
130 (2005) MATHEMATICA BOHEMICA No. 4, 397–407

EXTENSION OF MEASURES: A CATEGORICAL APPROACH

��� ��� � � � 	 

, Košice

(Received April 27, 2005)

Dedicated to the memory of my advisor Professor Josef Novák (1905–1999)

Abstract. We present a categorical approach to the extension of probabilities, i.e. normed
σ-additive measures. J. Novák showed that each bounded σ-additive measure on a ring of
sets � is sequentially continuous and pointed out the topological aspects of the extension
of such measures on � over the generated σ-ring σ( � ): it is of a similar nature as the
extension of bounded continuous functions on a completely regular topological space X

over its Čech-Stone compactification βX (or as the extension of continuous functions on X

over its Hewitt realcompactification υX). He developed a theory of sequential envelopes
and (exploiting the Measure Extension Theorem) he proved that σ( � ) is the sequential
envelope of � with respect to the probabilities. However, the sequential continuity does
not capture other properties (e.g. additivity) of probability measures. We show that in the
category ID of D-posets of fuzzy sets (such D-posets generalize both fields of sets and bold
algebras) probabilities are morphisms and the extension of probabilities on � over σ( � ) is
a completely categorical construction (an epireflection). We mention applications to the
foundations of probability and formulate some open problems.

Keywords: extension of measure, categorical methods, sequential continuity, sequential
envelope, field of subsets, D-poset of fuzzy sets, effect algebra, epireflection

MSC 2000 : 54C20, 54B30, 28A12, 28E10, 28A05, 60B99

1. Introduction

Having in mind categorical aspects of the extension of probability measures, in

Section 1 we discuss the need to enlarge the category of classical fields of sets to

a suitable category of fuzzy sets. In Section 2 we analyze Novák’s construction

and describe our goal in categorical terms. Section 3 is devoted to the extension of
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measures in the category ID. In Section 4 we mention applications to the foundations

of probability and formulate some open problems.

The basic notions of probability are events, random variables (dually observables),

and probabilities. Classical events can be modelled by fields of sets and generalized

events by various algebraic structures: logics,MV-algebras, effect algebras, D-posets,

etc. (cf. [27], [4], [28], [12], [17], [2], [3]). An observable (as the preimage map induced

by a random variable) is a map of one field of events into another one and it preserves

the operations on events. From the categorical viewpoint, fields of events can be

considered as objects and observables as morphisms. The problem is with probability

measures!
�������� � ���������

1.1. Let X be a set, let � be a field of subsets of X , and let p be

a probability on � . The domain of p carries the structure of a Boolean algebra and
its range is the unit interval I = [0, 1]. We would like to treat p as a morphism and

hence we have to enlarge the category of fields of sets so that I (carrying a suitable

structure) becomes an object. Further, if p is not a {0, 1}-valued measure, then “p

preserves the algebraic operations only partially”, e.g., p(A ∪ B) = p(A) + p(B) is

guaranteed only when A ∩ B = ∅.
�������� � ���������

1.2. The sequential envelope of Novák, likewise the Čech-Stone

compactification or the Hewitt realcompactification can be constructed via categori-

cal products (powers of I or � ) and then the continuous extension of functions under
question follows from the properties of products and the projections onto factors.

Hence we need to equip the factors with a suitable continuity structure (sequential

convergence in case of Novák).

This leads to an “evaluation” category (see Section 2) in which all spaces and maps

involved in the construction of the extension become objects and morphisms, respec-

tively. In our case it is the category ID of D-posets of fuzzy sets co-generated by the

unit interval I carrying the usual difference (subtraction) and the usual convergence

of sequences (cf. [9], [25]).

