′, zn) be analytic continuations of the function f(z′, zn) in the domains Gg1

and Gg2
respectively. Since for arbitrary z′0 ∈ D′ the intersections

Gg1
∩ {z′ = z′0} = {(z′0, zn) : |g1(zn)| < R

(g1)
∗ (z′0)}

and

Gg2
∩ {z′ = z′0} = {(z′0, zn) : |g2(zn)| < R

(g2)
∗ (z′0)}

are connected and f1(z
′0, zn) = f(z′0, zn), f2(z

′0, zn) = f(z′0, zn) (we recall that

f(z′0, zn) ∈ R0 for every fixed z′0 ∈ D′) in the corresponding intersections, we have

f1(z
′0, zn) = f2(z

′0, zn)
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for any (z′0, zn) ∈ Gg1
∩Gg2

. It follows that f(z′, zn) has a single-valued continuation

to Gg1
∪ Gg2

. Hence the function f(z′, zn) has a single-valued continuation to the

domain G =
⋃
Gg , where the union is over all rational functions in <.

3. Let Ĝ ⊂ D′ × � be the natural domain of existence of the analytic function
f(z′, zn) (in the sense of Weierstrass) relatively from D′ × � . Since for every fixed
z′0 ∈ D′ the function f(z′0, zn) belongs to the class R0, it follows that the function

f(z′, zn) is single-valued in the domain Ĝ. Hence, the domain Ĝ is one-sheeted and

holomorphically nonexpandable at every boundary point (z ′, zn) ∈ S = (D′ × � ) \ Ĝ

(i.e. for every point (z′, zn) ∈ S there exists its neighborhood U and a function

ϕ ∈ O(Ĝ ∩ U) holomorphically non continuable at the point (z′, zn)). Hence we

obtain that for every ball B′ ⊂ D′ the complement (B′ × � ) \ S is pseudoconvex,

i.e.S-pseudoconcave.

By Lemma 2 the Lebesgue measure of

Eg = {a′ ∈ E : lim
ε→0

R
(g)
∗ (a′ − ε · νa′) < R(g)(a′)}

is equal to zero. This implies that the Lebesgue measure of
⋃
Eg is also equal to zero,

where the union is taken over <, and, consequently, for any a′ ∈ E0 = E \
( ⋃

Eg

)

and g ∈ < the following inequality holds

R
(g)
∗ (a′) = lim

ε→0
R

(g)
∗ (a′ − ε · νa′) > R(g)(a′).

Using Lemma 5 once again we obtain that for any a′ ∈ E0 the normal boundary

fiber S∗
a′ of pseudoconcave set S coincides with the set of singularities Λa′ of the

function f(a′, zn): Indeed, since by the hypothesis of Theorem 1 (Theorem 2) the

singular set Λa′ of the function f(z′, zn) consists of a finite number of points (a polar

set), by Lemma 5 for each point (a′, z0
n), a′ ∈ E0, z

0
n ∈ � \Λa′ , there exists a rational

function g ∈ < whose lemniscate {(a′, zn) : |g(zn)| < R
(g)
∗ (a′)} contains the point

(a′, z0
n). It follows that for each a′ ∈ E0

⋂

g∈<

(`a′ × � ) \Gg ∩ {z′ = a′} =
⋂

g∈<

{(a′, zn) : |g(zn)| > R
(g)
∗ (a′)} = Λa′ .

From these equalities it follows that S∗
a′ = Λa′ . In particular, the fibers S∗

a′ consist

of a finite number (a polar set) of points.

5. Let Ω be the image of the domain Ĝ = (D′ × � ) \ S under the mapping

(z′, zn) → (z′, 1/zn). The set Σ = (D′ × � ) \ Ω is also pseudoconcave. Since S does

not intersect the set D′ × {0}, it follows that Σ is bounded and for every a′ ∈ E0

the normal boundary fiber of Σ consists of a finite number (a polar set) of points,

i.e. the set Σ satisfies all the conditions of Lemma 7 (Lemma 8), consequently, Σ is

an analytic (pluripolar) subset of D′ × � . Thus, S is also analytic (pluripolar). The
theorems are proved.
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