Recall (cf. [20], [4]) that a D-poset is a quintuple (E, 6,	, 0E, 1E) where E is a

set, 6 is a partial order, 0E is the least element, 1E is the greatest element, 	 is

partial operation on E such that a	 b is defined iff b 6 a, and the following axioms

are assumed:

(D1) a 	 0E = a for each a ∈ E;

(D2) If c 6 b 6 a, then a 	 b 6 a 	 c and (a 	 c) 	 (a 	 b) = b 	 c.

If no confusion can arise, then the quintuple (E, 6,	, 0E, 1E) is condensed to E.

A map h of a D-poset E into a D-poset F which preserves the D-structure is said to

be a D-homomorphism.
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It is known that D-posets are equivalent to effect algebras introduced in [5]. In-

teresting results about effect algebras, D-posets, and other quantum structures can

be found in [4].

Unless stated otherwise, I will denote the closed unit interval carrying the usual

linear order and the usual D-structure: a 	 b is defined whenever b 6 a and then

a 	 b = a − b. Analogously, if X is a set and IX is the set of all functions on X

into I , then we consider IX as a D-poset in which the partial order and the partial

operation 	 are defined pointwise: b 6 a iff b(x) 6 a(x) for all x ∈ X and a 	 b

is defined by (a 	 b)(x) = a(x) − b(x), x ∈ X . A subset X ⊆ IX containing the

constant functions 0X , 1X and closed with respect to the inherited partial operation

“	” is a typical D-poset we are interested in; we shall call it a D-poset of fuzzy sets.

Clearly, if we identify A ⊆ X and the corresponding characteristic function χA ∈

IX , then each field � of subsets of X can be considered as a D-poset � ⊆ IX of

fuzzy sets: � is partially ordered (χB 6 χA iff B ⊆ A) and then χA 	 χB is defined

as χA\B provided B ⊆ A.

Further, assume that I carries the usual sequential convergence and that IX and

other D-posets of fuzzy sets carry the pointwise sequential convergence. In what

follows, we identify I and I{x}, where {x} is a singleton. Let � be a field of subsets
of X considered as a D-poset of fuzzy sets and let p be a probability measure on � .
Lemma 2 in [22] states that p as a map of � ⊆ IX into I is sequentially continuous.

For more information concerning the σ-additivity and the sequential continuity of

measures see [10].

The category ID consists of the reduced D-posets of fuzzy sets carrying the point-

wise convergence as objects and the sequentially continuous D-homomorphisms as

morphisms. Note that the assumption that all objects of ID are reduced (each two

points a, b of the underlying set X are separated by some fuzzy set u ∈ X ⊆ IX ,

i.e.u(a) 6= u(b)) plays the same role as the Hausdorff separation axiom T2: lim-

its are unique and the continuous extensions from dense subobjects are uniquely

determined.

Additional information about category theory, generalized measure, sequential

envelopes and their generalizations can be found, e.g., in [1], [8], [11], [18], [6], [15],

[16], [19], [21], [13], [14], respectively.

2. The evaluation category

Let us start with the Novák’s construction of the sequential envelope of a field of

sets with respect to all probability measures (cf. [24]). !���"����� # $%�������
2.1. Let X be a set, let � be a field of subsets of X , and let

σ( � ) be the generated σ-field. If we consider � as a subset of IX , then σ( � ) can be
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considered as the smallest subset of IX containing � and sequentially closed with
respect to the pointwise convergence of sequences (cf. [23], [24]). Let P be the set

of all probabilities on � . Since each x ∈ X can be considered as the degenerated

one-point probability px ∈ P , we shall consider X as a subset of P . The evaluation

of � is a map evP of � into IP defined as follows: for A ∈ � put evP (A)(p) = p(A),

p ∈ P . Denote evP ( � ) = {evP (A) ; A ∈ � } ⊂ IP and denote X the smallest of all

subsets Y of IP such that: (1) evP ( � ) ⊆ Y and (2) Y is closed with respect to the

pointwise convergence in IP . Clearly, X is the intersection of all such Y .

The set X carrying the inherited pointwise convergence is a sequential envelope

of � with respect to P : roughly, X represents a maximal larger “object” over which

each probability measure on � can be uniquely extended to a sequentially continuous
map to I in a reasonable way. First, � ⊆ IX and evP ( � ) ⊆ IP are “isomorphic”

as objects of a generalized probability theory (see the last Section). Second, X is

a “categorical” extension of evP (A) (probabilities are simultaneously extended via

“powers and projections” and each probability has a unique extension). Third, X

has some absolute properties and, “surprisingly”, X and σ( � ) are “isomorphic”.

Consequently, σ( � ) has the same absolute properties as X does have.

In the category of sequential convergence spaces and sequentially continuous maps

the transition from � to X ⊆ IP via evP has the same nature as the transition from

a completely regular space S to its Čech-Stone compactification βS ⊆ IC(S,I) via

embedding S into the Tikhonov cube IC(S,I). In the former case we work with

the pointwise sequential convergence (it is the categorical product convergence in

IP ) and we extend functions in P . Note that P is “just a set” of morphisms of �
into I and sequential convergence spaces like X form “just a class” of objects. In

the latter case we work with Tikhonov topologies and we extend continuous func-

tions C(S, I) on S into I , i.e. all morphisms of S into I , and hence βS is an epire-

flection (completely regular spaces are reflected into the subcategory of compact

spaces).

As proved in [24], the sequential envelope of � with respect to P exists and (up

to a sequential homeomorphism pointwise fixed on � ) it is uniquely determined.
Observe that X ⊆ IP does not carry any natural Boolean structure. We claim that

σ( � ) is the sequential envelope of � , hence σ( � ) ⊆ IX and X ⊆ IP have to be

“equivalent”. To prove the equivalence we have to ignore the algebraic structure

of σ( � ) and to make use of the METHM (Measure Extension Theorem). Indeed,

METHM implies that each probability on � (as a bounded sequentially continuous
function on � ) can be extended to a probability on σ( � ). To show that σ( � ) is

the maximal extension of the domain for all probabilities it suffices to verify that

in σ( � ) there is no totally divergent P-Cauchy sequence (having a potential limit

outside σ( � ); we say that {An} is P-Cauchy if for each p ∈ P the sequence {p(An)}
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is a Cauchy sequence of real numbers). But this is trivial. Let {An} be a P-Cauchy

sequence in σ( � ). Then each sequence {px(An)}, x ∈ X , converges and hence {An}

converges (pointwise) in σ( � ). The uniqueness of the sequential envelopes means

that σ( � ) and X are equivalent from the viewpoint of the extension of probabilities

as sequentially continuous functions. Hence σ( � ) is the sequential envelope of � with
respect to P .

Observe that probabilities on � and their extensions on σ( � ) can be distinguished

from other sequentially continuous functions only via the algebraic (Boolean) struc-

ture of fields of sets—the additivity is not defined in terms of continuity.

Our strategy is to find a category (as simple as possible) in which � and evP ( � )

(resp.σ( � ) and X ) “live” as equivalent objects, probabilities are exactly the mor-

phisms the extension of which we are interested in, and the construction of an epire-

flection via powers and projections can be carried out. We shall call it the evaluation

category over fields of sets and probability measures.
�������� � ���������

2.2. Let � be a (separated) field of subsets of X . Let P ( � ) be

the set of all probability measures on � ; if no confusion can arise, then P ( � ) will

be condensed to P . Barred the trivial case, evP ( � ) fails to be a field of subsets

of P . However, evP ( � ) ⊂ IP can be considered as an object of the category ID

(observe that if p ∈ P , then for A, B ∈ � , B ⊂ A, we have p(A \ B) = p(A) − p(B)

and hence evP (A \ B) = evP (A) 	 evP (B)) and each probability measure p on �
can be considered as a morphism of evP ( � ) into I (first, the sequential continuity

of p as a map of � into I follows from Lemma 2 in [22]; second, put p(evP (A)) =

(evP (A))(p) = p(A); third, it is easy to verify that p as a map of evP ( � ) into I

preserves the D-poset structure; fourth, a sequence {An} converges to A in � iff the
corresponding sequence {evP (An)} converges to evP (A) in evP ( � )). Let & be a field
of subsets of Y and let f be an ( � , & )-measurable map of Y into X . Then f induces

the preimage map f← sending A ∈ � into f←(A) = {y ∈ Y ; f(y) ∈ A}. It is

known (cf. [7]) that f← is a sequentially continuous Boolean homomorphism, hence

a D-homomorphism, of � into & . Moreover, f induces a map f ∗ of the set P ( & ) (of
all probability measures on & ) into P ( � ) defined by (f ∗(p))(A)) = p(f←(A)), A ∈ � ,
p ∈ P ( & ). If we consider points of X and Y as point probability measures, then f

is the restriction of f∗ to Y ⊂ P ( & ). In fact, f induces a sequentially continuous

D-homomorphism f/ of evP ( � ) into evP ( & ) sending evP (A) ∈ evP ( � ) ⊂ IP ( ' ) into
evP (f←(A)) ∈ evP ( & ) ⊂ IP ( ( ) . Natural questions arise:
1. Can each sequentially continuous D-homomorphism (i.e. a morphism of ID) of

evP ( � ) into I be considered as a probability measure on � ?
2. Is each sequentially continuous D-homomorphism (i.e. a morphism of ID) h of

evP ( � ) into evP ( & ) of the form f/ for some measurable map f of Y into X?
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The answers are positive (cf. Lemma 2.2 and Lemma 3.3 in [25]). This means that

the category ID is a good candidate. Still, we have to prove that σ( � ) is the desired

epireflection in ID.

3. Extending measure

Let X be a set and let � be a field of subsets of X . Denote P ( � ) the set of

all probability measures on � . Let σ( � ) be the generated σ-field. In [24] J. Novák

proved that σ( � ) is the sequential envelope of � with respect to P ( � ). In this section

we describe how this result is related to the Measure Extension Theorem (METHM).

Theorem 3.1 (METHM-classical). Let � be a field of sets, let σ( � ) be the

generated σ-field, and let p be a probability measure on � . Then there exists a
unique probability measure p on σ( � ) such that p(A) = p(A) for all A ∈ � .
The proof (usually based on the outer measure) can be found in any treatise on

measure. However, additional properties of σ( � ) are usually not mentioned there.

J. Novák pointed out that from the “topological viewpoint” σ( � ) can be viewed as

a maximal object over which all probability measures on � can be extended.
Let � , & be fields of subsets of X and let � ⊆ & . Recall that a sequence {An}∞n=1

of sets in � is said to be P-Cauchy if for each probability measure p on � the sequence
{p(An)}∞n=1 is a Cauchy sequence of real numbers. If for each probability measure p

on � there exists a probability measure p on & such that p(A) = p(A) for all A ∈ � ,
then � is said to be P-embedded in & .

Theorem 3.2. The following are equivalent

(i) � = σ( � );

(ii) Each P-Cauchy sequence converges in � ;
(iii) � is sequentially closed in each field of subsets & in which � is P-embedded.
) �*�+�-,

. (i) implies (ii). Assume (i) and let {An}∞n=1 be a P-Cauchy sequence in

� . Since each x ∈ X represents a point-probability, the sequence {An}∞n=1 (point-

wise) converges in {0, 1}X . From � = σ( � ) it follows that � is sequentially closed
and hence {An}∞n=1 converges in � .
(ii) implies (iii). Let � be P-embedded in & and let {An}∞n=1 be a sequence in �

which converges in & . Since each p ∈ P ( & ) is sequentially continuous, {An}∞n=1 is

P-Cauchy and hence converges in � .
(iii) implies (i). From the classical METHM it follows that � is P-embedded in

σ( � ). Thus (iii) implies that � is sequentially closed in σ( � ) and hence � = σ( � ).

This completes the proof. �
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Theorem 3.3 (METHM-Novák). Let � be a field of sets and let σ( � ) be the

generated σ-field. Then σ( � ) is a maximal field of subsets in which � is P-embedded

and sequentially dense.

) �*�+�-,
. The assertion follows from the preceding theorem. Let � be a field

of subsets of X . Assume that � is P-embedded and sequentially dense in a field

& . Clearly, � is P-embedded and sequentially dense in σ( & ). Since the generated
σ-field of a field of subsets of X is the smallest sequentially closed system in {0, 1}X

containing the field in question, necessarily σ( & ) = σ( � ). Thus σ( � ) is maximal.

This completes the proof. �

Observe that σ-fields form a special class of fields of sets. Indeed, � = σ( � )

means that � has the following absolute property with respect to the extension
of probability measures (cf. [10]): � is sequentially closed in each field of subsets
in which it is P-embedded (in this respect this absolute property is similar to the

compactness).

Finally, we show that in the realm of the category ID the embedding of a field

of sets into the generated σ-field and the extension of probability measures can be

characterized in categorical terms. The characterization is based on three facts:

1. Fields of sets form a special subcategory FS of ID;

2. The epireflection for sober objects of ID (into the subcategory CSID of closed

sober objects) constructed by M.Papčo in [25] can be extended to a subcategory

containing FS (fields of sets are not sober);

3. The epireflection applied to a field of sets � yields the generated σ-field σ( � ).

Denote FS the full subcategory of ID consisting of objects the underlying sets of

which are reduced fields of sets.

Lemma 3.4. The category FS and the category of reduced fields of sets and

continuous Boolean homomorphisms are isomorphic.

) �*�+�-,
. Let � be a field of subsets of X . Identifying A ∈ � and the correspond-

ing characteristic function χA, we can reorganize � into an ID-poset in a natural

way: order and convergence are defined pointwise, χX is the top element, χ∅ is the

bottom element, for A, B ∈ � , B ⊆ A, put χA 	χB = χA\B ; further, if � and & are
fields of sets and h is a Boolean homomorphism of � into & , then h preserves the

D-poset structure and it can be considered as a D-homomorphism. Conversely, if �
and & are ID-posets of subsets closed under the usual (finite) field operations (union,

intersection, . . .), then both � and & can be reorganized into fields of subsets in a
natural way and each D-homomorphism of � into & can be considered as a Boolean
homomorphism. �
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In the sequel, the category of fields of sets and sequentially continuous Boolean

homomorphisms and the full subcategory FS of ID will be treated as identical.

In [25] two important subcategories of ID have been studied: SID consisting of

sober objects and CSID consisting of closed sober objects. Recall that X ⊆ IX is said

to be sober if each morphism of X into I is fixed, i.e. for each h ∈ hom(X , I) there

exists a unique x ∈ X such that h is the evaluation of X at x. Each evP ( � ) is sober

and sobriety plays a key role in categorical constructions. Further, X ⊆ IX is said to

be closed, if X is sequentially closed in IX with respect to the pointwise sequential

convergence. Again, each σ( � ) is closed and closed objects in ID generalize σ-fields

of sets.

Corollary 2.17 in [25] states that CSID is epireflective in SID. We define a larger

subcategory of ID, containing both SID and FS, to which the epireflection can be

generalized.

Let X ⊆ IX be an object of ID. According to [25], there exists the minimal of all

objects Y of ID such that X ⊆ Y ⊆ IX and Y is sequentially closed. Denote it σ(X ).

Definition 3.5. Let X be an object of ID. If for each morphism h of X into I

there exists a morphism h of σ(X ) into I such that h(u) = h(u) for all u ∈ X , then

X is said to be sufficient.

Recall (cf. Lemma 2.7 in [25]), that if h and h′ are two morphisms of σ(X ) into an

object Y of ID such that h(u) = h′(u) for all u ∈ X , then h = h′. Consequently, h

in the definition above is determined uniquely.

Denote STID the full subcategory of ID consisting of sufficient objects. Clearly,

each closed object of ID is sufficient. We prove that both SID and FS are subcate-

gories of STID.

Lemma 3.6. (i) Each sober object of ID is sufficient.

(ii) Each object of FS is sufficient.

) �*�+�-,
. (i) Let X be sober. According to Corollary 2.17 in [25], CSID is

epireflective in SID and σ(X ) is the epireflection of X . Hence each morphism h of

X into I can be (uniquely) extended over σ(X ) and the assertion follows.

(ii) follows from the fact that sequentially continuous D-homomorphisms of a field

of sets into I are exactly probability measures and hence can be (uniquely) extended

over the generated σ-field. �

Theorem 3.7. CID is an epireflective subcategory of STID.

) �*�+�-,
. The proof is based on the categorical properties of a product. Let

X ⊆ IX be an object of STID. We claim that the embedding of X into σ(X ) is
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the desired epireflection (remember, σ(X ) is closed), i.e. each morphism of X into a

closed object of ID can be extended to a unique morphism over σ(X ).

(i) Let h be a morphism of X into I . Since X is sufficient, it follows that h can

be uniquely extended to a morphism h of σ(X ) into I .

(ii) Let Y ⊆ IY be an object of CID. Let h be a morphism of X into Y . Since

IY is the categorical product in ID, the composition of h (considered as a morphism

of X into IY ) and each projection of IY into a factor I is a morphism of X into I

and, according to (i), it can be uniquely extended to a morphism of σ(X ) to I . From

the definition of a product and from Lemma 2.7 in [25] it follows that there exists

a unique morphism h of σ(X ) into σ(Y) = Y such that h(u) = h(u) for all u ∈ X .

This completes the proof. �

Theorem 3.8 (METHM-categorical). Let � be a field of sets and let σ( � ) be

the generated σ-field. Then σ( � ) is the epireflection of � as an object of STID into

CID.

4. Concluding remarks

Details about fuzzy probability theory can be found, e.g., in [17], [2], [3], [12], [14],

[26].

Let (Ω, � , p) be a probability space in the classical Kolmogorov sense. A mea-

surable map f of Ω into the real line � , called random variable, sends p into a

probability measure pf , called the distribution of f , on the real Borel sets & via
pf (B) = p(f←(B)), B ∈ & . In fact, f induces a map sending probability measures
on � into probability measures on & (each point ω ∈ Ω, or r ∈ � is considered as a
degenerated point probability measure). The preimage map f←, called observable,

maps & into � and it is a sequentially continuous Boolean homomorphism. A fuzzy
random variable (or operational r.v.) is a “measurable” map sending probability

measures on one probability space into probability measures on another probability

space, but it can happen that a point ω ∈ Ω is mapped to a nondegenerated prob-

ability measure. The corresponding observable is still sequentially continuous, but

sends fuzzy subsets into fuzzy subsets (the image of a crisp set need not be crisp)

and preserves some operations on fuzzy sets. The category ID (as an evaluation

category) is suitable for modelling fundamental notions of fuzzy probability theory

(cf. [14]).

We conclude with some problems concernig ID.) �*��/.���0
1.1. Is each object IX of ID sufficient?) �*��/.���0
1.2. Is STID epireflective in ID?
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Note that SID is a monocoreflective subcategory of ID. If X is an object of ID

then the monocoreflection X ∗ of X is called the sobrification of X (cf. [25]).) �*��/.���0
2.1. Does there exist an object X of ID such that σ(X ) and σ(X ∗)

are not isomorphic?) �*��/.���0
2.2. Does there exist an object X ⊆ {0, 1}X of ID such that σ(X )

and σ(X ∗) are not isomorphic?
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